1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "hw/sysbus.h" 32 #include "hw/arm/arm.h" 33 #include "hw/arm/primecell.h" 34 #include "hw/arm/virt.h" 35 #include "hw/devices.h" 36 #include "net/net.h" 37 #include "sysemu/block-backend.h" 38 #include "sysemu/device_tree.h" 39 #include "sysemu/sysemu.h" 40 #include "sysemu/kvm.h" 41 #include "hw/boards.h" 42 #include "hw/loader.h" 43 #include "exec/address-spaces.h" 44 #include "qemu/bitops.h" 45 #include "qemu/error-report.h" 46 #include "hw/pci-host/gpex.h" 47 #include "hw/arm/virt-acpi-build.h" 48 #include "hw/arm/sysbus-fdt.h" 49 #include "hw/platform-bus.h" 50 #include "hw/arm/fdt.h" 51 #include "hw/intc/arm_gic_common.h" 52 #include "kvm_arm.h" 53 #include "hw/smbios/smbios.h" 54 55 /* Number of external interrupt lines to configure the GIC with */ 56 #define NUM_IRQS 256 57 58 #define PLATFORM_BUS_NUM_IRQS 64 59 60 static ARMPlatformBusSystemParams platform_bus_params; 61 62 typedef struct VirtBoardInfo { 63 struct arm_boot_info bootinfo; 64 const char *cpu_model; 65 const MemMapEntry *memmap; 66 const int *irqmap; 67 int smp_cpus; 68 void *fdt; 69 int fdt_size; 70 uint32_t clock_phandle; 71 uint32_t gic_phandle; 72 uint32_t v2m_phandle; 73 } VirtBoardInfo; 74 75 typedef struct { 76 MachineClass parent; 77 VirtBoardInfo *daughterboard; 78 } VirtMachineClass; 79 80 typedef struct { 81 MachineState parent; 82 bool secure; 83 bool highmem; 84 } VirtMachineState; 85 86 #define TYPE_VIRT_MACHINE "virt" 87 #define VIRT_MACHINE(obj) \ 88 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 89 #define VIRT_MACHINE_GET_CLASS(obj) \ 90 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 91 #define VIRT_MACHINE_CLASS(klass) \ 92 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 93 94 /* Addresses and sizes of our components. 95 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 96 * 128MB..256MB is used for miscellaneous device I/O. 97 * 256MB..1GB is reserved for possible future PCI support (ie where the 98 * PCI memory window will go if we add a PCI host controller). 99 * 1GB and up is RAM (which may happily spill over into the 100 * high memory region beyond 4GB). 101 * This represents a compromise between how much RAM can be given to 102 * a 32 bit VM and leaving space for expansion and in particular for PCI. 103 * Note that devices should generally be placed at multiples of 0x10000, 104 * to accommodate guests using 64K pages. 105 */ 106 static const MemMapEntry a15memmap[] = { 107 /* Space up to 0x8000000 is reserved for a boot ROM */ 108 [VIRT_FLASH] = { 0, 0x08000000 }, 109 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 110 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 111 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 112 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 113 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 114 [VIRT_UART] = { 0x09000000, 0x00001000 }, 115 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 116 [VIRT_FW_CFG] = { 0x09020000, 0x0000000a }, 117 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 118 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 119 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 120 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 121 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 122 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 123 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, 124 /* Second PCIe window, 512GB wide at the 512GB boundary */ 125 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, 126 }; 127 128 static const int a15irqmap[] = { 129 [VIRT_UART] = 1, 130 [VIRT_RTC] = 2, 131 [VIRT_PCIE] = 3, /* ... to 6 */ 132 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 133 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 134 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 135 }; 136 137 static VirtBoardInfo machines[] = { 138 { 139 .cpu_model = "cortex-a15", 140 .memmap = a15memmap, 141 .irqmap = a15irqmap, 142 }, 143 { 144 .cpu_model = "cortex-a53", 145 .memmap = a15memmap, 146 .irqmap = a15irqmap, 147 }, 148 { 149 .cpu_model = "cortex-a57", 150 .memmap = a15memmap, 151 .irqmap = a15irqmap, 152 }, 153 { 154 .cpu_model = "host", 155 .memmap = a15memmap, 156 .irqmap = a15irqmap, 157 }, 158 }; 159 160 static VirtBoardInfo *find_machine_info(const char *cpu) 161 { 162 int i; 163 164 for (i = 0; i < ARRAY_SIZE(machines); i++) { 165 if (strcmp(cpu, machines[i].cpu_model) == 0) { 166 return &machines[i]; 167 } 168 } 169 return NULL; 170 } 171 172 static void create_fdt(VirtBoardInfo *vbi) 173 { 174 void *fdt = create_device_tree(&vbi->fdt_size); 175 176 if (!fdt) { 177 error_report("create_device_tree() failed"); 178 exit(1); 179 } 180 181 vbi->fdt = fdt; 182 183 /* Header */ 184 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 185 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 186 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 187 188 /* 189 * /chosen and /memory nodes must exist for load_dtb 190 * to fill in necessary properties later 191 */ 192 qemu_fdt_add_subnode(fdt, "/chosen"); 193 qemu_fdt_add_subnode(fdt, "/memory"); 194 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 195 196 /* Clock node, for the benefit of the UART. The kernel device tree 197 * binding documentation claims the PL011 node clock properties are 198 * optional but in practice if you omit them the kernel refuses to 199 * probe for the device. 200 */ 201 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 202 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 203 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 204 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 205 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 206 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 207 "clk24mhz"); 208 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 209 210 } 211 212 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 213 { 214 uint32_t cpu_suspend_fn; 215 uint32_t cpu_off_fn; 216 uint32_t cpu_on_fn; 217 uint32_t migrate_fn; 218 void *fdt = vbi->fdt; 219 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 220 221 qemu_fdt_add_subnode(fdt, "/psci"); 222 if (armcpu->psci_version == 2) { 223 const char comp[] = "arm,psci-0.2\0arm,psci"; 224 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 225 226 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 227 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 228 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 229 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 230 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 231 } else { 232 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 233 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 234 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 235 } 236 } else { 237 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 238 239 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 240 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 241 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 242 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 243 } 244 245 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 246 * to the instruction that should be used to invoke PSCI functions. 247 * However, the device tree binding uses 'method' instead, so that is 248 * what we should use here. 249 */ 250 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 251 252 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 253 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 254 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 255 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 256 } 257 258 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi) 259 { 260 /* Note that on A15 h/w these interrupts are level-triggered, 261 * but for the GIC implementation provided by both QEMU and KVM 262 * they are edge-triggered. 263 */ 264 ARMCPU *armcpu; 265 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 266 267 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 268 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1); 269 270 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 271 272 armcpu = ARM_CPU(qemu_get_cpu(0)); 273 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 274 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 275 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 276 compat, sizeof(compat)); 277 } else { 278 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 279 "arm,armv7-timer"); 280 } 281 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 282 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 283 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 284 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 285 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 286 } 287 288 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 289 { 290 int cpu; 291 292 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 293 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1); 294 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 295 296 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 297 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 298 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 299 300 qemu_fdt_add_subnode(vbi->fdt, nodename); 301 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 302 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 303 armcpu->dtb_compatible); 304 305 if (vbi->smp_cpus > 1) { 306 qemu_fdt_setprop_string(vbi->fdt, nodename, 307 "enable-method", "psci"); 308 } 309 310 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", armcpu->mp_affinity); 311 g_free(nodename); 312 } 313 } 314 315 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi) 316 { 317 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 318 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m"); 319 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible", 320 "arm,gic-v2m-frame"); 321 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0); 322 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg", 323 2, vbi->memmap[VIRT_GIC_V2M].base, 324 2, vbi->memmap[VIRT_GIC_V2M].size); 325 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle); 326 } 327 328 static void fdt_add_gic_node(VirtBoardInfo *vbi) 329 { 330 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 331 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle); 332 333 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 334 /* 'cortex-a15-gic' means 'GIC v2' */ 335 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 336 "arm,cortex-a15-gic"); 337 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 338 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 339 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 340 2, vbi->memmap[VIRT_GIC_DIST].base, 341 2, vbi->memmap[VIRT_GIC_DIST].size, 342 2, vbi->memmap[VIRT_GIC_CPU].base, 343 2, vbi->memmap[VIRT_GIC_CPU].size); 344 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2); 345 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2); 346 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0); 347 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle); 348 } 349 350 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic) 351 { 352 int i; 353 int irq = vbi->irqmap[VIRT_GIC_V2M]; 354 DeviceState *dev; 355 356 dev = qdev_create(NULL, "arm-gicv2m"); 357 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base); 358 qdev_prop_set_uint32(dev, "base-spi", irq); 359 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 360 qdev_init_nofail(dev); 361 362 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 363 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 364 } 365 366 fdt_add_v2m_gic_node(vbi); 367 } 368 369 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic) 370 { 371 /* We create a standalone GIC v2 */ 372 DeviceState *gicdev; 373 SysBusDevice *gicbusdev; 374 const char *gictype; 375 int i; 376 377 gictype = gic_class_name(); 378 379 gicdev = qdev_create(NULL, gictype); 380 qdev_prop_set_uint32(gicdev, "revision", 2); 381 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 382 /* Note that the num-irq property counts both internal and external 383 * interrupts; there are always 32 of the former (mandated by GIC spec). 384 */ 385 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 386 qdev_init_nofail(gicdev); 387 gicbusdev = SYS_BUS_DEVICE(gicdev); 388 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 389 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 390 391 /* Wire the outputs from each CPU's generic timer to the 392 * appropriate GIC PPI inputs, and the GIC's IRQ output to 393 * the CPU's IRQ input. 394 */ 395 for (i = 0; i < smp_cpus; i++) { 396 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 397 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 398 int irq; 399 /* Mapping from the output timer irq lines from the CPU to the 400 * GIC PPI inputs we use for the virt board. 401 */ 402 const int timer_irq[] = { 403 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 404 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 405 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 406 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 407 }; 408 409 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 410 qdev_connect_gpio_out(cpudev, irq, 411 qdev_get_gpio_in(gicdev, 412 ppibase + timer_irq[irq])); 413 } 414 415 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 416 sysbus_connect_irq(gicbusdev, i + smp_cpus, 417 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 418 } 419 420 for (i = 0; i < NUM_IRQS; i++) { 421 pic[i] = qdev_get_gpio_in(gicdev, i); 422 } 423 424 fdt_add_gic_node(vbi); 425 426 create_v2m(vbi, pic); 427 } 428 429 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) 430 { 431 char *nodename; 432 hwaddr base = vbi->memmap[VIRT_UART].base; 433 hwaddr size = vbi->memmap[VIRT_UART].size; 434 int irq = vbi->irqmap[VIRT_UART]; 435 const char compat[] = "arm,pl011\0arm,primecell"; 436 const char clocknames[] = "uartclk\0apb_pclk"; 437 438 sysbus_create_simple("pl011", base, pic[irq]); 439 440 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 441 qemu_fdt_add_subnode(vbi->fdt, nodename); 442 /* Note that we can't use setprop_string because of the embedded NUL */ 443 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 444 compat, sizeof(compat)); 445 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 446 2, base, 2, size); 447 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 448 GIC_FDT_IRQ_TYPE_SPI, irq, 449 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 450 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 451 vbi->clock_phandle, vbi->clock_phandle); 452 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 453 clocknames, sizeof(clocknames)); 454 455 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 456 g_free(nodename); 457 } 458 459 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 460 { 461 char *nodename; 462 hwaddr base = vbi->memmap[VIRT_RTC].base; 463 hwaddr size = vbi->memmap[VIRT_RTC].size; 464 int irq = vbi->irqmap[VIRT_RTC]; 465 const char compat[] = "arm,pl031\0arm,primecell"; 466 467 sysbus_create_simple("pl031", base, pic[irq]); 468 469 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 470 qemu_fdt_add_subnode(vbi->fdt, nodename); 471 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 472 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 473 2, base, 2, size); 474 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 475 GIC_FDT_IRQ_TYPE_SPI, irq, 476 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 477 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 478 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 479 g_free(nodename); 480 } 481 482 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 483 { 484 int i; 485 hwaddr size = vbi->memmap[VIRT_MMIO].size; 486 487 /* We create the transports in forwards order. Since qbus_realize() 488 * prepends (not appends) new child buses, the incrementing loop below will 489 * create a list of virtio-mmio buses with decreasing base addresses. 490 * 491 * When a -device option is processed from the command line, 492 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 493 * order. The upshot is that -device options in increasing command line 494 * order are mapped to virtio-mmio buses with decreasing base addresses. 495 * 496 * When this code was originally written, that arrangement ensured that the 497 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 498 * the first -device on the command line. (The end-to-end order is a 499 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 500 * guest kernel's name-to-address assignment strategy.) 501 * 502 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 503 * the message, if not necessarily the code, of commit 70161ff336. 504 * Therefore the loop now establishes the inverse of the original intent. 505 * 506 * Unfortunately, we can't counteract the kernel change by reversing the 507 * loop; it would break existing command lines. 508 * 509 * In any case, the kernel makes no guarantee about the stability of 510 * enumeration order of virtio devices (as demonstrated by it changing 511 * between kernel versions). For reliable and stable identification 512 * of disks users must use UUIDs or similar mechanisms. 513 */ 514 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 515 int irq = vbi->irqmap[VIRT_MMIO] + i; 516 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 517 518 sysbus_create_simple("virtio-mmio", base, pic[irq]); 519 } 520 521 /* We add dtb nodes in reverse order so that they appear in the finished 522 * device tree lowest address first. 523 * 524 * Note that this mapping is independent of the loop above. The previous 525 * loop influences virtio device to virtio transport assignment, whereas 526 * this loop controls how virtio transports are laid out in the dtb. 527 */ 528 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 529 char *nodename; 530 int irq = vbi->irqmap[VIRT_MMIO] + i; 531 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 532 533 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 534 qemu_fdt_add_subnode(vbi->fdt, nodename); 535 qemu_fdt_setprop_string(vbi->fdt, nodename, 536 "compatible", "virtio,mmio"); 537 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 538 2, base, 2, size); 539 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 540 GIC_FDT_IRQ_TYPE_SPI, irq, 541 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 542 g_free(nodename); 543 } 544 } 545 546 static void create_one_flash(const char *name, hwaddr flashbase, 547 hwaddr flashsize) 548 { 549 /* Create and map a single flash device. We use the same 550 * parameters as the flash devices on the Versatile Express board. 551 */ 552 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 553 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 554 const uint64_t sectorlength = 256 * 1024; 555 556 if (dinfo) { 557 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 558 &error_abort); 559 } 560 561 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 562 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 563 qdev_prop_set_uint8(dev, "width", 4); 564 qdev_prop_set_uint8(dev, "device-width", 2); 565 qdev_prop_set_bit(dev, "big-endian", false); 566 qdev_prop_set_uint16(dev, "id0", 0x89); 567 qdev_prop_set_uint16(dev, "id1", 0x18); 568 qdev_prop_set_uint16(dev, "id2", 0x00); 569 qdev_prop_set_uint16(dev, "id3", 0x00); 570 qdev_prop_set_string(dev, "name", name); 571 qdev_init_nofail(dev); 572 573 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase); 574 } 575 576 static void create_flash(const VirtBoardInfo *vbi) 577 { 578 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 579 * Any file passed via -bios goes in the first of these. 580 */ 581 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 582 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 583 char *nodename; 584 585 if (bios_name) { 586 char *fn; 587 int image_size; 588 589 if (drive_get(IF_PFLASH, 0, 0)) { 590 error_report("The contents of the first flash device may be " 591 "specified with -bios or with -drive if=pflash... " 592 "but you cannot use both options at once"); 593 exit(1); 594 } 595 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 596 if (!fn) { 597 error_report("Could not find ROM image '%s'", bios_name); 598 exit(1); 599 } 600 image_size = load_image_targphys(fn, flashbase, flashsize); 601 g_free(fn); 602 if (image_size < 0) { 603 error_report("Could not load ROM image '%s'", bios_name); 604 exit(1); 605 } 606 } 607 608 create_one_flash("virt.flash0", flashbase, flashsize); 609 create_one_flash("virt.flash1", flashbase + flashsize, flashsize); 610 611 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 612 qemu_fdt_add_subnode(vbi->fdt, nodename); 613 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 614 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 615 2, flashbase, 2, flashsize, 616 2, flashbase + flashsize, 2, flashsize); 617 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 618 g_free(nodename); 619 } 620 621 static void create_fw_cfg(const VirtBoardInfo *vbi) 622 { 623 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 624 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 625 char *nodename; 626 627 fw_cfg_init_mem_wide(base + 8, base, 8); 628 629 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 630 qemu_fdt_add_subnode(vbi->fdt, nodename); 631 qemu_fdt_setprop_string(vbi->fdt, nodename, 632 "compatible", "qemu,fw-cfg-mmio"); 633 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 634 2, base, 2, size); 635 g_free(nodename); 636 } 637 638 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 639 int first_irq, const char *nodename) 640 { 641 int devfn, pin; 642 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 643 uint32_t *irq_map = full_irq_map; 644 645 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 646 for (pin = 0; pin < 4; pin++) { 647 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 648 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 649 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 650 int i; 651 652 uint32_t map[] = { 653 devfn << 8, 0, 0, /* devfn */ 654 pin + 1, /* PCI pin */ 655 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 656 657 /* Convert map to big endian */ 658 for (i = 0; i < 10; i++) { 659 irq_map[i] = cpu_to_be32(map[i]); 660 } 661 irq_map += 10; 662 } 663 } 664 665 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 666 full_irq_map, sizeof(full_irq_map)); 667 668 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 669 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 670 0x7 /* PCI irq */); 671 } 672 673 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic, 674 bool use_highmem) 675 { 676 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base; 677 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size; 678 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base; 679 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size; 680 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base; 681 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size; 682 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base; 683 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size; 684 hwaddr base = base_mmio; 685 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 686 int irq = vbi->irqmap[VIRT_PCIE]; 687 MemoryRegion *mmio_alias; 688 MemoryRegion *mmio_reg; 689 MemoryRegion *ecam_alias; 690 MemoryRegion *ecam_reg; 691 DeviceState *dev; 692 char *nodename; 693 int i; 694 695 dev = qdev_create(NULL, TYPE_GPEX_HOST); 696 qdev_init_nofail(dev); 697 698 /* Map only the first size_ecam bytes of ECAM space */ 699 ecam_alias = g_new0(MemoryRegion, 1); 700 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 701 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 702 ecam_reg, 0, size_ecam); 703 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 704 705 /* Map the MMIO window into system address space so as to expose 706 * the section of PCI MMIO space which starts at the same base address 707 * (ie 1:1 mapping for that part of PCI MMIO space visible through 708 * the window). 709 */ 710 mmio_alias = g_new0(MemoryRegion, 1); 711 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 712 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 713 mmio_reg, base_mmio, size_mmio); 714 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 715 716 if (use_highmem) { 717 /* Map high MMIO space */ 718 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 719 720 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 721 mmio_reg, base_mmio_high, size_mmio_high); 722 memory_region_add_subregion(get_system_memory(), base_mmio_high, 723 high_mmio_alias); 724 } 725 726 /* Map IO port space */ 727 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 728 729 for (i = 0; i < GPEX_NUM_IRQS; i++) { 730 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 731 } 732 733 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 734 qemu_fdt_add_subnode(vbi->fdt, nodename); 735 qemu_fdt_setprop_string(vbi->fdt, nodename, 736 "compatible", "pci-host-ecam-generic"); 737 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 738 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 739 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 740 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 741 nr_pcie_buses - 1); 742 743 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", vbi->v2m_phandle); 744 745 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 746 2, base_ecam, 2, size_ecam); 747 748 if (use_highmem) { 749 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 750 1, FDT_PCI_RANGE_IOPORT, 2, 0, 751 2, base_pio, 2, size_pio, 752 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 753 2, base_mmio, 2, size_mmio, 754 1, FDT_PCI_RANGE_MMIO_64BIT, 755 2, base_mmio_high, 756 2, base_mmio_high, 2, size_mmio_high); 757 } else { 758 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 759 1, FDT_PCI_RANGE_IOPORT, 2, 0, 760 2, base_pio, 2, size_pio, 761 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 762 2, base_mmio, 2, size_mmio); 763 } 764 765 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 766 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename); 767 768 g_free(nodename); 769 } 770 771 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic) 772 { 773 DeviceState *dev; 774 SysBusDevice *s; 775 int i; 776 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 777 MemoryRegion *sysmem = get_system_memory(); 778 779 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base; 780 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size; 781 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS]; 782 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 783 784 fdt_params->system_params = &platform_bus_params; 785 fdt_params->binfo = &vbi->bootinfo; 786 fdt_params->intc = "/intc"; 787 /* 788 * register a machine init done notifier that creates the device tree 789 * nodes of the platform bus and its children dynamic sysbus devices 790 */ 791 arm_register_platform_bus_fdt_creator(fdt_params); 792 793 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 794 dev->id = TYPE_PLATFORM_BUS_DEVICE; 795 qdev_prop_set_uint32(dev, "num_irqs", 796 platform_bus_params.platform_bus_num_irqs); 797 qdev_prop_set_uint32(dev, "mmio_size", 798 platform_bus_params.platform_bus_size); 799 qdev_init_nofail(dev); 800 s = SYS_BUS_DEVICE(dev); 801 802 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 803 int irqn = platform_bus_params.platform_bus_first_irq + i; 804 sysbus_connect_irq(s, i, pic[irqn]); 805 } 806 807 memory_region_add_subregion(sysmem, 808 platform_bus_params.platform_bus_base, 809 sysbus_mmio_get_region(s, 0)); 810 } 811 812 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 813 { 814 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 815 816 *fdt_size = board->fdt_size; 817 return board->fdt; 818 } 819 820 static void virt_build_smbios(VirtGuestInfo *guest_info) 821 { 822 FWCfgState *fw_cfg = guest_info->fw_cfg; 823 uint8_t *smbios_tables, *smbios_anchor; 824 size_t smbios_tables_len, smbios_anchor_len; 825 826 if (!fw_cfg) { 827 return; 828 } 829 830 smbios_set_defaults("QEMU", "QEMU Virtual Machine", 831 "1.0", false, true, SMBIOS_ENTRY_POINT_30); 832 833 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, 834 &smbios_anchor, &smbios_anchor_len); 835 836 if (smbios_anchor) { 837 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 838 smbios_tables, smbios_tables_len); 839 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 840 smbios_anchor, smbios_anchor_len); 841 } 842 } 843 844 static 845 void virt_guest_info_machine_done(Notifier *notifier, void *data) 846 { 847 VirtGuestInfoState *guest_info_state = container_of(notifier, 848 VirtGuestInfoState, machine_done); 849 virt_acpi_setup(&guest_info_state->info); 850 virt_build_smbios(&guest_info_state->info); 851 } 852 853 static void machvirt_init(MachineState *machine) 854 { 855 VirtMachineState *vms = VIRT_MACHINE(machine); 856 qemu_irq pic[NUM_IRQS]; 857 MemoryRegion *sysmem = get_system_memory(); 858 int n; 859 MemoryRegion *ram = g_new(MemoryRegion, 1); 860 const char *cpu_model = machine->cpu_model; 861 VirtBoardInfo *vbi; 862 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 863 VirtGuestInfo *guest_info = &guest_info_state->info; 864 char **cpustr; 865 866 if (!cpu_model) { 867 cpu_model = "cortex-a15"; 868 } 869 870 /* Separate the actual CPU model name from any appended features */ 871 cpustr = g_strsplit(cpu_model, ",", 2); 872 873 vbi = find_machine_info(cpustr[0]); 874 875 if (!vbi) { 876 error_report("mach-virt: CPU %s not supported", cpustr[0]); 877 exit(1); 878 } 879 880 vbi->smp_cpus = smp_cpus; 881 882 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 883 error_report("mach-virt: cannot model more than 30GB RAM"); 884 exit(1); 885 } 886 887 create_fdt(vbi); 888 889 for (n = 0; n < smp_cpus; n++) { 890 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 891 CPUClass *cc = CPU_CLASS(oc); 892 Object *cpuobj; 893 Error *err = NULL; 894 char *cpuopts = g_strdup(cpustr[1]); 895 896 if (!oc) { 897 fprintf(stderr, "Unable to find CPU definition\n"); 898 exit(1); 899 } 900 cpuobj = object_new(object_class_get_name(oc)); 901 902 /* Handle any CPU options specified by the user */ 903 cc->parse_features(CPU(cpuobj), cpuopts, &err); 904 g_free(cpuopts); 905 if (err) { 906 error_report_err(err); 907 exit(1); 908 } 909 910 if (!vms->secure) { 911 object_property_set_bool(cpuobj, false, "has_el3", NULL); 912 } 913 914 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit", 915 NULL); 916 917 /* Secondary CPUs start in PSCI powered-down state */ 918 if (n > 0) { 919 object_property_set_bool(cpuobj, true, "start-powered-off", NULL); 920 } 921 922 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 923 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 924 "reset-cbar", &error_abort); 925 } 926 927 object_property_set_bool(cpuobj, true, "realized", NULL); 928 } 929 g_strfreev(cpustr); 930 fdt_add_timer_nodes(vbi); 931 fdt_add_cpu_nodes(vbi); 932 fdt_add_psci_node(vbi); 933 934 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 935 machine->ram_size); 936 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 937 938 create_flash(vbi); 939 940 create_gic(vbi, pic); 941 942 create_uart(vbi, pic); 943 944 create_rtc(vbi, pic); 945 946 create_pcie(vbi, pic, vms->highmem); 947 948 /* Create mmio transports, so the user can create virtio backends 949 * (which will be automatically plugged in to the transports). If 950 * no backend is created the transport will just sit harmlessly idle. 951 */ 952 create_virtio_devices(vbi, pic); 953 954 create_fw_cfg(vbi); 955 rom_set_fw(fw_cfg_find()); 956 957 guest_info->smp_cpus = smp_cpus; 958 guest_info->fw_cfg = fw_cfg_find(); 959 guest_info->memmap = vbi->memmap; 960 guest_info->irqmap = vbi->irqmap; 961 guest_info->use_highmem = vms->highmem; 962 guest_info_state->machine_done.notify = virt_guest_info_machine_done; 963 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 964 965 vbi->bootinfo.ram_size = machine->ram_size; 966 vbi->bootinfo.kernel_filename = machine->kernel_filename; 967 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 968 vbi->bootinfo.initrd_filename = machine->initrd_filename; 969 vbi->bootinfo.nb_cpus = smp_cpus; 970 vbi->bootinfo.board_id = -1; 971 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 972 vbi->bootinfo.get_dtb = machvirt_dtb; 973 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 974 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 975 976 /* 977 * arm_load_kernel machine init done notifier registration must 978 * happen before the platform_bus_create call. In this latter, 979 * another notifier is registered which adds platform bus nodes. 980 * Notifiers are executed in registration reverse order. 981 */ 982 create_platform_bus(vbi, pic); 983 } 984 985 static bool virt_get_secure(Object *obj, Error **errp) 986 { 987 VirtMachineState *vms = VIRT_MACHINE(obj); 988 989 return vms->secure; 990 } 991 992 static void virt_set_secure(Object *obj, bool value, Error **errp) 993 { 994 VirtMachineState *vms = VIRT_MACHINE(obj); 995 996 vms->secure = value; 997 } 998 999 static bool virt_get_highmem(Object *obj, Error **errp) 1000 { 1001 VirtMachineState *vms = VIRT_MACHINE(obj); 1002 1003 return vms->highmem; 1004 } 1005 1006 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1007 { 1008 VirtMachineState *vms = VIRT_MACHINE(obj); 1009 1010 vms->highmem = value; 1011 } 1012 1013 static void virt_instance_init(Object *obj) 1014 { 1015 VirtMachineState *vms = VIRT_MACHINE(obj); 1016 1017 /* EL3 is enabled by default on virt */ 1018 vms->secure = true; 1019 object_property_add_bool(obj, "secure", virt_get_secure, 1020 virt_set_secure, NULL); 1021 object_property_set_description(obj, "secure", 1022 "Set on/off to enable/disable the ARM " 1023 "Security Extensions (TrustZone)", 1024 NULL); 1025 1026 /* High memory is enabled by default */ 1027 vms->highmem = true; 1028 object_property_add_bool(obj, "highmem", virt_get_highmem, 1029 virt_set_highmem, NULL); 1030 object_property_set_description(obj, "highmem", 1031 "Set on/off to enable/disable using " 1032 "physical address space above 32 bits", 1033 NULL); 1034 } 1035 1036 static void virt_class_init(ObjectClass *oc, void *data) 1037 { 1038 MachineClass *mc = MACHINE_CLASS(oc); 1039 1040 mc->name = TYPE_VIRT_MACHINE; 1041 mc->desc = "ARM Virtual Machine", 1042 mc->init = machvirt_init; 1043 mc->max_cpus = 8; 1044 mc->has_dynamic_sysbus = true; 1045 mc->block_default_type = IF_VIRTIO; 1046 mc->no_cdrom = 1; 1047 } 1048 1049 static const TypeInfo machvirt_info = { 1050 .name = TYPE_VIRT_MACHINE, 1051 .parent = TYPE_MACHINE, 1052 .instance_size = sizeof(VirtMachineState), 1053 .instance_init = virt_instance_init, 1054 .class_size = sizeof(VirtMachineClass), 1055 .class_init = virt_class_init, 1056 }; 1057 1058 static void machvirt_machine_init(void) 1059 { 1060 type_register_static(&machvirt_info); 1061 } 1062 1063 machine_init(machvirt_machine_init); 1064