1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu-common.h" 33 #include "qemu/datadir.h" 34 #include "qemu/units.h" 35 #include "qemu/option.h" 36 #include "monitor/qdev.h" 37 #include "qapi/error.h" 38 #include "hw/sysbus.h" 39 #include "hw/arm/boot.h" 40 #include "hw/arm/primecell.h" 41 #include "hw/arm/virt.h" 42 #include "hw/block/flash.h" 43 #include "hw/vfio/vfio-calxeda-xgmac.h" 44 #include "hw/vfio/vfio-amd-xgbe.h" 45 #include "hw/display/ramfb.h" 46 #include "net/net.h" 47 #include "sysemu/device_tree.h" 48 #include "sysemu/numa.h" 49 #include "sysemu/runstate.h" 50 #include "sysemu/tpm.h" 51 #include "sysemu/kvm.h" 52 #include "hw/loader.h" 53 #include "qapi/error.h" 54 #include "qemu/bitops.h" 55 #include "qemu/error-report.h" 56 #include "qemu/module.h" 57 #include "hw/pci-host/gpex.h" 58 #include "hw/virtio/virtio-pci.h" 59 #include "hw/arm/sysbus-fdt.h" 60 #include "hw/platform-bus.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/arm/fdt.h" 63 #include "hw/intc/arm_gic.h" 64 #include "hw/intc/arm_gicv3_common.h" 65 #include "hw/irq.h" 66 #include "kvm_arm.h" 67 #include "hw/firmware/smbios.h" 68 #include "qapi/visitor.h" 69 #include "qapi/qapi-visit-common.h" 70 #include "standard-headers/linux/input.h" 71 #include "hw/arm/smmuv3.h" 72 #include "hw/acpi/acpi.h" 73 #include "target/arm/internals.h" 74 #include "hw/mem/pc-dimm.h" 75 #include "hw/mem/nvdimm.h" 76 #include "hw/acpi/generic_event_device.h" 77 #include "hw/virtio/virtio-iommu.h" 78 #include "hw/char/pl011.h" 79 #include "qemu/guest-random.h" 80 81 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 82 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 83 void *data) \ 84 { \ 85 MachineClass *mc = MACHINE_CLASS(oc); \ 86 virt_machine_##major##_##minor##_options(mc); \ 87 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 88 if (latest) { \ 89 mc->alias = "virt"; \ 90 } \ 91 } \ 92 static const TypeInfo machvirt_##major##_##minor##_info = { \ 93 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 94 .parent = TYPE_VIRT_MACHINE, \ 95 .class_init = virt_##major##_##minor##_class_init, \ 96 }; \ 97 static void machvirt_machine_##major##_##minor##_init(void) \ 98 { \ 99 type_register_static(&machvirt_##major##_##minor##_info); \ 100 } \ 101 type_init(machvirt_machine_##major##_##minor##_init); 102 103 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 104 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 105 #define DEFINE_VIRT_MACHINE(major, minor) \ 106 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 107 108 109 /* Number of external interrupt lines to configure the GIC with */ 110 #define NUM_IRQS 256 111 112 #define PLATFORM_BUS_NUM_IRQS 64 113 114 /* Legacy RAM limit in GB (< version 4.0) */ 115 #define LEGACY_RAMLIMIT_GB 255 116 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 117 118 /* Addresses and sizes of our components. 119 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 120 * 128MB..256MB is used for miscellaneous device I/O. 121 * 256MB..1GB is reserved for possible future PCI support (ie where the 122 * PCI memory window will go if we add a PCI host controller). 123 * 1GB and up is RAM (which may happily spill over into the 124 * high memory region beyond 4GB). 125 * This represents a compromise between how much RAM can be given to 126 * a 32 bit VM and leaving space for expansion and in particular for PCI. 127 * Note that devices should generally be placed at multiples of 0x10000, 128 * to accommodate guests using 64K pages. 129 */ 130 static const MemMapEntry base_memmap[] = { 131 /* Space up to 0x8000000 is reserved for a boot ROM */ 132 [VIRT_FLASH] = { 0, 0x08000000 }, 133 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 134 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 135 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 136 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 137 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 138 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 139 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 140 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 141 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 142 /* This redistributor space allows up to 2*64kB*123 CPUs */ 143 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 144 [VIRT_UART] = { 0x09000000, 0x00001000 }, 145 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 146 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 147 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 148 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 149 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 150 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 151 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 152 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 153 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 154 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 155 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 156 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 157 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 158 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 159 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 160 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 161 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 162 /* Actual RAM size depends on initial RAM and device memory settings */ 163 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 164 }; 165 166 /* 167 * Highmem IO Regions: This memory map is floating, located after the RAM. 168 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 169 * top of the RAM, so that its base get the same alignment as the size, 170 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 171 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 172 * Note the extended_memmap is sized so that it eventually also includes the 173 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 174 * index of base_memmap). 175 */ 176 static MemMapEntry extended_memmap[] = { 177 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 178 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 179 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 180 /* Second PCIe window */ 181 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 182 }; 183 184 static const int a15irqmap[] = { 185 [VIRT_UART] = 1, 186 [VIRT_RTC] = 2, 187 [VIRT_PCIE] = 3, /* ... to 6 */ 188 [VIRT_GPIO] = 7, 189 [VIRT_SECURE_UART] = 8, 190 [VIRT_ACPI_GED] = 9, 191 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 192 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 193 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 194 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 195 }; 196 197 static const char *valid_cpus[] = { 198 ARM_CPU_TYPE_NAME("cortex-a7"), 199 ARM_CPU_TYPE_NAME("cortex-a15"), 200 ARM_CPU_TYPE_NAME("cortex-a53"), 201 ARM_CPU_TYPE_NAME("cortex-a57"), 202 ARM_CPU_TYPE_NAME("cortex-a72"), 203 ARM_CPU_TYPE_NAME("a64fx"), 204 ARM_CPU_TYPE_NAME("host"), 205 ARM_CPU_TYPE_NAME("max"), 206 }; 207 208 static bool cpu_type_valid(const char *cpu) 209 { 210 int i; 211 212 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 213 if (strcmp(cpu, valid_cpus[i]) == 0) { 214 return true; 215 } 216 } 217 return false; 218 } 219 220 static void create_kaslr_seed(MachineState *ms, const char *node) 221 { 222 uint64_t seed; 223 224 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 225 return; 226 } 227 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed); 228 } 229 230 static void create_fdt(VirtMachineState *vms) 231 { 232 MachineState *ms = MACHINE(vms); 233 int nb_numa_nodes = ms->numa_state->num_nodes; 234 void *fdt = create_device_tree(&vms->fdt_size); 235 236 if (!fdt) { 237 error_report("create_device_tree() failed"); 238 exit(1); 239 } 240 241 ms->fdt = fdt; 242 243 /* Header */ 244 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 245 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 246 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 247 248 /* /chosen must exist for load_dtb to fill in necessary properties later */ 249 qemu_fdt_add_subnode(fdt, "/chosen"); 250 create_kaslr_seed(ms, "/chosen"); 251 252 if (vms->secure) { 253 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 254 create_kaslr_seed(ms, "/secure-chosen"); 255 } 256 257 /* Clock node, for the benefit of the UART. The kernel device tree 258 * binding documentation claims the PL011 node clock properties are 259 * optional but in practice if you omit them the kernel refuses to 260 * probe for the device. 261 */ 262 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 263 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 264 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 265 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 266 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 267 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 268 "clk24mhz"); 269 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 270 271 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 272 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 273 uint32_t *matrix = g_malloc0(size); 274 int idx, i, j; 275 276 for (i = 0; i < nb_numa_nodes; i++) { 277 for (j = 0; j < nb_numa_nodes; j++) { 278 idx = (i * nb_numa_nodes + j) * 3; 279 matrix[idx + 0] = cpu_to_be32(i); 280 matrix[idx + 1] = cpu_to_be32(j); 281 matrix[idx + 2] = 282 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 283 } 284 } 285 286 qemu_fdt_add_subnode(fdt, "/distance-map"); 287 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 288 "numa-distance-map-v1"); 289 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 290 matrix, size); 291 g_free(matrix); 292 } 293 } 294 295 static void fdt_add_timer_nodes(const VirtMachineState *vms) 296 { 297 /* On real hardware these interrupts are level-triggered. 298 * On KVM they were edge-triggered before host kernel version 4.4, 299 * and level-triggered afterwards. 300 * On emulated QEMU they are level-triggered. 301 * 302 * Getting the DTB info about them wrong is awkward for some 303 * guest kernels: 304 * pre-4.8 ignore the DT and leave the interrupt configured 305 * with whatever the GIC reset value (or the bootloader) left it at 306 * 4.8 before rc6 honour the incorrect data by programming it back 307 * into the GIC, causing problems 308 * 4.8rc6 and later ignore the DT and always write "level triggered" 309 * into the GIC 310 * 311 * For backwards-compatibility, virt-2.8 and earlier will continue 312 * to say these are edge-triggered, but later machines will report 313 * the correct information. 314 */ 315 ARMCPU *armcpu; 316 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 317 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 318 MachineState *ms = MACHINE(vms); 319 320 if (vmc->claim_edge_triggered_timers) { 321 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 322 } 323 324 if (vms->gic_version == VIRT_GIC_VERSION_2) { 325 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 326 GIC_FDT_IRQ_PPI_CPU_WIDTH, 327 (1 << MACHINE(vms)->smp.cpus) - 1); 328 } 329 330 qemu_fdt_add_subnode(ms->fdt, "/timer"); 331 332 armcpu = ARM_CPU(qemu_get_cpu(0)); 333 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 334 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 335 qemu_fdt_setprop(ms->fdt, "/timer", "compatible", 336 compat, sizeof(compat)); 337 } else { 338 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", 339 "arm,armv7-timer"); 340 } 341 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); 342 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 343 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 344 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 345 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 346 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 347 } 348 349 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 350 { 351 int cpu; 352 int addr_cells = 1; 353 const MachineState *ms = MACHINE(vms); 354 int smp_cpus = ms->smp.cpus; 355 356 /* 357 * From Documentation/devicetree/bindings/arm/cpus.txt 358 * On ARM v8 64-bit systems value should be set to 2, 359 * that corresponds to the MPIDR_EL1 register size. 360 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 361 * in the system, #address-cells can be set to 1, since 362 * MPIDR_EL1[63:32] bits are not used for CPUs 363 * identification. 364 * 365 * Here we actually don't know whether our system is 32- or 64-bit one. 366 * The simplest way to go is to examine affinity IDs of all our CPUs. If 367 * at least one of them has Aff3 populated, we set #address-cells to 2. 368 */ 369 for (cpu = 0; cpu < smp_cpus; cpu++) { 370 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 371 372 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 373 addr_cells = 2; 374 break; 375 } 376 } 377 378 qemu_fdt_add_subnode(ms->fdt, "/cpus"); 379 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); 380 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); 381 382 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 383 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 384 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 385 CPUState *cs = CPU(armcpu); 386 387 qemu_fdt_add_subnode(ms->fdt, nodename); 388 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); 389 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 390 armcpu->dtb_compatible); 391 392 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 393 qemu_fdt_setprop_string(ms->fdt, nodename, 394 "enable-method", "psci"); 395 } 396 397 if (addr_cells == 2) { 398 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", 399 armcpu->mp_affinity); 400 } else { 401 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", 402 armcpu->mp_affinity); 403 } 404 405 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 406 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", 407 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 408 } 409 410 g_free(nodename); 411 } 412 } 413 414 static void fdt_add_its_gic_node(VirtMachineState *vms) 415 { 416 char *nodename; 417 MachineState *ms = MACHINE(vms); 418 419 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 420 nodename = g_strdup_printf("/intc/its@%" PRIx64, 421 vms->memmap[VIRT_GIC_ITS].base); 422 qemu_fdt_add_subnode(ms->fdt, nodename); 423 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 424 "arm,gic-v3-its"); 425 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 426 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 427 2, vms->memmap[VIRT_GIC_ITS].base, 428 2, vms->memmap[VIRT_GIC_ITS].size); 429 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 430 g_free(nodename); 431 } 432 433 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 434 { 435 MachineState *ms = MACHINE(vms); 436 char *nodename; 437 438 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 439 vms->memmap[VIRT_GIC_V2M].base); 440 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 441 qemu_fdt_add_subnode(ms->fdt, nodename); 442 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 443 "arm,gic-v2m-frame"); 444 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 445 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 446 2, vms->memmap[VIRT_GIC_V2M].base, 447 2, vms->memmap[VIRT_GIC_V2M].size); 448 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 449 g_free(nodename); 450 } 451 452 static void fdt_add_gic_node(VirtMachineState *vms) 453 { 454 MachineState *ms = MACHINE(vms); 455 char *nodename; 456 457 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); 458 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); 459 460 nodename = g_strdup_printf("/intc@%" PRIx64, 461 vms->memmap[VIRT_GIC_DIST].base); 462 qemu_fdt_add_subnode(ms->fdt, nodename); 463 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); 464 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); 465 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); 466 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); 467 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); 468 if (vms->gic_version == VIRT_GIC_VERSION_3) { 469 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 470 471 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 472 "arm,gic-v3"); 473 474 qemu_fdt_setprop_cell(ms->fdt, nodename, 475 "#redistributor-regions", nb_redist_regions); 476 477 if (nb_redist_regions == 1) { 478 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 479 2, vms->memmap[VIRT_GIC_DIST].base, 480 2, vms->memmap[VIRT_GIC_DIST].size, 481 2, vms->memmap[VIRT_GIC_REDIST].base, 482 2, vms->memmap[VIRT_GIC_REDIST].size); 483 } else { 484 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 485 2, vms->memmap[VIRT_GIC_DIST].base, 486 2, vms->memmap[VIRT_GIC_DIST].size, 487 2, vms->memmap[VIRT_GIC_REDIST].base, 488 2, vms->memmap[VIRT_GIC_REDIST].size, 489 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 490 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 491 } 492 493 if (vms->virt) { 494 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 495 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 496 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 497 } 498 } else { 499 /* 'cortex-a15-gic' means 'GIC v2' */ 500 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 501 "arm,cortex-a15-gic"); 502 if (!vms->virt) { 503 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 504 2, vms->memmap[VIRT_GIC_DIST].base, 505 2, vms->memmap[VIRT_GIC_DIST].size, 506 2, vms->memmap[VIRT_GIC_CPU].base, 507 2, vms->memmap[VIRT_GIC_CPU].size); 508 } else { 509 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 510 2, vms->memmap[VIRT_GIC_DIST].base, 511 2, vms->memmap[VIRT_GIC_DIST].size, 512 2, vms->memmap[VIRT_GIC_CPU].base, 513 2, vms->memmap[VIRT_GIC_CPU].size, 514 2, vms->memmap[VIRT_GIC_HYP].base, 515 2, vms->memmap[VIRT_GIC_HYP].size, 516 2, vms->memmap[VIRT_GIC_VCPU].base, 517 2, vms->memmap[VIRT_GIC_VCPU].size); 518 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 519 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 520 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 521 } 522 } 523 524 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); 525 g_free(nodename); 526 } 527 528 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 529 { 530 ARMCPU *armcpu = ARM_CPU(first_cpu); 531 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 532 MachineState *ms = MACHINE(vms); 533 534 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 535 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 536 return; 537 } 538 539 if (vms->gic_version == VIRT_GIC_VERSION_2) { 540 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 541 GIC_FDT_IRQ_PPI_CPU_WIDTH, 542 (1 << MACHINE(vms)->smp.cpus) - 1); 543 } 544 545 qemu_fdt_add_subnode(ms->fdt, "/pmu"); 546 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 547 const char compat[] = "arm,armv8-pmuv3"; 548 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", 549 compat, sizeof(compat)); 550 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", 551 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 552 } 553 } 554 555 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 556 { 557 DeviceState *dev; 558 MachineState *ms = MACHINE(vms); 559 int irq = vms->irqmap[VIRT_ACPI_GED]; 560 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 561 562 if (ms->ram_slots) { 563 event |= ACPI_GED_MEM_HOTPLUG_EVT; 564 } 565 566 if (ms->nvdimms_state->is_enabled) { 567 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 568 } 569 570 dev = qdev_new(TYPE_ACPI_GED); 571 qdev_prop_set_uint32(dev, "ged-event", event); 572 573 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 574 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 575 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 576 577 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 578 579 return dev; 580 } 581 582 static void create_its(VirtMachineState *vms) 583 { 584 const char *itsclass = its_class_name(); 585 DeviceState *dev; 586 587 if (!itsclass) { 588 /* Do nothing if not supported */ 589 return; 590 } 591 592 dev = qdev_new(itsclass); 593 594 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 595 &error_abort); 596 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 597 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 598 599 fdt_add_its_gic_node(vms); 600 vms->msi_controller = VIRT_MSI_CTRL_ITS; 601 } 602 603 static void create_v2m(VirtMachineState *vms) 604 { 605 int i; 606 int irq = vms->irqmap[VIRT_GIC_V2M]; 607 DeviceState *dev; 608 609 dev = qdev_new("arm-gicv2m"); 610 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 611 qdev_prop_set_uint32(dev, "base-spi", irq); 612 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 613 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 614 615 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 616 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 617 qdev_get_gpio_in(vms->gic, irq + i)); 618 } 619 620 fdt_add_v2m_gic_node(vms); 621 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 622 } 623 624 static void create_gic(VirtMachineState *vms) 625 { 626 MachineState *ms = MACHINE(vms); 627 /* We create a standalone GIC */ 628 SysBusDevice *gicbusdev; 629 const char *gictype; 630 int type = vms->gic_version, i; 631 unsigned int smp_cpus = ms->smp.cpus; 632 uint32_t nb_redist_regions = 0; 633 634 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 635 636 vms->gic = qdev_new(gictype); 637 qdev_prop_set_uint32(vms->gic, "revision", type); 638 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 639 /* Note that the num-irq property counts both internal and external 640 * interrupts; there are always 32 of the former (mandated by GIC spec). 641 */ 642 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 643 if (!kvm_irqchip_in_kernel()) { 644 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 645 } 646 647 if (type == 3) { 648 uint32_t redist0_capacity = 649 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 650 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 651 652 nb_redist_regions = virt_gicv3_redist_region_count(vms); 653 654 qdev_prop_set_uint32(vms->gic, "len-redist-region-count", 655 nb_redist_regions); 656 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count); 657 658 if (nb_redist_regions == 2) { 659 uint32_t redist1_capacity = 660 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 661 662 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]", 663 MIN(smp_cpus - redist0_count, redist1_capacity)); 664 } 665 } else { 666 if (!kvm_irqchip_in_kernel()) { 667 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 668 vms->virt); 669 } 670 } 671 gicbusdev = SYS_BUS_DEVICE(vms->gic); 672 sysbus_realize_and_unref(gicbusdev, &error_fatal); 673 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 674 if (type == 3) { 675 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 676 if (nb_redist_regions == 2) { 677 sysbus_mmio_map(gicbusdev, 2, 678 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 679 } 680 } else { 681 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 682 if (vms->virt) { 683 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 684 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 685 } 686 } 687 688 /* Wire the outputs from each CPU's generic timer and the GICv3 689 * maintenance interrupt signal to the appropriate GIC PPI inputs, 690 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 691 */ 692 for (i = 0; i < smp_cpus; i++) { 693 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 694 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 695 int irq; 696 /* Mapping from the output timer irq lines from the CPU to the 697 * GIC PPI inputs we use for the virt board. 698 */ 699 const int timer_irq[] = { 700 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 701 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 702 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 703 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 704 }; 705 706 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 707 qdev_connect_gpio_out(cpudev, irq, 708 qdev_get_gpio_in(vms->gic, 709 ppibase + timer_irq[irq])); 710 } 711 712 if (type == 3) { 713 qemu_irq irq = qdev_get_gpio_in(vms->gic, 714 ppibase + ARCH_GIC_MAINT_IRQ); 715 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 716 0, irq); 717 } else if (vms->virt) { 718 qemu_irq irq = qdev_get_gpio_in(vms->gic, 719 ppibase + ARCH_GIC_MAINT_IRQ); 720 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 721 } 722 723 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 724 qdev_get_gpio_in(vms->gic, ppibase 725 + VIRTUAL_PMU_IRQ)); 726 727 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 728 sysbus_connect_irq(gicbusdev, i + smp_cpus, 729 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 730 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 731 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 732 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 733 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 734 } 735 736 fdt_add_gic_node(vms); 737 738 if (type == 3 && vms->its) { 739 create_its(vms); 740 } else if (type == 2) { 741 create_v2m(vms); 742 } 743 } 744 745 static void create_uart(const VirtMachineState *vms, int uart, 746 MemoryRegion *mem, Chardev *chr) 747 { 748 char *nodename; 749 hwaddr base = vms->memmap[uart].base; 750 hwaddr size = vms->memmap[uart].size; 751 int irq = vms->irqmap[uart]; 752 const char compat[] = "arm,pl011\0arm,primecell"; 753 const char clocknames[] = "uartclk\0apb_pclk"; 754 DeviceState *dev = qdev_new(TYPE_PL011); 755 SysBusDevice *s = SYS_BUS_DEVICE(dev); 756 MachineState *ms = MACHINE(vms); 757 758 qdev_prop_set_chr(dev, "chardev", chr); 759 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 760 memory_region_add_subregion(mem, base, 761 sysbus_mmio_get_region(s, 0)); 762 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 763 764 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 765 qemu_fdt_add_subnode(ms->fdt, nodename); 766 /* Note that we can't use setprop_string because of the embedded NUL */ 767 qemu_fdt_setprop(ms->fdt, nodename, "compatible", 768 compat, sizeof(compat)); 769 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 770 2, base, 2, size); 771 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 772 GIC_FDT_IRQ_TYPE_SPI, irq, 773 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 774 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", 775 vms->clock_phandle, vms->clock_phandle); 776 qemu_fdt_setprop(ms->fdt, nodename, "clock-names", 777 clocknames, sizeof(clocknames)); 778 779 if (uart == VIRT_UART) { 780 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); 781 } else { 782 /* Mark as not usable by the normal world */ 783 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 784 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 785 786 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", 787 nodename); 788 } 789 790 g_free(nodename); 791 } 792 793 static void create_rtc(const VirtMachineState *vms) 794 { 795 char *nodename; 796 hwaddr base = vms->memmap[VIRT_RTC].base; 797 hwaddr size = vms->memmap[VIRT_RTC].size; 798 int irq = vms->irqmap[VIRT_RTC]; 799 const char compat[] = "arm,pl031\0arm,primecell"; 800 MachineState *ms = MACHINE(vms); 801 802 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 803 804 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 805 qemu_fdt_add_subnode(ms->fdt, nodename); 806 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 807 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 808 2, base, 2, size); 809 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 810 GIC_FDT_IRQ_TYPE_SPI, irq, 811 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 812 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 813 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 814 g_free(nodename); 815 } 816 817 static DeviceState *gpio_key_dev; 818 static void virt_powerdown_req(Notifier *n, void *opaque) 819 { 820 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 821 822 if (s->acpi_dev) { 823 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 824 } else { 825 /* use gpio Pin 3 for power button event */ 826 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 827 } 828 } 829 830 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, 831 uint32_t phandle) 832 { 833 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 834 qdev_get_gpio_in(pl061_dev, 3)); 835 836 qemu_fdt_add_subnode(fdt, "/gpio-keys"); 837 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); 838 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#size-cells", 0); 839 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#address-cells", 1); 840 841 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); 842 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", 843 "label", "GPIO Key Poweroff"); 844 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", 845 KEY_POWER); 846 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", 847 "gpios", phandle, 3, 0); 848 } 849 850 #define SECURE_GPIO_POWEROFF 0 851 #define SECURE_GPIO_RESET 1 852 853 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, 854 uint32_t phandle) 855 { 856 DeviceState *gpio_pwr_dev; 857 858 /* gpio-pwr */ 859 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 860 861 /* connect secure pl061 to gpio-pwr */ 862 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 863 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 864 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 865 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 866 867 qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); 868 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", 869 "gpio-poweroff"); 870 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", 871 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 872 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); 873 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", 874 "okay"); 875 876 qemu_fdt_add_subnode(fdt, "/gpio-restart"); 877 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", 878 "gpio-restart"); 879 qemu_fdt_setprop_cells(fdt, "/gpio-restart", 880 "gpios", phandle, SECURE_GPIO_RESET, 0); 881 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); 882 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", 883 "okay"); 884 } 885 886 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 887 MemoryRegion *mem) 888 { 889 char *nodename; 890 DeviceState *pl061_dev; 891 hwaddr base = vms->memmap[gpio].base; 892 hwaddr size = vms->memmap[gpio].size; 893 int irq = vms->irqmap[gpio]; 894 const char compat[] = "arm,pl061\0arm,primecell"; 895 SysBusDevice *s; 896 MachineState *ms = MACHINE(vms); 897 898 pl061_dev = qdev_new("pl061"); 899 /* Pull lines down to 0 if not driven by the PL061 */ 900 qdev_prop_set_uint32(pl061_dev, "pullups", 0); 901 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); 902 s = SYS_BUS_DEVICE(pl061_dev); 903 sysbus_realize_and_unref(s, &error_fatal); 904 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 905 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 906 907 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); 908 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 909 qemu_fdt_add_subnode(ms->fdt, nodename); 910 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 911 2, base, 2, size); 912 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 913 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); 914 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); 915 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 916 GIC_FDT_IRQ_TYPE_SPI, irq, 917 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 918 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 919 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 920 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); 921 922 if (gpio != VIRT_GPIO) { 923 /* Mark as not usable by the normal world */ 924 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 925 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 926 } 927 g_free(nodename); 928 929 /* Child gpio devices */ 930 if (gpio == VIRT_GPIO) { 931 create_gpio_keys(ms->fdt, pl061_dev, phandle); 932 } else { 933 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); 934 } 935 } 936 937 static void create_virtio_devices(const VirtMachineState *vms) 938 { 939 int i; 940 hwaddr size = vms->memmap[VIRT_MMIO].size; 941 MachineState *ms = MACHINE(vms); 942 943 /* We create the transports in forwards order. Since qbus_realize() 944 * prepends (not appends) new child buses, the incrementing loop below will 945 * create a list of virtio-mmio buses with decreasing base addresses. 946 * 947 * When a -device option is processed from the command line, 948 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 949 * order. The upshot is that -device options in increasing command line 950 * order are mapped to virtio-mmio buses with decreasing base addresses. 951 * 952 * When this code was originally written, that arrangement ensured that the 953 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 954 * the first -device on the command line. (The end-to-end order is a 955 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 956 * guest kernel's name-to-address assignment strategy.) 957 * 958 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 959 * the message, if not necessarily the code, of commit 70161ff336. 960 * Therefore the loop now establishes the inverse of the original intent. 961 * 962 * Unfortunately, we can't counteract the kernel change by reversing the 963 * loop; it would break existing command lines. 964 * 965 * In any case, the kernel makes no guarantee about the stability of 966 * enumeration order of virtio devices (as demonstrated by it changing 967 * between kernel versions). For reliable and stable identification 968 * of disks users must use UUIDs or similar mechanisms. 969 */ 970 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 971 int irq = vms->irqmap[VIRT_MMIO] + i; 972 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 973 974 sysbus_create_simple("virtio-mmio", base, 975 qdev_get_gpio_in(vms->gic, irq)); 976 } 977 978 /* We add dtb nodes in reverse order so that they appear in the finished 979 * device tree lowest address first. 980 * 981 * Note that this mapping is independent of the loop above. The previous 982 * loop influences virtio device to virtio transport assignment, whereas 983 * this loop controls how virtio transports are laid out in the dtb. 984 */ 985 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 986 char *nodename; 987 int irq = vms->irqmap[VIRT_MMIO] + i; 988 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 989 990 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 991 qemu_fdt_add_subnode(ms->fdt, nodename); 992 qemu_fdt_setprop_string(ms->fdt, nodename, 993 "compatible", "virtio,mmio"); 994 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 995 2, base, 2, size); 996 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 997 GIC_FDT_IRQ_TYPE_SPI, irq, 998 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 999 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1000 g_free(nodename); 1001 } 1002 } 1003 1004 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 1005 1006 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 1007 const char *name, 1008 const char *alias_prop_name) 1009 { 1010 /* 1011 * Create a single flash device. We use the same parameters as 1012 * the flash devices on the Versatile Express board. 1013 */ 1014 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1015 1016 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1017 qdev_prop_set_uint8(dev, "width", 4); 1018 qdev_prop_set_uint8(dev, "device-width", 2); 1019 qdev_prop_set_bit(dev, "big-endian", false); 1020 qdev_prop_set_uint16(dev, "id0", 0x89); 1021 qdev_prop_set_uint16(dev, "id1", 0x18); 1022 qdev_prop_set_uint16(dev, "id2", 0x00); 1023 qdev_prop_set_uint16(dev, "id3", 0x00); 1024 qdev_prop_set_string(dev, "name", name); 1025 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1026 object_property_add_alias(OBJECT(vms), alias_prop_name, 1027 OBJECT(dev), "drive"); 1028 return PFLASH_CFI01(dev); 1029 } 1030 1031 static void virt_flash_create(VirtMachineState *vms) 1032 { 1033 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1034 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1035 } 1036 1037 static void virt_flash_map1(PFlashCFI01 *flash, 1038 hwaddr base, hwaddr size, 1039 MemoryRegion *sysmem) 1040 { 1041 DeviceState *dev = DEVICE(flash); 1042 1043 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1044 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1045 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1046 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1047 1048 memory_region_add_subregion(sysmem, base, 1049 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1050 0)); 1051 } 1052 1053 static void virt_flash_map(VirtMachineState *vms, 1054 MemoryRegion *sysmem, 1055 MemoryRegion *secure_sysmem) 1056 { 1057 /* 1058 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1059 * sysmem is the system memory space. secure_sysmem is the secure view 1060 * of the system, and the first flash device should be made visible only 1061 * there. The second flash device is visible to both secure and nonsecure. 1062 * If sysmem == secure_sysmem this means there is no separate Secure 1063 * address space and both flash devices are generally visible. 1064 */ 1065 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1066 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1067 1068 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1069 secure_sysmem); 1070 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1071 sysmem); 1072 } 1073 1074 static void virt_flash_fdt(VirtMachineState *vms, 1075 MemoryRegion *sysmem, 1076 MemoryRegion *secure_sysmem) 1077 { 1078 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1079 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1080 MachineState *ms = MACHINE(vms); 1081 char *nodename; 1082 1083 if (sysmem == secure_sysmem) { 1084 /* Report both flash devices as a single node in the DT */ 1085 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1086 qemu_fdt_add_subnode(ms->fdt, nodename); 1087 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1088 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1089 2, flashbase, 2, flashsize, 1090 2, flashbase + flashsize, 2, flashsize); 1091 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1092 g_free(nodename); 1093 } else { 1094 /* 1095 * Report the devices as separate nodes so we can mark one as 1096 * only visible to the secure world. 1097 */ 1098 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1099 qemu_fdt_add_subnode(ms->fdt, nodename); 1100 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1101 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1102 2, flashbase, 2, flashsize); 1103 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1104 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1105 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1106 g_free(nodename); 1107 1108 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1109 qemu_fdt_add_subnode(ms->fdt, nodename); 1110 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1111 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1112 2, flashbase + flashsize, 2, flashsize); 1113 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1114 g_free(nodename); 1115 } 1116 } 1117 1118 static bool virt_firmware_init(VirtMachineState *vms, 1119 MemoryRegion *sysmem, 1120 MemoryRegion *secure_sysmem) 1121 { 1122 int i; 1123 const char *bios_name; 1124 BlockBackend *pflash_blk0; 1125 1126 /* Map legacy -drive if=pflash to machine properties */ 1127 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1128 pflash_cfi01_legacy_drive(vms->flash[i], 1129 drive_get(IF_PFLASH, 0, i)); 1130 } 1131 1132 virt_flash_map(vms, sysmem, secure_sysmem); 1133 1134 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1135 1136 bios_name = MACHINE(vms)->firmware; 1137 if (bios_name) { 1138 char *fname; 1139 MemoryRegion *mr; 1140 int image_size; 1141 1142 if (pflash_blk0) { 1143 error_report("The contents of the first flash device may be " 1144 "specified with -bios or with -drive if=pflash... " 1145 "but you cannot use both options at once"); 1146 exit(1); 1147 } 1148 1149 /* Fall back to -bios */ 1150 1151 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1152 if (!fname) { 1153 error_report("Could not find ROM image '%s'", bios_name); 1154 exit(1); 1155 } 1156 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1157 image_size = load_image_mr(fname, mr); 1158 g_free(fname); 1159 if (image_size < 0) { 1160 error_report("Could not load ROM image '%s'", bios_name); 1161 exit(1); 1162 } 1163 } 1164 1165 return pflash_blk0 || bios_name; 1166 } 1167 1168 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1169 { 1170 MachineState *ms = MACHINE(vms); 1171 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1172 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1173 FWCfgState *fw_cfg; 1174 char *nodename; 1175 1176 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1177 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1178 1179 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1180 qemu_fdt_add_subnode(ms->fdt, nodename); 1181 qemu_fdt_setprop_string(ms->fdt, nodename, 1182 "compatible", "qemu,fw-cfg-mmio"); 1183 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1184 2, base, 2, size); 1185 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1186 g_free(nodename); 1187 return fw_cfg; 1188 } 1189 1190 static void create_pcie_irq_map(const MachineState *ms, 1191 uint32_t gic_phandle, 1192 int first_irq, const char *nodename) 1193 { 1194 int devfn, pin; 1195 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1196 uint32_t *irq_map = full_irq_map; 1197 1198 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1199 for (pin = 0; pin < 4; pin++) { 1200 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1201 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1202 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1203 int i; 1204 1205 uint32_t map[] = { 1206 devfn << 8, 0, 0, /* devfn */ 1207 pin + 1, /* PCI pin */ 1208 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1209 1210 /* Convert map to big endian */ 1211 for (i = 0; i < 10; i++) { 1212 irq_map[i] = cpu_to_be32(map[i]); 1213 } 1214 irq_map += 10; 1215 } 1216 } 1217 1218 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", 1219 full_irq_map, sizeof(full_irq_map)); 1220 1221 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", 1222 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1223 0, 0, 1224 0x7 /* PCI irq */); 1225 } 1226 1227 static void create_smmu(const VirtMachineState *vms, 1228 PCIBus *bus) 1229 { 1230 char *node; 1231 const char compat[] = "arm,smmu-v3"; 1232 int irq = vms->irqmap[VIRT_SMMU]; 1233 int i; 1234 hwaddr base = vms->memmap[VIRT_SMMU].base; 1235 hwaddr size = vms->memmap[VIRT_SMMU].size; 1236 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1237 DeviceState *dev; 1238 MachineState *ms = MACHINE(vms); 1239 1240 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1241 return; 1242 } 1243 1244 dev = qdev_new("arm-smmuv3"); 1245 1246 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1247 &error_abort); 1248 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1249 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1250 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1251 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1252 qdev_get_gpio_in(vms->gic, irq + i)); 1253 } 1254 1255 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1256 qemu_fdt_add_subnode(ms->fdt, node); 1257 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1258 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); 1259 1260 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", 1261 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1262 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1263 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1264 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1265 1266 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, 1267 sizeof(irq_names)); 1268 1269 qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle); 1270 qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk"); 1271 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); 1272 1273 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1274 1275 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1276 g_free(node); 1277 } 1278 1279 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1280 { 1281 const char compat[] = "virtio,pci-iommu"; 1282 uint16_t bdf = vms->virtio_iommu_bdf; 1283 MachineState *ms = MACHINE(vms); 1284 char *node; 1285 1286 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1287 1288 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf); 1289 qemu_fdt_add_subnode(ms->fdt, node); 1290 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1291 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1292 1, bdf << 8, 1, 0, 1, 0, 1293 1, 0, 1, 0); 1294 1295 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1296 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1297 g_free(node); 1298 1299 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 1300 0x0, vms->iommu_phandle, 0x0, bdf, 1301 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1302 } 1303 1304 static void create_pcie(VirtMachineState *vms) 1305 { 1306 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1307 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1308 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1309 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1310 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1311 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1312 hwaddr base_ecam, size_ecam; 1313 hwaddr base = base_mmio; 1314 int nr_pcie_buses; 1315 int irq = vms->irqmap[VIRT_PCIE]; 1316 MemoryRegion *mmio_alias; 1317 MemoryRegion *mmio_reg; 1318 MemoryRegion *ecam_alias; 1319 MemoryRegion *ecam_reg; 1320 DeviceState *dev; 1321 char *nodename; 1322 int i, ecam_id; 1323 PCIHostState *pci; 1324 MachineState *ms = MACHINE(vms); 1325 1326 dev = qdev_new(TYPE_GPEX_HOST); 1327 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1328 1329 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1330 base_ecam = vms->memmap[ecam_id].base; 1331 size_ecam = vms->memmap[ecam_id].size; 1332 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1333 /* Map only the first size_ecam bytes of ECAM space */ 1334 ecam_alias = g_new0(MemoryRegion, 1); 1335 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1336 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1337 ecam_reg, 0, size_ecam); 1338 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1339 1340 /* Map the MMIO window into system address space so as to expose 1341 * the section of PCI MMIO space which starts at the same base address 1342 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1343 * the window). 1344 */ 1345 mmio_alias = g_new0(MemoryRegion, 1); 1346 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1347 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1348 mmio_reg, base_mmio, size_mmio); 1349 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1350 1351 if (vms->highmem) { 1352 /* Map high MMIO space */ 1353 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1354 1355 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1356 mmio_reg, base_mmio_high, size_mmio_high); 1357 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1358 high_mmio_alias); 1359 } 1360 1361 /* Map IO port space */ 1362 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1363 1364 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1365 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1366 qdev_get_gpio_in(vms->gic, irq + i)); 1367 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1368 } 1369 1370 pci = PCI_HOST_BRIDGE(dev); 1371 pci->bypass_iommu = vms->default_bus_bypass_iommu; 1372 vms->bus = pci->bus; 1373 if (vms->bus) { 1374 for (i = 0; i < nb_nics; i++) { 1375 NICInfo *nd = &nd_table[i]; 1376 1377 if (!nd->model) { 1378 nd->model = g_strdup("virtio"); 1379 } 1380 1381 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1382 } 1383 } 1384 1385 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1386 qemu_fdt_add_subnode(ms->fdt, nodename); 1387 qemu_fdt_setprop_string(ms->fdt, nodename, 1388 "compatible", "pci-host-ecam-generic"); 1389 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); 1390 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); 1391 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); 1392 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); 1393 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, 1394 nr_pcie_buses - 1); 1395 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1396 1397 if (vms->msi_phandle) { 1398 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent", 1399 vms->msi_phandle); 1400 } 1401 1402 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1403 2, base_ecam, 2, size_ecam); 1404 1405 if (vms->highmem) { 1406 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1407 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1408 2, base_pio, 2, size_pio, 1409 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1410 2, base_mmio, 2, size_mmio, 1411 1, FDT_PCI_RANGE_MMIO_64BIT, 1412 2, base_mmio_high, 1413 2, base_mmio_high, 2, size_mmio_high); 1414 } else { 1415 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1416 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1417 2, base_pio, 2, size_pio, 1418 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1419 2, base_mmio, 2, size_mmio); 1420 } 1421 1422 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); 1423 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); 1424 1425 if (vms->iommu) { 1426 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1427 1428 switch (vms->iommu) { 1429 case VIRT_IOMMU_SMMUV3: 1430 create_smmu(vms, vms->bus); 1431 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 1432 0x0, vms->iommu_phandle, 0x0, 0x10000); 1433 break; 1434 default: 1435 g_assert_not_reached(); 1436 } 1437 } 1438 } 1439 1440 static void create_platform_bus(VirtMachineState *vms) 1441 { 1442 DeviceState *dev; 1443 SysBusDevice *s; 1444 int i; 1445 MemoryRegion *sysmem = get_system_memory(); 1446 1447 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1448 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1449 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1450 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1451 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1452 vms->platform_bus_dev = dev; 1453 1454 s = SYS_BUS_DEVICE(dev); 1455 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1456 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1457 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1458 } 1459 1460 memory_region_add_subregion(sysmem, 1461 vms->memmap[VIRT_PLATFORM_BUS].base, 1462 sysbus_mmio_get_region(s, 0)); 1463 } 1464 1465 static void create_tag_ram(MemoryRegion *tag_sysmem, 1466 hwaddr base, hwaddr size, 1467 const char *name) 1468 { 1469 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1470 1471 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1472 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1473 } 1474 1475 static void create_secure_ram(VirtMachineState *vms, 1476 MemoryRegion *secure_sysmem, 1477 MemoryRegion *secure_tag_sysmem) 1478 { 1479 MemoryRegion *secram = g_new(MemoryRegion, 1); 1480 char *nodename; 1481 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1482 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1483 MachineState *ms = MACHINE(vms); 1484 1485 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1486 &error_fatal); 1487 memory_region_add_subregion(secure_sysmem, base, secram); 1488 1489 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1490 qemu_fdt_add_subnode(ms->fdt, nodename); 1491 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); 1492 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); 1493 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1494 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1495 1496 if (secure_tag_sysmem) { 1497 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1498 } 1499 1500 g_free(nodename); 1501 } 1502 1503 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1504 { 1505 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1506 bootinfo); 1507 MachineState *ms = MACHINE(board); 1508 1509 1510 *fdt_size = board->fdt_size; 1511 return ms->fdt; 1512 } 1513 1514 static void virt_build_smbios(VirtMachineState *vms) 1515 { 1516 MachineClass *mc = MACHINE_GET_CLASS(vms); 1517 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1518 uint8_t *smbios_tables, *smbios_anchor; 1519 size_t smbios_tables_len, smbios_anchor_len; 1520 const char *product = "QEMU Virtual Machine"; 1521 1522 if (kvm_enabled()) { 1523 product = "KVM Virtual Machine"; 1524 } 1525 1526 smbios_set_defaults("QEMU", product, 1527 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1528 true, SMBIOS_ENTRY_POINT_30); 1529 1530 smbios_get_tables(MACHINE(vms), NULL, 0, 1531 &smbios_tables, &smbios_tables_len, 1532 &smbios_anchor, &smbios_anchor_len, 1533 &error_fatal); 1534 1535 if (smbios_anchor) { 1536 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1537 smbios_tables, smbios_tables_len); 1538 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1539 smbios_anchor, smbios_anchor_len); 1540 } 1541 } 1542 1543 static 1544 void virt_machine_done(Notifier *notifier, void *data) 1545 { 1546 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1547 machine_done); 1548 MachineState *ms = MACHINE(vms); 1549 ARMCPU *cpu = ARM_CPU(first_cpu); 1550 struct arm_boot_info *info = &vms->bootinfo; 1551 AddressSpace *as = arm_boot_address_space(cpu, info); 1552 1553 /* 1554 * If the user provided a dtb, we assume the dynamic sysbus nodes 1555 * already are integrated there. This corresponds to a use case where 1556 * the dynamic sysbus nodes are complex and their generation is not yet 1557 * supported. In that case the user can take charge of the guest dt 1558 * while qemu takes charge of the qom stuff. 1559 */ 1560 if (info->dtb_filename == NULL) { 1561 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", 1562 vms->memmap[VIRT_PLATFORM_BUS].base, 1563 vms->memmap[VIRT_PLATFORM_BUS].size, 1564 vms->irqmap[VIRT_PLATFORM_BUS]); 1565 } 1566 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1567 exit(1); 1568 } 1569 1570 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); 1571 1572 virt_acpi_setup(vms); 1573 virt_build_smbios(vms); 1574 } 1575 1576 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1577 { 1578 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1579 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1580 1581 if (!vmc->disallow_affinity_adjustment) { 1582 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1583 * GIC's target-list limitations. 32-bit KVM hosts currently 1584 * always create clusters of 4 CPUs, but that is expected to 1585 * change when they gain support for gicv3. When KVM is enabled 1586 * it will override the changes we make here, therefore our 1587 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1588 * and to improve SGI efficiency. 1589 */ 1590 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1591 clustersz = GICV3_TARGETLIST_BITS; 1592 } else { 1593 clustersz = GIC_TARGETLIST_BITS; 1594 } 1595 } 1596 return arm_cpu_mp_affinity(idx, clustersz); 1597 } 1598 1599 static void virt_set_memmap(VirtMachineState *vms) 1600 { 1601 MachineState *ms = MACHINE(vms); 1602 hwaddr base, device_memory_base, device_memory_size; 1603 int i; 1604 1605 vms->memmap = extended_memmap; 1606 1607 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1608 vms->memmap[i] = base_memmap[i]; 1609 } 1610 1611 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1612 error_report("unsupported number of memory slots: %"PRIu64, 1613 ms->ram_slots); 1614 exit(EXIT_FAILURE); 1615 } 1616 1617 /* 1618 * We compute the base of the high IO region depending on the 1619 * amount of initial and device memory. The device memory start/size 1620 * is aligned on 1GiB. We never put the high IO region below 256GiB 1621 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1622 * The device region size assumes 1GiB page max alignment per slot. 1623 */ 1624 device_memory_base = 1625 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1626 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1627 1628 /* Base address of the high IO region */ 1629 base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1630 if (base < device_memory_base) { 1631 error_report("maxmem/slots too huge"); 1632 exit(EXIT_FAILURE); 1633 } 1634 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1635 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1636 } 1637 1638 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1639 hwaddr size = extended_memmap[i].size; 1640 1641 base = ROUND_UP(base, size); 1642 vms->memmap[i].base = base; 1643 vms->memmap[i].size = size; 1644 base += size; 1645 } 1646 vms->highest_gpa = base - 1; 1647 if (device_memory_size > 0) { 1648 ms->device_memory = g_malloc0(sizeof(*ms->device_memory)); 1649 ms->device_memory->base = device_memory_base; 1650 memory_region_init(&ms->device_memory->mr, OBJECT(vms), 1651 "device-memory", device_memory_size); 1652 } 1653 } 1654 1655 /* 1656 * finalize_gic_version - Determines the final gic_version 1657 * according to the gic-version property 1658 * 1659 * Default GIC type is v2 1660 */ 1661 static void finalize_gic_version(VirtMachineState *vms) 1662 { 1663 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1664 1665 if (kvm_enabled()) { 1666 int probe_bitmap; 1667 1668 if (!kvm_irqchip_in_kernel()) { 1669 switch (vms->gic_version) { 1670 case VIRT_GIC_VERSION_HOST: 1671 warn_report( 1672 "gic-version=host not relevant with kernel-irqchip=off " 1673 "as only userspace GICv2 is supported. Using v2 ..."); 1674 return; 1675 case VIRT_GIC_VERSION_MAX: 1676 case VIRT_GIC_VERSION_NOSEL: 1677 vms->gic_version = VIRT_GIC_VERSION_2; 1678 return; 1679 case VIRT_GIC_VERSION_2: 1680 return; 1681 case VIRT_GIC_VERSION_3: 1682 error_report( 1683 "gic-version=3 is not supported with kernel-irqchip=off"); 1684 exit(1); 1685 } 1686 } 1687 1688 probe_bitmap = kvm_arm_vgic_probe(); 1689 if (!probe_bitmap) { 1690 error_report("Unable to determine GIC version supported by host"); 1691 exit(1); 1692 } 1693 1694 switch (vms->gic_version) { 1695 case VIRT_GIC_VERSION_HOST: 1696 case VIRT_GIC_VERSION_MAX: 1697 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1698 vms->gic_version = VIRT_GIC_VERSION_3; 1699 } else { 1700 vms->gic_version = VIRT_GIC_VERSION_2; 1701 } 1702 return; 1703 case VIRT_GIC_VERSION_NOSEL: 1704 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) { 1705 vms->gic_version = VIRT_GIC_VERSION_2; 1706 } else if (probe_bitmap & KVM_ARM_VGIC_V3) { 1707 /* 1708 * in case the host does not support v2 in-kernel emulation or 1709 * the end-user requested more than 8 VCPUs we now default 1710 * to v3. In any case defaulting to v2 would be broken. 1711 */ 1712 vms->gic_version = VIRT_GIC_VERSION_3; 1713 } else if (max_cpus > GIC_NCPU) { 1714 error_report("host only supports in-kernel GICv2 emulation " 1715 "but more than 8 vcpus are requested"); 1716 exit(1); 1717 } 1718 break; 1719 case VIRT_GIC_VERSION_2: 1720 case VIRT_GIC_VERSION_3: 1721 break; 1722 } 1723 1724 /* Check chosen version is effectively supported by the host */ 1725 if (vms->gic_version == VIRT_GIC_VERSION_2 && 1726 !(probe_bitmap & KVM_ARM_VGIC_V2)) { 1727 error_report("host does not support in-kernel GICv2 emulation"); 1728 exit(1); 1729 } else if (vms->gic_version == VIRT_GIC_VERSION_3 && 1730 !(probe_bitmap & KVM_ARM_VGIC_V3)) { 1731 error_report("host does not support in-kernel GICv3 emulation"); 1732 exit(1); 1733 } 1734 return; 1735 } 1736 1737 /* TCG mode */ 1738 switch (vms->gic_version) { 1739 case VIRT_GIC_VERSION_NOSEL: 1740 vms->gic_version = VIRT_GIC_VERSION_2; 1741 break; 1742 case VIRT_GIC_VERSION_MAX: 1743 vms->gic_version = VIRT_GIC_VERSION_3; 1744 break; 1745 case VIRT_GIC_VERSION_HOST: 1746 error_report("gic-version=host requires KVM"); 1747 exit(1); 1748 case VIRT_GIC_VERSION_2: 1749 case VIRT_GIC_VERSION_3: 1750 break; 1751 } 1752 } 1753 1754 /* 1755 * virt_cpu_post_init() must be called after the CPUs have 1756 * been realized and the GIC has been created. 1757 */ 1758 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 1759 { 1760 int max_cpus = MACHINE(vms)->smp.max_cpus; 1761 bool aarch64, pmu, steal_time; 1762 CPUState *cpu; 1763 1764 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 1765 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 1766 steal_time = object_property_get_bool(OBJECT(first_cpu), 1767 "kvm-steal-time", NULL); 1768 1769 if (kvm_enabled()) { 1770 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 1771 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 1772 1773 if (steal_time) { 1774 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 1775 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 1776 1777 /* The memory region size must be a multiple of host page size. */ 1778 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 1779 1780 if (pvtime_size > pvtime_reg_size) { 1781 error_report("pvtime requires a %" HWADDR_PRId 1782 " byte memory region for %d CPUs," 1783 " but only %" HWADDR_PRId " has been reserved", 1784 pvtime_size, max_cpus, pvtime_reg_size); 1785 exit(1); 1786 } 1787 1788 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 1789 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 1790 } 1791 1792 CPU_FOREACH(cpu) { 1793 if (pmu) { 1794 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 1795 if (kvm_irqchip_in_kernel()) { 1796 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 1797 } 1798 kvm_arm_pmu_init(cpu); 1799 } 1800 if (steal_time) { 1801 kvm_arm_pvtime_init(cpu, pvtime_reg_base + 1802 cpu->cpu_index * PVTIME_SIZE_PER_CPU); 1803 } 1804 } 1805 } else { 1806 if (aarch64 && vms->highmem) { 1807 int requested_pa_size = 64 - clz64(vms->highest_gpa); 1808 int pamax = arm_pamax(ARM_CPU(first_cpu)); 1809 1810 if (pamax < requested_pa_size) { 1811 error_report("VCPU supports less PA bits (%d) than " 1812 "requested by the memory map (%d)", 1813 pamax, requested_pa_size); 1814 exit(1); 1815 } 1816 } 1817 } 1818 } 1819 1820 static void machvirt_init(MachineState *machine) 1821 { 1822 VirtMachineState *vms = VIRT_MACHINE(machine); 1823 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1824 MachineClass *mc = MACHINE_GET_CLASS(machine); 1825 const CPUArchIdList *possible_cpus; 1826 MemoryRegion *sysmem = get_system_memory(); 1827 MemoryRegion *secure_sysmem = NULL; 1828 MemoryRegion *tag_sysmem = NULL; 1829 MemoryRegion *secure_tag_sysmem = NULL; 1830 int n, virt_max_cpus; 1831 bool firmware_loaded; 1832 bool aarch64 = true; 1833 bool has_ged = !vmc->no_ged; 1834 unsigned int smp_cpus = machine->smp.cpus; 1835 unsigned int max_cpus = machine->smp.max_cpus; 1836 1837 /* 1838 * In accelerated mode, the memory map is computed earlier in kvm_type() 1839 * to create a VM with the right number of IPA bits. 1840 */ 1841 if (!vms->memmap) { 1842 virt_set_memmap(vms); 1843 } 1844 1845 /* We can probe only here because during property set 1846 * KVM is not available yet 1847 */ 1848 finalize_gic_version(vms); 1849 1850 if (!cpu_type_valid(machine->cpu_type)) { 1851 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1852 exit(1); 1853 } 1854 1855 if (vms->secure) { 1856 /* 1857 * The Secure view of the world is the same as the NonSecure, 1858 * but with a few extra devices. Create it as a container region 1859 * containing the system memory at low priority; any secure-only 1860 * devices go in at higher priority and take precedence. 1861 */ 1862 secure_sysmem = g_new(MemoryRegion, 1); 1863 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1864 UINT64_MAX); 1865 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1866 } 1867 1868 firmware_loaded = virt_firmware_init(vms, sysmem, 1869 secure_sysmem ?: sysmem); 1870 1871 /* If we have an EL3 boot ROM then the assumption is that it will 1872 * implement PSCI itself, so disable QEMU's internal implementation 1873 * so it doesn't get in the way. Instead of starting secondary 1874 * CPUs in PSCI powerdown state we will start them all running and 1875 * let the boot ROM sort them out. 1876 * The usual case is that we do use QEMU's PSCI implementation; 1877 * if the guest has EL2 then we will use SMC as the conduit, 1878 * and otherwise we will use HVC (for backwards compatibility and 1879 * because if we're using KVM then we must use HVC). 1880 */ 1881 if (vms->secure && firmware_loaded) { 1882 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1883 } else if (vms->virt) { 1884 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1885 } else { 1886 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1887 } 1888 1889 /* The maximum number of CPUs depends on the GIC version, or on how 1890 * many redistributors we can fit into the memory map. 1891 */ 1892 if (vms->gic_version == VIRT_GIC_VERSION_3) { 1893 virt_max_cpus = 1894 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1895 virt_max_cpus += 1896 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1897 } else { 1898 virt_max_cpus = GIC_NCPU; 1899 } 1900 1901 if (max_cpus > virt_max_cpus) { 1902 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1903 "supported by machine 'mach-virt' (%d)", 1904 max_cpus, virt_max_cpus); 1905 exit(1); 1906 } 1907 1908 if (vms->virt && kvm_enabled()) { 1909 error_report("mach-virt: KVM does not support providing " 1910 "Virtualization extensions to the guest CPU"); 1911 exit(1); 1912 } 1913 1914 if (vms->mte && kvm_enabled()) { 1915 error_report("mach-virt: KVM does not support providing " 1916 "MTE to the guest CPU"); 1917 exit(1); 1918 } 1919 1920 create_fdt(vms); 1921 1922 possible_cpus = mc->possible_cpu_arch_ids(machine); 1923 assert(possible_cpus->len == max_cpus); 1924 for (n = 0; n < possible_cpus->len; n++) { 1925 Object *cpuobj; 1926 CPUState *cs; 1927 1928 if (n >= smp_cpus) { 1929 break; 1930 } 1931 1932 cpuobj = object_new(possible_cpus->cpus[n].type); 1933 object_property_set_int(cpuobj, "mp-affinity", 1934 possible_cpus->cpus[n].arch_id, NULL); 1935 1936 cs = CPU(cpuobj); 1937 cs->cpu_index = n; 1938 1939 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1940 &error_fatal); 1941 1942 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 1943 1944 if (!vms->secure) { 1945 object_property_set_bool(cpuobj, "has_el3", false, NULL); 1946 } 1947 1948 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 1949 object_property_set_bool(cpuobj, "has_el2", false, NULL); 1950 } 1951 1952 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1953 object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit, 1954 NULL); 1955 1956 /* Secondary CPUs start in PSCI powered-down state */ 1957 if (n > 0) { 1958 object_property_set_bool(cpuobj, "start-powered-off", true, 1959 NULL); 1960 } 1961 } 1962 1963 if (vmc->kvm_no_adjvtime && 1964 object_property_find(cpuobj, "kvm-no-adjvtime")) { 1965 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 1966 } 1967 1968 if (vmc->no_kvm_steal_time && 1969 object_property_find(cpuobj, "kvm-steal-time")) { 1970 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 1971 } 1972 1973 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 1974 object_property_set_bool(cpuobj, "pmu", false, NULL); 1975 } 1976 1977 if (object_property_find(cpuobj, "reset-cbar")) { 1978 object_property_set_int(cpuobj, "reset-cbar", 1979 vms->memmap[VIRT_CPUPERIPHS].base, 1980 &error_abort); 1981 } 1982 1983 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 1984 &error_abort); 1985 if (vms->secure) { 1986 object_property_set_link(cpuobj, "secure-memory", 1987 OBJECT(secure_sysmem), &error_abort); 1988 } 1989 1990 if (vms->mte) { 1991 /* Create the memory region only once, but link to all cpus. */ 1992 if (!tag_sysmem) { 1993 /* 1994 * The property exists only if MemTag is supported. 1995 * If it is, we must allocate the ram to back that up. 1996 */ 1997 if (!object_property_find(cpuobj, "tag-memory")) { 1998 error_report("MTE requested, but not supported " 1999 "by the guest CPU"); 2000 exit(1); 2001 } 2002 2003 tag_sysmem = g_new(MemoryRegion, 1); 2004 memory_region_init(tag_sysmem, OBJECT(machine), 2005 "tag-memory", UINT64_MAX / 32); 2006 2007 if (vms->secure) { 2008 secure_tag_sysmem = g_new(MemoryRegion, 1); 2009 memory_region_init(secure_tag_sysmem, OBJECT(machine), 2010 "secure-tag-memory", UINT64_MAX / 32); 2011 2012 /* As with ram, secure-tag takes precedence over tag. */ 2013 memory_region_add_subregion_overlap(secure_tag_sysmem, 0, 2014 tag_sysmem, -1); 2015 } 2016 } 2017 2018 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), 2019 &error_abort); 2020 if (vms->secure) { 2021 object_property_set_link(cpuobj, "secure-tag-memory", 2022 OBJECT(secure_tag_sysmem), 2023 &error_abort); 2024 } 2025 } 2026 2027 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2028 object_unref(cpuobj); 2029 } 2030 fdt_add_timer_nodes(vms); 2031 fdt_add_cpu_nodes(vms); 2032 2033 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2034 machine->ram); 2035 if (machine->device_memory) { 2036 memory_region_add_subregion(sysmem, machine->device_memory->base, 2037 &machine->device_memory->mr); 2038 } 2039 2040 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2041 2042 create_gic(vms); 2043 2044 virt_cpu_post_init(vms, sysmem); 2045 2046 fdt_add_pmu_nodes(vms); 2047 2048 create_uart(vms, VIRT_UART, sysmem, serial_hd(0)); 2049 2050 if (vms->secure) { 2051 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2052 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 2053 } 2054 2055 if (tag_sysmem) { 2056 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2057 machine->ram_size, "mach-virt.tag"); 2058 } 2059 2060 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 2061 2062 create_rtc(vms); 2063 2064 create_pcie(vms); 2065 2066 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2067 vms->acpi_dev = create_acpi_ged(vms); 2068 } else { 2069 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2070 } 2071 2072 if (vms->secure && !vmc->no_secure_gpio) { 2073 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2074 } 2075 2076 /* connect powerdown request */ 2077 vms->powerdown_notifier.notify = virt_powerdown_req; 2078 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2079 2080 /* Create mmio transports, so the user can create virtio backends 2081 * (which will be automatically plugged in to the transports). If 2082 * no backend is created the transport will just sit harmlessly idle. 2083 */ 2084 create_virtio_devices(vms); 2085 2086 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2087 rom_set_fw(vms->fw_cfg); 2088 2089 create_platform_bus(vms); 2090 2091 if (machine->nvdimms_state->is_enabled) { 2092 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2093 .space_id = AML_AS_SYSTEM_MEMORY, 2094 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2095 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2096 }; 2097 2098 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2099 arm_virt_nvdimm_acpi_dsmio, 2100 vms->fw_cfg, OBJECT(vms)); 2101 } 2102 2103 vms->bootinfo.ram_size = machine->ram_size; 2104 vms->bootinfo.nb_cpus = smp_cpus; 2105 vms->bootinfo.board_id = -1; 2106 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2107 vms->bootinfo.get_dtb = machvirt_dtb; 2108 vms->bootinfo.skip_dtb_autoload = true; 2109 vms->bootinfo.firmware_loaded = firmware_loaded; 2110 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2111 2112 vms->machine_done.notify = virt_machine_done; 2113 qemu_add_machine_init_done_notifier(&vms->machine_done); 2114 } 2115 2116 static bool virt_get_secure(Object *obj, Error **errp) 2117 { 2118 VirtMachineState *vms = VIRT_MACHINE(obj); 2119 2120 return vms->secure; 2121 } 2122 2123 static void virt_set_secure(Object *obj, bool value, Error **errp) 2124 { 2125 VirtMachineState *vms = VIRT_MACHINE(obj); 2126 2127 vms->secure = value; 2128 } 2129 2130 static bool virt_get_virt(Object *obj, Error **errp) 2131 { 2132 VirtMachineState *vms = VIRT_MACHINE(obj); 2133 2134 return vms->virt; 2135 } 2136 2137 static void virt_set_virt(Object *obj, bool value, Error **errp) 2138 { 2139 VirtMachineState *vms = VIRT_MACHINE(obj); 2140 2141 vms->virt = value; 2142 } 2143 2144 static bool virt_get_highmem(Object *obj, Error **errp) 2145 { 2146 VirtMachineState *vms = VIRT_MACHINE(obj); 2147 2148 return vms->highmem; 2149 } 2150 2151 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2152 { 2153 VirtMachineState *vms = VIRT_MACHINE(obj); 2154 2155 vms->highmem = value; 2156 } 2157 2158 static bool virt_get_its(Object *obj, Error **errp) 2159 { 2160 VirtMachineState *vms = VIRT_MACHINE(obj); 2161 2162 return vms->its; 2163 } 2164 2165 static void virt_set_its(Object *obj, bool value, Error **errp) 2166 { 2167 VirtMachineState *vms = VIRT_MACHINE(obj); 2168 2169 vms->its = value; 2170 } 2171 2172 static char *virt_get_oem_id(Object *obj, Error **errp) 2173 { 2174 VirtMachineState *vms = VIRT_MACHINE(obj); 2175 2176 return g_strdup(vms->oem_id); 2177 } 2178 2179 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2180 { 2181 VirtMachineState *vms = VIRT_MACHINE(obj); 2182 size_t len = strlen(value); 2183 2184 if (len > 6) { 2185 error_setg(errp, 2186 "User specified oem-id value is bigger than 6 bytes in size"); 2187 return; 2188 } 2189 2190 strncpy(vms->oem_id, value, 6); 2191 } 2192 2193 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2194 { 2195 VirtMachineState *vms = VIRT_MACHINE(obj); 2196 2197 return g_strdup(vms->oem_table_id); 2198 } 2199 2200 static void virt_set_oem_table_id(Object *obj, const char *value, 2201 Error **errp) 2202 { 2203 VirtMachineState *vms = VIRT_MACHINE(obj); 2204 size_t len = strlen(value); 2205 2206 if (len > 8) { 2207 error_setg(errp, 2208 "User specified oem-table-id value is bigger than 8 bytes in size"); 2209 return; 2210 } 2211 strncpy(vms->oem_table_id, value, 8); 2212 } 2213 2214 2215 bool virt_is_acpi_enabled(VirtMachineState *vms) 2216 { 2217 if (vms->acpi == ON_OFF_AUTO_OFF) { 2218 return false; 2219 } 2220 return true; 2221 } 2222 2223 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2224 void *opaque, Error **errp) 2225 { 2226 VirtMachineState *vms = VIRT_MACHINE(obj); 2227 OnOffAuto acpi = vms->acpi; 2228 2229 visit_type_OnOffAuto(v, name, &acpi, errp); 2230 } 2231 2232 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2233 void *opaque, Error **errp) 2234 { 2235 VirtMachineState *vms = VIRT_MACHINE(obj); 2236 2237 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2238 } 2239 2240 static bool virt_get_ras(Object *obj, Error **errp) 2241 { 2242 VirtMachineState *vms = VIRT_MACHINE(obj); 2243 2244 return vms->ras; 2245 } 2246 2247 static void virt_set_ras(Object *obj, bool value, Error **errp) 2248 { 2249 VirtMachineState *vms = VIRT_MACHINE(obj); 2250 2251 vms->ras = value; 2252 } 2253 2254 static bool virt_get_mte(Object *obj, Error **errp) 2255 { 2256 VirtMachineState *vms = VIRT_MACHINE(obj); 2257 2258 return vms->mte; 2259 } 2260 2261 static void virt_set_mte(Object *obj, bool value, Error **errp) 2262 { 2263 VirtMachineState *vms = VIRT_MACHINE(obj); 2264 2265 vms->mte = value; 2266 } 2267 2268 static char *virt_get_gic_version(Object *obj, Error **errp) 2269 { 2270 VirtMachineState *vms = VIRT_MACHINE(obj); 2271 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2"; 2272 2273 return g_strdup(val); 2274 } 2275 2276 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2277 { 2278 VirtMachineState *vms = VIRT_MACHINE(obj); 2279 2280 if (!strcmp(value, "3")) { 2281 vms->gic_version = VIRT_GIC_VERSION_3; 2282 } else if (!strcmp(value, "2")) { 2283 vms->gic_version = VIRT_GIC_VERSION_2; 2284 } else if (!strcmp(value, "host")) { 2285 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2286 } else if (!strcmp(value, "max")) { 2287 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2288 } else { 2289 error_setg(errp, "Invalid gic-version value"); 2290 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2291 } 2292 } 2293 2294 static char *virt_get_iommu(Object *obj, Error **errp) 2295 { 2296 VirtMachineState *vms = VIRT_MACHINE(obj); 2297 2298 switch (vms->iommu) { 2299 case VIRT_IOMMU_NONE: 2300 return g_strdup("none"); 2301 case VIRT_IOMMU_SMMUV3: 2302 return g_strdup("smmuv3"); 2303 default: 2304 g_assert_not_reached(); 2305 } 2306 } 2307 2308 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2309 { 2310 VirtMachineState *vms = VIRT_MACHINE(obj); 2311 2312 if (!strcmp(value, "smmuv3")) { 2313 vms->iommu = VIRT_IOMMU_SMMUV3; 2314 } else if (!strcmp(value, "none")) { 2315 vms->iommu = VIRT_IOMMU_NONE; 2316 } else { 2317 error_setg(errp, "Invalid iommu value"); 2318 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2319 } 2320 } 2321 2322 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) 2323 { 2324 VirtMachineState *vms = VIRT_MACHINE(obj); 2325 2326 return vms->default_bus_bypass_iommu; 2327 } 2328 2329 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, 2330 Error **errp) 2331 { 2332 VirtMachineState *vms = VIRT_MACHINE(obj); 2333 2334 vms->default_bus_bypass_iommu = value; 2335 } 2336 2337 static CpuInstanceProperties 2338 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2339 { 2340 MachineClass *mc = MACHINE_GET_CLASS(ms); 2341 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2342 2343 assert(cpu_index < possible_cpus->len); 2344 return possible_cpus->cpus[cpu_index].props; 2345 } 2346 2347 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2348 { 2349 return idx % ms->numa_state->num_nodes; 2350 } 2351 2352 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2353 { 2354 int n; 2355 unsigned int max_cpus = ms->smp.max_cpus; 2356 VirtMachineState *vms = VIRT_MACHINE(ms); 2357 2358 if (ms->possible_cpus) { 2359 assert(ms->possible_cpus->len == max_cpus); 2360 return ms->possible_cpus; 2361 } 2362 2363 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2364 sizeof(CPUArchId) * max_cpus); 2365 ms->possible_cpus->len = max_cpus; 2366 for (n = 0; n < ms->possible_cpus->len; n++) { 2367 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2368 ms->possible_cpus->cpus[n].arch_id = 2369 virt_cpu_mp_affinity(vms, n); 2370 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2371 ms->possible_cpus->cpus[n].props.thread_id = n; 2372 } 2373 return ms->possible_cpus; 2374 } 2375 2376 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2377 Error **errp) 2378 { 2379 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2380 const MachineState *ms = MACHINE(hotplug_dev); 2381 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2382 2383 if (!vms->acpi_dev) { 2384 error_setg(errp, 2385 "memory hotplug is not enabled: missing acpi-ged device"); 2386 return; 2387 } 2388 2389 if (vms->mte) { 2390 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2391 return; 2392 } 2393 2394 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2395 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2396 return; 2397 } 2398 2399 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); 2400 } 2401 2402 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2403 DeviceState *dev, Error **errp) 2404 { 2405 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2406 MachineState *ms = MACHINE(hotplug_dev); 2407 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2408 2409 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2410 2411 if (is_nvdimm) { 2412 nvdimm_plug(ms->nvdimms_state); 2413 } 2414 2415 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2416 dev, &error_abort); 2417 } 2418 2419 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2420 DeviceState *dev, Error **errp) 2421 { 2422 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2423 2424 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2425 virt_memory_pre_plug(hotplug_dev, dev, errp); 2426 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2427 hwaddr db_start = 0, db_end = 0; 2428 char *resv_prop_str; 2429 2430 switch (vms->msi_controller) { 2431 case VIRT_MSI_CTRL_NONE: 2432 return; 2433 case VIRT_MSI_CTRL_ITS: 2434 /* GITS_TRANSLATER page */ 2435 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2436 db_end = base_memmap[VIRT_GIC_ITS].base + 2437 base_memmap[VIRT_GIC_ITS].size - 1; 2438 break; 2439 case VIRT_MSI_CTRL_GICV2M: 2440 /* MSI_SETSPI_NS page */ 2441 db_start = base_memmap[VIRT_GIC_V2M].base; 2442 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2443 break; 2444 } 2445 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2446 db_start, db_end, 2447 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2448 2449 qdev_prop_set_uint32(dev, "len-reserved-regions", 1); 2450 qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str); 2451 g_free(resv_prop_str); 2452 } 2453 } 2454 2455 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2456 DeviceState *dev, Error **errp) 2457 { 2458 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2459 2460 if (vms->platform_bus_dev) { 2461 MachineClass *mc = MACHINE_GET_CLASS(vms); 2462 2463 if (device_is_dynamic_sysbus(mc, dev)) { 2464 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2465 SYS_BUS_DEVICE(dev)); 2466 } 2467 } 2468 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2469 virt_memory_plug(hotplug_dev, dev, errp); 2470 } 2471 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2472 PCIDevice *pdev = PCI_DEVICE(dev); 2473 2474 vms->iommu = VIRT_IOMMU_VIRTIO; 2475 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2476 create_virtio_iommu_dt_bindings(vms); 2477 } 2478 } 2479 2480 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2481 DeviceState *dev, Error **errp) 2482 { 2483 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2484 Error *local_err = NULL; 2485 2486 if (!vms->acpi_dev) { 2487 error_setg(&local_err, 2488 "memory hotplug is not enabled: missing acpi-ged device"); 2489 goto out; 2490 } 2491 2492 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2493 error_setg(&local_err, 2494 "nvdimm device hot unplug is not supported yet."); 2495 goto out; 2496 } 2497 2498 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2499 &local_err); 2500 out: 2501 error_propagate(errp, local_err); 2502 } 2503 2504 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2505 DeviceState *dev, Error **errp) 2506 { 2507 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2508 Error *local_err = NULL; 2509 2510 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2511 if (local_err) { 2512 goto out; 2513 } 2514 2515 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2516 qdev_unrealize(dev); 2517 2518 out: 2519 error_propagate(errp, local_err); 2520 } 2521 2522 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2523 DeviceState *dev, Error **errp) 2524 { 2525 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2526 virt_dimm_unplug_request(hotplug_dev, dev, errp); 2527 } else { 2528 error_setg(errp, "device unplug request for unsupported device" 2529 " type: %s", object_get_typename(OBJECT(dev))); 2530 } 2531 } 2532 2533 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2534 DeviceState *dev, Error **errp) 2535 { 2536 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2537 virt_dimm_unplug(hotplug_dev, dev, errp); 2538 } else { 2539 error_setg(errp, "virt: device unplug for unsupported device" 2540 " type: %s", object_get_typename(OBJECT(dev))); 2541 } 2542 } 2543 2544 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2545 DeviceState *dev) 2546 { 2547 MachineClass *mc = MACHINE_GET_CLASS(machine); 2548 2549 if (device_is_dynamic_sysbus(mc, dev) || 2550 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) { 2551 return HOTPLUG_HANDLER(machine); 2552 } 2553 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2554 VirtMachineState *vms = VIRT_MACHINE(machine); 2555 2556 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) { 2557 return HOTPLUG_HANDLER(machine); 2558 } 2559 } 2560 return NULL; 2561 } 2562 2563 /* 2564 * for arm64 kvm_type [7-0] encodes the requested number of bits 2565 * in the IPA address space 2566 */ 2567 static int virt_kvm_type(MachineState *ms, const char *type_str) 2568 { 2569 VirtMachineState *vms = VIRT_MACHINE(ms); 2570 int max_vm_pa_size, requested_pa_size; 2571 bool fixed_ipa; 2572 2573 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 2574 2575 /* we freeze the memory map to compute the highest gpa */ 2576 virt_set_memmap(vms); 2577 2578 requested_pa_size = 64 - clz64(vms->highest_gpa); 2579 2580 /* 2581 * KVM requires the IPA size to be at least 32 bits. 2582 */ 2583 if (requested_pa_size < 32) { 2584 requested_pa_size = 32; 2585 } 2586 2587 if (requested_pa_size > max_vm_pa_size) { 2588 error_report("-m and ,maxmem option values " 2589 "require an IPA range (%d bits) larger than " 2590 "the one supported by the host (%d bits)", 2591 requested_pa_size, max_vm_pa_size); 2592 exit(1); 2593 } 2594 /* 2595 * We return the requested PA log size, unless KVM only supports 2596 * the implicit legacy 40b IPA setting, in which case the kvm_type 2597 * must be 0. 2598 */ 2599 return fixed_ipa ? 0 : requested_pa_size; 2600 } 2601 2602 static void virt_machine_class_init(ObjectClass *oc, void *data) 2603 { 2604 MachineClass *mc = MACHINE_CLASS(oc); 2605 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2606 2607 mc->init = machvirt_init; 2608 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 2609 * The value may be reduced later when we have more information about the 2610 * configuration of the particular instance. 2611 */ 2612 mc->max_cpus = 512; 2613 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 2614 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 2615 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 2616 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 2617 #ifdef CONFIG_TPM 2618 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 2619 #endif 2620 mc->block_default_type = IF_VIRTIO; 2621 mc->no_cdrom = 1; 2622 mc->pci_allow_0_address = true; 2623 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 2624 mc->minimum_page_bits = 12; 2625 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 2626 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 2627 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 2628 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 2629 mc->kvm_type = virt_kvm_type; 2630 assert(!mc->get_hotplug_handler); 2631 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 2632 hc->pre_plug = virt_machine_device_pre_plug_cb; 2633 hc->plug = virt_machine_device_plug_cb; 2634 hc->unplug_request = virt_machine_device_unplug_request_cb; 2635 hc->unplug = virt_machine_device_unplug_cb; 2636 mc->nvdimm_supported = true; 2637 mc->auto_enable_numa_with_memhp = true; 2638 mc->auto_enable_numa_with_memdev = true; 2639 mc->default_ram_id = "mach-virt.ram"; 2640 2641 object_class_property_add(oc, "acpi", "OnOffAuto", 2642 virt_get_acpi, virt_set_acpi, 2643 NULL, NULL); 2644 object_class_property_set_description(oc, "acpi", 2645 "Enable ACPI"); 2646 object_class_property_add_bool(oc, "secure", virt_get_secure, 2647 virt_set_secure); 2648 object_class_property_set_description(oc, "secure", 2649 "Set on/off to enable/disable the ARM " 2650 "Security Extensions (TrustZone)"); 2651 2652 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 2653 virt_set_virt); 2654 object_class_property_set_description(oc, "virtualization", 2655 "Set on/off to enable/disable emulating a " 2656 "guest CPU which implements the ARM " 2657 "Virtualization Extensions"); 2658 2659 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 2660 virt_set_highmem); 2661 object_class_property_set_description(oc, "highmem", 2662 "Set on/off to enable/disable using " 2663 "physical address space above 32 bits"); 2664 2665 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 2666 virt_set_gic_version); 2667 object_class_property_set_description(oc, "gic-version", 2668 "Set GIC version. " 2669 "Valid values are 2, 3, host and max"); 2670 2671 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 2672 object_class_property_set_description(oc, "iommu", 2673 "Set the IOMMU type. " 2674 "Valid values are none and smmuv3"); 2675 2676 object_class_property_add_bool(oc, "default_bus_bypass_iommu", 2677 virt_get_default_bus_bypass_iommu, 2678 virt_set_default_bus_bypass_iommu); 2679 object_class_property_set_description(oc, "default_bus_bypass_iommu", 2680 "Set on/off to enable/disable " 2681 "bypass_iommu for default root bus"); 2682 2683 object_class_property_add_bool(oc, "ras", virt_get_ras, 2684 virt_set_ras); 2685 object_class_property_set_description(oc, "ras", 2686 "Set on/off to enable/disable reporting host memory errors " 2687 "to a KVM guest using ACPI and guest external abort exceptions"); 2688 2689 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 2690 object_class_property_set_description(oc, "mte", 2691 "Set on/off to enable/disable emulating a " 2692 "guest CPU which implements the ARM " 2693 "Memory Tagging Extension"); 2694 2695 object_class_property_add_bool(oc, "its", virt_get_its, 2696 virt_set_its); 2697 object_class_property_set_description(oc, "its", 2698 "Set on/off to enable/disable " 2699 "ITS instantiation"); 2700 2701 object_class_property_add_str(oc, "x-oem-id", 2702 virt_get_oem_id, 2703 virt_set_oem_id); 2704 object_class_property_set_description(oc, "x-oem-id", 2705 "Override the default value of field OEMID " 2706 "in ACPI table header." 2707 "The string may be up to 6 bytes in size"); 2708 2709 2710 object_class_property_add_str(oc, "x-oem-table-id", 2711 virt_get_oem_table_id, 2712 virt_set_oem_table_id); 2713 object_class_property_set_description(oc, "x-oem-table-id", 2714 "Override the default value of field OEM Table ID " 2715 "in ACPI table header." 2716 "The string may be up to 8 bytes in size"); 2717 2718 } 2719 2720 static void virt_instance_init(Object *obj) 2721 { 2722 VirtMachineState *vms = VIRT_MACHINE(obj); 2723 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 2724 2725 /* EL3 is disabled by default on virt: this makes us consistent 2726 * between KVM and TCG for this board, and it also allows us to 2727 * boot UEFI blobs which assume no TrustZone support. 2728 */ 2729 vms->secure = false; 2730 2731 /* EL2 is also disabled by default, for similar reasons */ 2732 vms->virt = false; 2733 2734 /* High memory is enabled by default */ 2735 vms->highmem = true; 2736 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 2737 2738 vms->highmem_ecam = !vmc->no_highmem_ecam; 2739 2740 if (vmc->no_its) { 2741 vms->its = false; 2742 } else { 2743 /* Default allows ITS instantiation */ 2744 vms->its = true; 2745 } 2746 2747 /* Default disallows iommu instantiation */ 2748 vms->iommu = VIRT_IOMMU_NONE; 2749 2750 /* The default root bus is attached to iommu by default */ 2751 vms->default_bus_bypass_iommu = false; 2752 2753 /* Default disallows RAS instantiation */ 2754 vms->ras = false; 2755 2756 /* MTE is disabled by default. */ 2757 vms->mte = false; 2758 2759 vms->irqmap = a15irqmap; 2760 2761 virt_flash_create(vms); 2762 2763 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 2764 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 2765 } 2766 2767 static const TypeInfo virt_machine_info = { 2768 .name = TYPE_VIRT_MACHINE, 2769 .parent = TYPE_MACHINE, 2770 .abstract = true, 2771 .instance_size = sizeof(VirtMachineState), 2772 .class_size = sizeof(VirtMachineClass), 2773 .class_init = virt_machine_class_init, 2774 .instance_init = virt_instance_init, 2775 .interfaces = (InterfaceInfo[]) { 2776 { TYPE_HOTPLUG_HANDLER }, 2777 { } 2778 }, 2779 }; 2780 2781 static void machvirt_machine_init(void) 2782 { 2783 type_register_static(&virt_machine_info); 2784 } 2785 type_init(machvirt_machine_init); 2786 2787 static void virt_machine_6_2_options(MachineClass *mc) 2788 { 2789 } 2790 DEFINE_VIRT_MACHINE_AS_LATEST(6, 2) 2791 2792 static void virt_machine_6_1_options(MachineClass *mc) 2793 { 2794 virt_machine_6_2_options(mc); 2795 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 2796 } 2797 DEFINE_VIRT_MACHINE(6, 1) 2798 2799 static void virt_machine_6_0_options(MachineClass *mc) 2800 { 2801 virt_machine_6_1_options(mc); 2802 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 2803 } 2804 DEFINE_VIRT_MACHINE(6, 0) 2805 2806 static void virt_machine_5_2_options(MachineClass *mc) 2807 { 2808 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2809 2810 virt_machine_6_0_options(mc); 2811 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 2812 vmc->no_secure_gpio = true; 2813 } 2814 DEFINE_VIRT_MACHINE(5, 2) 2815 2816 static void virt_machine_5_1_options(MachineClass *mc) 2817 { 2818 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2819 2820 virt_machine_5_2_options(mc); 2821 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 2822 vmc->no_kvm_steal_time = true; 2823 } 2824 DEFINE_VIRT_MACHINE(5, 1) 2825 2826 static void virt_machine_5_0_options(MachineClass *mc) 2827 { 2828 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2829 2830 virt_machine_5_1_options(mc); 2831 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 2832 mc->numa_mem_supported = true; 2833 vmc->acpi_expose_flash = true; 2834 mc->auto_enable_numa_with_memdev = false; 2835 } 2836 DEFINE_VIRT_MACHINE(5, 0) 2837 2838 static void virt_machine_4_2_options(MachineClass *mc) 2839 { 2840 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2841 2842 virt_machine_5_0_options(mc); 2843 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 2844 vmc->kvm_no_adjvtime = true; 2845 } 2846 DEFINE_VIRT_MACHINE(4, 2) 2847 2848 static void virt_machine_4_1_options(MachineClass *mc) 2849 { 2850 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2851 2852 virt_machine_4_2_options(mc); 2853 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 2854 vmc->no_ged = true; 2855 mc->auto_enable_numa_with_memhp = false; 2856 } 2857 DEFINE_VIRT_MACHINE(4, 1) 2858 2859 static void virt_machine_4_0_options(MachineClass *mc) 2860 { 2861 virt_machine_4_1_options(mc); 2862 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 2863 } 2864 DEFINE_VIRT_MACHINE(4, 0) 2865 2866 static void virt_machine_3_1_options(MachineClass *mc) 2867 { 2868 virt_machine_4_0_options(mc); 2869 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 2870 } 2871 DEFINE_VIRT_MACHINE(3, 1) 2872 2873 static void virt_machine_3_0_options(MachineClass *mc) 2874 { 2875 virt_machine_3_1_options(mc); 2876 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 2877 } 2878 DEFINE_VIRT_MACHINE(3, 0) 2879 2880 static void virt_machine_2_12_options(MachineClass *mc) 2881 { 2882 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2883 2884 virt_machine_3_0_options(mc); 2885 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 2886 vmc->no_highmem_ecam = true; 2887 mc->max_cpus = 255; 2888 } 2889 DEFINE_VIRT_MACHINE(2, 12) 2890 2891 static void virt_machine_2_11_options(MachineClass *mc) 2892 { 2893 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2894 2895 virt_machine_2_12_options(mc); 2896 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 2897 vmc->smbios_old_sys_ver = true; 2898 } 2899 DEFINE_VIRT_MACHINE(2, 11) 2900 2901 static void virt_machine_2_10_options(MachineClass *mc) 2902 { 2903 virt_machine_2_11_options(mc); 2904 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 2905 /* before 2.11 we never faulted accesses to bad addresses */ 2906 mc->ignore_memory_transaction_failures = true; 2907 } 2908 DEFINE_VIRT_MACHINE(2, 10) 2909 2910 static void virt_machine_2_9_options(MachineClass *mc) 2911 { 2912 virt_machine_2_10_options(mc); 2913 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 2914 } 2915 DEFINE_VIRT_MACHINE(2, 9) 2916 2917 static void virt_machine_2_8_options(MachineClass *mc) 2918 { 2919 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2920 2921 virt_machine_2_9_options(mc); 2922 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 2923 /* For 2.8 and earlier we falsely claimed in the DT that 2924 * our timers were edge-triggered, not level-triggered. 2925 */ 2926 vmc->claim_edge_triggered_timers = true; 2927 } 2928 DEFINE_VIRT_MACHINE(2, 8) 2929 2930 static void virt_machine_2_7_options(MachineClass *mc) 2931 { 2932 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2933 2934 virt_machine_2_8_options(mc); 2935 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 2936 /* ITS was introduced with 2.8 */ 2937 vmc->no_its = true; 2938 /* Stick with 1K pages for migration compatibility */ 2939 mc->minimum_page_bits = 0; 2940 } 2941 DEFINE_VIRT_MACHINE(2, 7) 2942 2943 static void virt_machine_2_6_options(MachineClass *mc) 2944 { 2945 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 2946 2947 virt_machine_2_7_options(mc); 2948 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 2949 vmc->disallow_affinity_adjustment = true; 2950 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 2951 vmc->no_pmu = true; 2952 } 2953 DEFINE_VIRT_MACHINE(2, 6) 2954