xref: /openbmc/qemu/hw/arm/virt.c (revision 2038f8c8)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "qapi/error.h"
36 #include "hw/sysbus.h"
37 #include "hw/boards.h"
38 #include "hw/arm/boot.h"
39 #include "hw/arm/primecell.h"
40 #include "hw/arm/virt.h"
41 #include "hw/block/flash.h"
42 #include "hw/vfio/vfio-calxeda-xgmac.h"
43 #include "hw/vfio/vfio-amd-xgbe.h"
44 #include "hw/display/ramfb.h"
45 #include "net/net.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/runstate.h"
49 #include "sysemu/sysemu.h"
50 #include "sysemu/kvm.h"
51 #include "hw/loader.h"
52 #include "exec/address-spaces.h"
53 #include "qemu/bitops.h"
54 #include "qemu/error-report.h"
55 #include "qemu/module.h"
56 #include "hw/pci-host/gpex.h"
57 #include "hw/arm/sysbus-fdt.h"
58 #include "hw/platform-bus.h"
59 #include "hw/qdev-properties.h"
60 #include "hw/arm/fdt.h"
61 #include "hw/intc/arm_gic.h"
62 #include "hw/intc/arm_gicv3_common.h"
63 #include "hw/irq.h"
64 #include "kvm_arm.h"
65 #include "hw/firmware/smbios.h"
66 #include "qapi/visitor.h"
67 #include "standard-headers/linux/input.h"
68 #include "hw/arm/smmuv3.h"
69 #include "hw/acpi/acpi.h"
70 #include "target/arm/internals.h"
71 
72 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
73     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
74                                                     void *data) \
75     { \
76         MachineClass *mc = MACHINE_CLASS(oc); \
77         virt_machine_##major##_##minor##_options(mc); \
78         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
79         if (latest) { \
80             mc->alias = "virt"; \
81         } \
82     } \
83     static const TypeInfo machvirt_##major##_##minor##_info = { \
84         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
85         .parent = TYPE_VIRT_MACHINE, \
86         .class_init = virt_##major##_##minor##_class_init, \
87     }; \
88     static void machvirt_machine_##major##_##minor##_init(void) \
89     { \
90         type_register_static(&machvirt_##major##_##minor##_info); \
91     } \
92     type_init(machvirt_machine_##major##_##minor##_init);
93 
94 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
95     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
96 #define DEFINE_VIRT_MACHINE(major, minor) \
97     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
98 
99 
100 /* Number of external interrupt lines to configure the GIC with */
101 #define NUM_IRQS 256
102 
103 #define PLATFORM_BUS_NUM_IRQS 64
104 
105 /* Legacy RAM limit in GB (< version 4.0) */
106 #define LEGACY_RAMLIMIT_GB 255
107 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
108 
109 /* Addresses and sizes of our components.
110  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
111  * 128MB..256MB is used for miscellaneous device I/O.
112  * 256MB..1GB is reserved for possible future PCI support (ie where the
113  * PCI memory window will go if we add a PCI host controller).
114  * 1GB and up is RAM (which may happily spill over into the
115  * high memory region beyond 4GB).
116  * This represents a compromise between how much RAM can be given to
117  * a 32 bit VM and leaving space for expansion and in particular for PCI.
118  * Note that devices should generally be placed at multiples of 0x10000,
119  * to accommodate guests using 64K pages.
120  */
121 static const MemMapEntry base_memmap[] = {
122     /* Space up to 0x8000000 is reserved for a boot ROM */
123     [VIRT_FLASH] =              {          0, 0x08000000 },
124     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
125     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
126     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
127     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
128     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
129     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
130     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
131     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
132     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
133     /* This redistributor space allows up to 2*64kB*123 CPUs */
134     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
135     [VIRT_UART] =               { 0x09000000, 0x00001000 },
136     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
137     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
138     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
139     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
140     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
141     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
142     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
143     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
144     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
145     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
146     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
147     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
148     /* Actual RAM size depends on initial RAM and device memory settings */
149     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
150 };
151 
152 /*
153  * Highmem IO Regions: This memory map is floating, located after the RAM.
154  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
155  * top of the RAM, so that its base get the same alignment as the size,
156  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
157  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
158  * Note the extended_memmap is sized so that it eventually also includes the
159  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
160  * index of base_memmap).
161  */
162 static MemMapEntry extended_memmap[] = {
163     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
164     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
165     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
166     /* Second PCIe window */
167     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
168 };
169 
170 static const int a15irqmap[] = {
171     [VIRT_UART] = 1,
172     [VIRT_RTC] = 2,
173     [VIRT_PCIE] = 3, /* ... to 6 */
174     [VIRT_GPIO] = 7,
175     [VIRT_SECURE_UART] = 8,
176     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
177     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
178     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
179     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
180 };
181 
182 static const char *valid_cpus[] = {
183     ARM_CPU_TYPE_NAME("cortex-a7"),
184     ARM_CPU_TYPE_NAME("cortex-a15"),
185     ARM_CPU_TYPE_NAME("cortex-a53"),
186     ARM_CPU_TYPE_NAME("cortex-a57"),
187     ARM_CPU_TYPE_NAME("cortex-a72"),
188     ARM_CPU_TYPE_NAME("host"),
189     ARM_CPU_TYPE_NAME("max"),
190 };
191 
192 static bool cpu_type_valid(const char *cpu)
193 {
194     int i;
195 
196     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
197         if (strcmp(cpu, valid_cpus[i]) == 0) {
198             return true;
199         }
200     }
201     return false;
202 }
203 
204 static void create_fdt(VirtMachineState *vms)
205 {
206     MachineState *ms = MACHINE(vms);
207     int nb_numa_nodes = ms->numa_state->num_nodes;
208     void *fdt = create_device_tree(&vms->fdt_size);
209 
210     if (!fdt) {
211         error_report("create_device_tree() failed");
212         exit(1);
213     }
214 
215     vms->fdt = fdt;
216 
217     /* Header */
218     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
219     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
220     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
221 
222     /* /chosen must exist for load_dtb to fill in necessary properties later */
223     qemu_fdt_add_subnode(fdt, "/chosen");
224 
225     /* Clock node, for the benefit of the UART. The kernel device tree
226      * binding documentation claims the PL011 node clock properties are
227      * optional but in practice if you omit them the kernel refuses to
228      * probe for the device.
229      */
230     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
231     qemu_fdt_add_subnode(fdt, "/apb-pclk");
232     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
233     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
234     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
235     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
236                                 "clk24mhz");
237     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
238 
239     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
240         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
241         uint32_t *matrix = g_malloc0(size);
242         int idx, i, j;
243 
244         for (i = 0; i < nb_numa_nodes; i++) {
245             for (j = 0; j < nb_numa_nodes; j++) {
246                 idx = (i * nb_numa_nodes + j) * 3;
247                 matrix[idx + 0] = cpu_to_be32(i);
248                 matrix[idx + 1] = cpu_to_be32(j);
249                 matrix[idx + 2] =
250                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
251             }
252         }
253 
254         qemu_fdt_add_subnode(fdt, "/distance-map");
255         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
256                                 "numa-distance-map-v1");
257         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
258                          matrix, size);
259         g_free(matrix);
260     }
261 }
262 
263 static void fdt_add_timer_nodes(const VirtMachineState *vms)
264 {
265     /* On real hardware these interrupts are level-triggered.
266      * On KVM they were edge-triggered before host kernel version 4.4,
267      * and level-triggered afterwards.
268      * On emulated QEMU they are level-triggered.
269      *
270      * Getting the DTB info about them wrong is awkward for some
271      * guest kernels:
272      *  pre-4.8 ignore the DT and leave the interrupt configured
273      *   with whatever the GIC reset value (or the bootloader) left it at
274      *  4.8 before rc6 honour the incorrect data by programming it back
275      *   into the GIC, causing problems
276      *  4.8rc6 and later ignore the DT and always write "level triggered"
277      *   into the GIC
278      *
279      * For backwards-compatibility, virt-2.8 and earlier will continue
280      * to say these are edge-triggered, but later machines will report
281      * the correct information.
282      */
283     ARMCPU *armcpu;
284     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
285     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
286 
287     if (vmc->claim_edge_triggered_timers) {
288         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
289     }
290 
291     if (vms->gic_version == 2) {
292         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
293                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
294                              (1 << vms->smp_cpus) - 1);
295     }
296 
297     qemu_fdt_add_subnode(vms->fdt, "/timer");
298 
299     armcpu = ARM_CPU(qemu_get_cpu(0));
300     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
301         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
302         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
303                          compat, sizeof(compat));
304     } else {
305         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
306                                 "arm,armv7-timer");
307     }
308     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
309     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
310                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
311                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
312                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
313                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
314 }
315 
316 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
317 {
318     int cpu;
319     int addr_cells = 1;
320     const MachineState *ms = MACHINE(vms);
321 
322     /*
323      * From Documentation/devicetree/bindings/arm/cpus.txt
324      *  On ARM v8 64-bit systems value should be set to 2,
325      *  that corresponds to the MPIDR_EL1 register size.
326      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
327      *  in the system, #address-cells can be set to 1, since
328      *  MPIDR_EL1[63:32] bits are not used for CPUs
329      *  identification.
330      *
331      *  Here we actually don't know whether our system is 32- or 64-bit one.
332      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
333      *  at least one of them has Aff3 populated, we set #address-cells to 2.
334      */
335     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
336         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
337 
338         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
339             addr_cells = 2;
340             break;
341         }
342     }
343 
344     qemu_fdt_add_subnode(vms->fdt, "/cpus");
345     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
346     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
347 
348     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
349         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
350         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
351         CPUState *cs = CPU(armcpu);
352 
353         qemu_fdt_add_subnode(vms->fdt, nodename);
354         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
355         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
356                                     armcpu->dtb_compatible);
357 
358         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
359             && vms->smp_cpus > 1) {
360             qemu_fdt_setprop_string(vms->fdt, nodename,
361                                         "enable-method", "psci");
362         }
363 
364         if (addr_cells == 2) {
365             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
366                                  armcpu->mp_affinity);
367         } else {
368             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
369                                   armcpu->mp_affinity);
370         }
371 
372         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
373             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
374                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
375         }
376 
377         g_free(nodename);
378     }
379 }
380 
381 static void fdt_add_its_gic_node(VirtMachineState *vms)
382 {
383     char *nodename;
384 
385     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
386     nodename = g_strdup_printf("/intc/its@%" PRIx64,
387                                vms->memmap[VIRT_GIC_ITS].base);
388     qemu_fdt_add_subnode(vms->fdt, nodename);
389     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
390                             "arm,gic-v3-its");
391     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
392     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
393                                  2, vms->memmap[VIRT_GIC_ITS].base,
394                                  2, vms->memmap[VIRT_GIC_ITS].size);
395     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
396     g_free(nodename);
397 }
398 
399 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
400 {
401     char *nodename;
402 
403     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
404                                vms->memmap[VIRT_GIC_V2M].base);
405     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
406     qemu_fdt_add_subnode(vms->fdt, nodename);
407     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
408                             "arm,gic-v2m-frame");
409     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
410     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
411                                  2, vms->memmap[VIRT_GIC_V2M].base,
412                                  2, vms->memmap[VIRT_GIC_V2M].size);
413     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
414     g_free(nodename);
415 }
416 
417 static void fdt_add_gic_node(VirtMachineState *vms)
418 {
419     char *nodename;
420 
421     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
422     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
423 
424     nodename = g_strdup_printf("/intc@%" PRIx64,
425                                vms->memmap[VIRT_GIC_DIST].base);
426     qemu_fdt_add_subnode(vms->fdt, nodename);
427     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
428     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
429     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
430     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
431     qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
432     if (vms->gic_version == 3) {
433         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
434 
435         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
436                                 "arm,gic-v3");
437 
438         qemu_fdt_setprop_cell(vms->fdt, nodename,
439                               "#redistributor-regions", nb_redist_regions);
440 
441         if (nb_redist_regions == 1) {
442             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
443                                          2, vms->memmap[VIRT_GIC_DIST].base,
444                                          2, vms->memmap[VIRT_GIC_DIST].size,
445                                          2, vms->memmap[VIRT_GIC_REDIST].base,
446                                          2, vms->memmap[VIRT_GIC_REDIST].size);
447         } else {
448             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
449                                  2, vms->memmap[VIRT_GIC_DIST].base,
450                                  2, vms->memmap[VIRT_GIC_DIST].size,
451                                  2, vms->memmap[VIRT_GIC_REDIST].base,
452                                  2, vms->memmap[VIRT_GIC_REDIST].size,
453                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
454                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
455         }
456 
457         if (vms->virt) {
458             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
459                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
460                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
461         }
462     } else {
463         /* 'cortex-a15-gic' means 'GIC v2' */
464         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
465                                 "arm,cortex-a15-gic");
466         if (!vms->virt) {
467             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
468                                          2, vms->memmap[VIRT_GIC_DIST].base,
469                                          2, vms->memmap[VIRT_GIC_DIST].size,
470                                          2, vms->memmap[VIRT_GIC_CPU].base,
471                                          2, vms->memmap[VIRT_GIC_CPU].size);
472         } else {
473             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
474                                          2, vms->memmap[VIRT_GIC_DIST].base,
475                                          2, vms->memmap[VIRT_GIC_DIST].size,
476                                          2, vms->memmap[VIRT_GIC_CPU].base,
477                                          2, vms->memmap[VIRT_GIC_CPU].size,
478                                          2, vms->memmap[VIRT_GIC_HYP].base,
479                                          2, vms->memmap[VIRT_GIC_HYP].size,
480                                          2, vms->memmap[VIRT_GIC_VCPU].base,
481                                          2, vms->memmap[VIRT_GIC_VCPU].size);
482             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
483                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
484                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
485         }
486     }
487 
488     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
489     g_free(nodename);
490 }
491 
492 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
493 {
494     CPUState *cpu;
495     ARMCPU *armcpu;
496     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
497 
498     CPU_FOREACH(cpu) {
499         armcpu = ARM_CPU(cpu);
500         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
501             return;
502         }
503         if (kvm_enabled()) {
504             if (kvm_irqchip_in_kernel()) {
505                 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
506             }
507             kvm_arm_pmu_init(cpu);
508         }
509     }
510 
511     if (vms->gic_version == 2) {
512         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
513                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
514                              (1 << vms->smp_cpus) - 1);
515     }
516 
517     armcpu = ARM_CPU(qemu_get_cpu(0));
518     qemu_fdt_add_subnode(vms->fdt, "/pmu");
519     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
520         const char compat[] = "arm,armv8-pmuv3";
521         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
522                          compat, sizeof(compat));
523         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
524                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
525     }
526 }
527 
528 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
529 {
530     const char *itsclass = its_class_name();
531     DeviceState *dev;
532 
533     if (!itsclass) {
534         /* Do nothing if not supported */
535         return;
536     }
537 
538     dev = qdev_create(NULL, itsclass);
539 
540     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
541                              &error_abort);
542     qdev_init_nofail(dev);
543     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
544 
545     fdt_add_its_gic_node(vms);
546 }
547 
548 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
549 {
550     int i;
551     int irq = vms->irqmap[VIRT_GIC_V2M];
552     DeviceState *dev;
553 
554     dev = qdev_create(NULL, "arm-gicv2m");
555     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
556     qdev_prop_set_uint32(dev, "base-spi", irq);
557     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
558     qdev_init_nofail(dev);
559 
560     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
561         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
562     }
563 
564     fdt_add_v2m_gic_node(vms);
565 }
566 
567 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
568 {
569     MachineState *ms = MACHINE(vms);
570     /* We create a standalone GIC */
571     DeviceState *gicdev;
572     SysBusDevice *gicbusdev;
573     const char *gictype;
574     int type = vms->gic_version, i;
575     unsigned int smp_cpus = ms->smp.cpus;
576     uint32_t nb_redist_regions = 0;
577 
578     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
579 
580     gicdev = qdev_create(NULL, gictype);
581     qdev_prop_set_uint32(gicdev, "revision", type);
582     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
583     /* Note that the num-irq property counts both internal and external
584      * interrupts; there are always 32 of the former (mandated by GIC spec).
585      */
586     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
587     if (!kvm_irqchip_in_kernel()) {
588         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
589     }
590 
591     if (type == 3) {
592         uint32_t redist0_capacity =
593                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
594         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
595 
596         nb_redist_regions = virt_gicv3_redist_region_count(vms);
597 
598         qdev_prop_set_uint32(gicdev, "len-redist-region-count",
599                              nb_redist_regions);
600         qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
601 
602         if (nb_redist_regions == 2) {
603             uint32_t redist1_capacity =
604                     vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
605 
606             qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
607                 MIN(smp_cpus - redist0_count, redist1_capacity));
608         }
609     } else {
610         if (!kvm_irqchip_in_kernel()) {
611             qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
612                               vms->virt);
613         }
614     }
615     qdev_init_nofail(gicdev);
616     gicbusdev = SYS_BUS_DEVICE(gicdev);
617     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
618     if (type == 3) {
619         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
620         if (nb_redist_regions == 2) {
621             sysbus_mmio_map(gicbusdev, 2,
622                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
623         }
624     } else {
625         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
626         if (vms->virt) {
627             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
628             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
629         }
630     }
631 
632     /* Wire the outputs from each CPU's generic timer and the GICv3
633      * maintenance interrupt signal to the appropriate GIC PPI inputs,
634      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
635      */
636     for (i = 0; i < smp_cpus; i++) {
637         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
638         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
639         int irq;
640         /* Mapping from the output timer irq lines from the CPU to the
641          * GIC PPI inputs we use for the virt board.
642          */
643         const int timer_irq[] = {
644             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
645             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
646             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
647             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
648         };
649 
650         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
651             qdev_connect_gpio_out(cpudev, irq,
652                                   qdev_get_gpio_in(gicdev,
653                                                    ppibase + timer_irq[irq]));
654         }
655 
656         if (type == 3) {
657             qemu_irq irq = qdev_get_gpio_in(gicdev,
658                                             ppibase + ARCH_GIC_MAINT_IRQ);
659             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
660                                         0, irq);
661         } else if (vms->virt) {
662             qemu_irq irq = qdev_get_gpio_in(gicdev,
663                                             ppibase + ARCH_GIC_MAINT_IRQ);
664             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
665         }
666 
667         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
668                                     qdev_get_gpio_in(gicdev, ppibase
669                                                      + VIRTUAL_PMU_IRQ));
670 
671         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
672         sysbus_connect_irq(gicbusdev, i + smp_cpus,
673                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
674         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
675                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
676         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
677                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
678     }
679 
680     for (i = 0; i < NUM_IRQS; i++) {
681         pic[i] = qdev_get_gpio_in(gicdev, i);
682     }
683 
684     fdt_add_gic_node(vms);
685 
686     if (type == 3 && vms->its) {
687         create_its(vms, gicdev);
688     } else if (type == 2) {
689         create_v2m(vms, pic);
690     }
691 }
692 
693 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
694                         MemoryRegion *mem, Chardev *chr)
695 {
696     char *nodename;
697     hwaddr base = vms->memmap[uart].base;
698     hwaddr size = vms->memmap[uart].size;
699     int irq = vms->irqmap[uart];
700     const char compat[] = "arm,pl011\0arm,primecell";
701     const char clocknames[] = "uartclk\0apb_pclk";
702     DeviceState *dev = qdev_create(NULL, "pl011");
703     SysBusDevice *s = SYS_BUS_DEVICE(dev);
704 
705     qdev_prop_set_chr(dev, "chardev", chr);
706     qdev_init_nofail(dev);
707     memory_region_add_subregion(mem, base,
708                                 sysbus_mmio_get_region(s, 0));
709     sysbus_connect_irq(s, 0, pic[irq]);
710 
711     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
712     qemu_fdt_add_subnode(vms->fdt, nodename);
713     /* Note that we can't use setprop_string because of the embedded NUL */
714     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
715                          compat, sizeof(compat));
716     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
717                                      2, base, 2, size);
718     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
719                                GIC_FDT_IRQ_TYPE_SPI, irq,
720                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
721     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
722                                vms->clock_phandle, vms->clock_phandle);
723     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
724                          clocknames, sizeof(clocknames));
725 
726     if (uart == VIRT_UART) {
727         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
728     } else {
729         /* Mark as not usable by the normal world */
730         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
731         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
732 
733         qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
734         qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
735                                 nodename);
736     }
737 
738     g_free(nodename);
739 }
740 
741 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
742 {
743     char *nodename;
744     hwaddr base = vms->memmap[VIRT_RTC].base;
745     hwaddr size = vms->memmap[VIRT_RTC].size;
746     int irq = vms->irqmap[VIRT_RTC];
747     const char compat[] = "arm,pl031\0arm,primecell";
748 
749     sysbus_create_simple("pl031", base, pic[irq]);
750 
751     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
752     qemu_fdt_add_subnode(vms->fdt, nodename);
753     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
754     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
755                                  2, base, 2, size);
756     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
757                            GIC_FDT_IRQ_TYPE_SPI, irq,
758                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
759     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
760     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
761     g_free(nodename);
762 }
763 
764 static DeviceState *gpio_key_dev;
765 static void virt_powerdown_req(Notifier *n, void *opaque)
766 {
767     /* use gpio Pin 3 for power button event */
768     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
769 }
770 
771 static Notifier virt_system_powerdown_notifier = {
772     .notify = virt_powerdown_req
773 };
774 
775 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
776 {
777     char *nodename;
778     DeviceState *pl061_dev;
779     hwaddr base = vms->memmap[VIRT_GPIO].base;
780     hwaddr size = vms->memmap[VIRT_GPIO].size;
781     int irq = vms->irqmap[VIRT_GPIO];
782     const char compat[] = "arm,pl061\0arm,primecell";
783 
784     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
785 
786     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
787     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
788     qemu_fdt_add_subnode(vms->fdt, nodename);
789     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
790                                  2, base, 2, size);
791     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
792     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
793     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
794     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
795                            GIC_FDT_IRQ_TYPE_SPI, irq,
796                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
797     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
798     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
799     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
800 
801     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
802                                         qdev_get_gpio_in(pl061_dev, 3));
803     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
804     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
805     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
806     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
807 
808     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
809     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
810                             "label", "GPIO Key Poweroff");
811     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
812                           KEY_POWER);
813     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
814                            "gpios", phandle, 3, 0);
815 
816     /* connect powerdown request */
817     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
818 
819     g_free(nodename);
820 }
821 
822 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
823 {
824     int i;
825     hwaddr size = vms->memmap[VIRT_MMIO].size;
826 
827     /* We create the transports in forwards order. Since qbus_realize()
828      * prepends (not appends) new child buses, the incrementing loop below will
829      * create a list of virtio-mmio buses with decreasing base addresses.
830      *
831      * When a -device option is processed from the command line,
832      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
833      * order. The upshot is that -device options in increasing command line
834      * order are mapped to virtio-mmio buses with decreasing base addresses.
835      *
836      * When this code was originally written, that arrangement ensured that the
837      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
838      * the first -device on the command line. (The end-to-end order is a
839      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
840      * guest kernel's name-to-address assignment strategy.)
841      *
842      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
843      * the message, if not necessarily the code, of commit 70161ff336.
844      * Therefore the loop now establishes the inverse of the original intent.
845      *
846      * Unfortunately, we can't counteract the kernel change by reversing the
847      * loop; it would break existing command lines.
848      *
849      * In any case, the kernel makes no guarantee about the stability of
850      * enumeration order of virtio devices (as demonstrated by it changing
851      * between kernel versions). For reliable and stable identification
852      * of disks users must use UUIDs or similar mechanisms.
853      */
854     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
855         int irq = vms->irqmap[VIRT_MMIO] + i;
856         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
857 
858         sysbus_create_simple("virtio-mmio", base, pic[irq]);
859     }
860 
861     /* We add dtb nodes in reverse order so that they appear in the finished
862      * device tree lowest address first.
863      *
864      * Note that this mapping is independent of the loop above. The previous
865      * loop influences virtio device to virtio transport assignment, whereas
866      * this loop controls how virtio transports are laid out in the dtb.
867      */
868     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
869         char *nodename;
870         int irq = vms->irqmap[VIRT_MMIO] + i;
871         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
872 
873         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
874         qemu_fdt_add_subnode(vms->fdt, nodename);
875         qemu_fdt_setprop_string(vms->fdt, nodename,
876                                 "compatible", "virtio,mmio");
877         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
878                                      2, base, 2, size);
879         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
880                                GIC_FDT_IRQ_TYPE_SPI, irq,
881                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
882         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
883         g_free(nodename);
884     }
885 }
886 
887 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
888 
889 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
890                                         const char *name,
891                                         const char *alias_prop_name)
892 {
893     /*
894      * Create a single flash device.  We use the same parameters as
895      * the flash devices on the Versatile Express board.
896      */
897     DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
898 
899     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
900     qdev_prop_set_uint8(dev, "width", 4);
901     qdev_prop_set_uint8(dev, "device-width", 2);
902     qdev_prop_set_bit(dev, "big-endian", false);
903     qdev_prop_set_uint16(dev, "id0", 0x89);
904     qdev_prop_set_uint16(dev, "id1", 0x18);
905     qdev_prop_set_uint16(dev, "id2", 0x00);
906     qdev_prop_set_uint16(dev, "id3", 0x00);
907     qdev_prop_set_string(dev, "name", name);
908     object_property_add_child(OBJECT(vms), name, OBJECT(dev),
909                               &error_abort);
910     object_property_add_alias(OBJECT(vms), alias_prop_name,
911                               OBJECT(dev), "drive", &error_abort);
912     return PFLASH_CFI01(dev);
913 }
914 
915 static void virt_flash_create(VirtMachineState *vms)
916 {
917     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
918     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
919 }
920 
921 static void virt_flash_map1(PFlashCFI01 *flash,
922                             hwaddr base, hwaddr size,
923                             MemoryRegion *sysmem)
924 {
925     DeviceState *dev = DEVICE(flash);
926 
927     assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
928     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
929     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
930     qdev_init_nofail(dev);
931 
932     memory_region_add_subregion(sysmem, base,
933                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
934                                                        0));
935 }
936 
937 static void virt_flash_map(VirtMachineState *vms,
938                            MemoryRegion *sysmem,
939                            MemoryRegion *secure_sysmem)
940 {
941     /*
942      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
943      * sysmem is the system memory space. secure_sysmem is the secure view
944      * of the system, and the first flash device should be made visible only
945      * there. The second flash device is visible to both secure and nonsecure.
946      * If sysmem == secure_sysmem this means there is no separate Secure
947      * address space and both flash devices are generally visible.
948      */
949     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
950     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
951 
952     virt_flash_map1(vms->flash[0], flashbase, flashsize,
953                     secure_sysmem);
954     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
955                     sysmem);
956 }
957 
958 static void virt_flash_fdt(VirtMachineState *vms,
959                            MemoryRegion *sysmem,
960                            MemoryRegion *secure_sysmem)
961 {
962     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
963     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
964     char *nodename;
965 
966     if (sysmem == secure_sysmem) {
967         /* Report both flash devices as a single node in the DT */
968         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
969         qemu_fdt_add_subnode(vms->fdt, nodename);
970         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
971         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
972                                      2, flashbase, 2, flashsize,
973                                      2, flashbase + flashsize, 2, flashsize);
974         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
975         g_free(nodename);
976     } else {
977         /*
978          * Report the devices as separate nodes so we can mark one as
979          * only visible to the secure world.
980          */
981         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
982         qemu_fdt_add_subnode(vms->fdt, nodename);
983         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
984         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
985                                      2, flashbase, 2, flashsize);
986         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
987         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
988         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
989         g_free(nodename);
990 
991         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
992         qemu_fdt_add_subnode(vms->fdt, nodename);
993         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
994         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
995                                      2, flashbase + flashsize, 2, flashsize);
996         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
997         g_free(nodename);
998     }
999 }
1000 
1001 static bool virt_firmware_init(VirtMachineState *vms,
1002                                MemoryRegion *sysmem,
1003                                MemoryRegion *secure_sysmem)
1004 {
1005     int i;
1006     BlockBackend *pflash_blk0;
1007 
1008     /* Map legacy -drive if=pflash to machine properties */
1009     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1010         pflash_cfi01_legacy_drive(vms->flash[i],
1011                                   drive_get(IF_PFLASH, 0, i));
1012     }
1013 
1014     virt_flash_map(vms, sysmem, secure_sysmem);
1015 
1016     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1017 
1018     if (bios_name) {
1019         char *fname;
1020         MemoryRegion *mr;
1021         int image_size;
1022 
1023         if (pflash_blk0) {
1024             error_report("The contents of the first flash device may be "
1025                          "specified with -bios or with -drive if=pflash... "
1026                          "but you cannot use both options at once");
1027             exit(1);
1028         }
1029 
1030         /* Fall back to -bios */
1031 
1032         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1033         if (!fname) {
1034             error_report("Could not find ROM image '%s'", bios_name);
1035             exit(1);
1036         }
1037         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1038         image_size = load_image_mr(fname, mr);
1039         g_free(fname);
1040         if (image_size < 0) {
1041             error_report("Could not load ROM image '%s'", bios_name);
1042             exit(1);
1043         }
1044     }
1045 
1046     return pflash_blk0 || bios_name;
1047 }
1048 
1049 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1050 {
1051     MachineState *ms = MACHINE(vms);
1052     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1053     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1054     FWCfgState *fw_cfg;
1055     char *nodename;
1056 
1057     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1058     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1059 
1060     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1061     qemu_fdt_add_subnode(vms->fdt, nodename);
1062     qemu_fdt_setprop_string(vms->fdt, nodename,
1063                             "compatible", "qemu,fw-cfg-mmio");
1064     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1065                                  2, base, 2, size);
1066     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1067     g_free(nodename);
1068     return fw_cfg;
1069 }
1070 
1071 static void create_pcie_irq_map(const VirtMachineState *vms,
1072                                 uint32_t gic_phandle,
1073                                 int first_irq, const char *nodename)
1074 {
1075     int devfn, pin;
1076     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1077     uint32_t *irq_map = full_irq_map;
1078 
1079     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1080         for (pin = 0; pin < 4; pin++) {
1081             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1082             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1083             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1084             int i;
1085 
1086             uint32_t map[] = {
1087                 devfn << 8, 0, 0,                           /* devfn */
1088                 pin + 1,                                    /* PCI pin */
1089                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1090 
1091             /* Convert map to big endian */
1092             for (i = 0; i < 10; i++) {
1093                 irq_map[i] = cpu_to_be32(map[i]);
1094             }
1095             irq_map += 10;
1096         }
1097     }
1098 
1099     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1100                      full_irq_map, sizeof(full_irq_map));
1101 
1102     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1103                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1104                            0x7           /* PCI irq */);
1105 }
1106 
1107 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1108                         PCIBus *bus)
1109 {
1110     char *node;
1111     const char compat[] = "arm,smmu-v3";
1112     int irq =  vms->irqmap[VIRT_SMMU];
1113     int i;
1114     hwaddr base = vms->memmap[VIRT_SMMU].base;
1115     hwaddr size = vms->memmap[VIRT_SMMU].size;
1116     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1117     DeviceState *dev;
1118 
1119     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1120         return;
1121     }
1122 
1123     dev = qdev_create(NULL, "arm-smmuv3");
1124 
1125     object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1126                              &error_abort);
1127     qdev_init_nofail(dev);
1128     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1129     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1130         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1131     }
1132 
1133     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1134     qemu_fdt_add_subnode(vms->fdt, node);
1135     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1136     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1137 
1138     qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1139             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1140             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1141             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1142             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1143 
1144     qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1145                      sizeof(irq_names));
1146 
1147     qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1148     qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1149     qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1150 
1151     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1152 
1153     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1154     g_free(node);
1155 }
1156 
1157 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1158 {
1159     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1160     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1161     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1162     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1163     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1164     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1165     hwaddr base_ecam, size_ecam;
1166     hwaddr base = base_mmio;
1167     int nr_pcie_buses;
1168     int irq = vms->irqmap[VIRT_PCIE];
1169     MemoryRegion *mmio_alias;
1170     MemoryRegion *mmio_reg;
1171     MemoryRegion *ecam_alias;
1172     MemoryRegion *ecam_reg;
1173     DeviceState *dev;
1174     char *nodename;
1175     int i, ecam_id;
1176     PCIHostState *pci;
1177 
1178     dev = qdev_create(NULL, TYPE_GPEX_HOST);
1179     qdev_init_nofail(dev);
1180 
1181     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1182     base_ecam = vms->memmap[ecam_id].base;
1183     size_ecam = vms->memmap[ecam_id].size;
1184     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1185     /* Map only the first size_ecam bytes of ECAM space */
1186     ecam_alias = g_new0(MemoryRegion, 1);
1187     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1188     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1189                              ecam_reg, 0, size_ecam);
1190     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1191 
1192     /* Map the MMIO window into system address space so as to expose
1193      * the section of PCI MMIO space which starts at the same base address
1194      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1195      * the window).
1196      */
1197     mmio_alias = g_new0(MemoryRegion, 1);
1198     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1199     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1200                              mmio_reg, base_mmio, size_mmio);
1201     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1202 
1203     if (vms->highmem) {
1204         /* Map high MMIO space */
1205         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1206 
1207         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1208                                  mmio_reg, base_mmio_high, size_mmio_high);
1209         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1210                                     high_mmio_alias);
1211     }
1212 
1213     /* Map IO port space */
1214     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1215 
1216     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1217         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1218         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1219     }
1220 
1221     pci = PCI_HOST_BRIDGE(dev);
1222     if (pci->bus) {
1223         for (i = 0; i < nb_nics; i++) {
1224             NICInfo *nd = &nd_table[i];
1225 
1226             if (!nd->model) {
1227                 nd->model = g_strdup("virtio");
1228             }
1229 
1230             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1231         }
1232     }
1233 
1234     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1235     qemu_fdt_add_subnode(vms->fdt, nodename);
1236     qemu_fdt_setprop_string(vms->fdt, nodename,
1237                             "compatible", "pci-host-ecam-generic");
1238     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1239     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1240     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1241     qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1242     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1243                            nr_pcie_buses - 1);
1244     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1245 
1246     if (vms->msi_phandle) {
1247         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1248                                vms->msi_phandle);
1249     }
1250 
1251     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1252                                  2, base_ecam, 2, size_ecam);
1253 
1254     if (vms->highmem) {
1255         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1256                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1257                                      2, base_pio, 2, size_pio,
1258                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1259                                      2, base_mmio, 2, size_mmio,
1260                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1261                                      2, base_mmio_high,
1262                                      2, base_mmio_high, 2, size_mmio_high);
1263     } else {
1264         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1265                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1266                                      2, base_pio, 2, size_pio,
1267                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1268                                      2, base_mmio, 2, size_mmio);
1269     }
1270 
1271     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1272     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1273 
1274     if (vms->iommu) {
1275         vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1276 
1277         create_smmu(vms, pic, pci->bus);
1278 
1279         qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1280                                0x0, vms->iommu_phandle, 0x0, 0x10000);
1281     }
1282 
1283     g_free(nodename);
1284 }
1285 
1286 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1287 {
1288     DeviceState *dev;
1289     SysBusDevice *s;
1290     int i;
1291     MemoryRegion *sysmem = get_system_memory();
1292 
1293     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1294     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1295     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1296     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1297     qdev_init_nofail(dev);
1298     vms->platform_bus_dev = dev;
1299 
1300     s = SYS_BUS_DEVICE(dev);
1301     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1302         int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1303         sysbus_connect_irq(s, i, pic[irqn]);
1304     }
1305 
1306     memory_region_add_subregion(sysmem,
1307                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1308                                 sysbus_mmio_get_region(s, 0));
1309 }
1310 
1311 static void create_secure_ram(VirtMachineState *vms,
1312                               MemoryRegion *secure_sysmem)
1313 {
1314     MemoryRegion *secram = g_new(MemoryRegion, 1);
1315     char *nodename;
1316     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1317     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1318 
1319     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1320                            &error_fatal);
1321     memory_region_add_subregion(secure_sysmem, base, secram);
1322 
1323     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1324     qemu_fdt_add_subnode(vms->fdt, nodename);
1325     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1326     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1327     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1328     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1329 
1330     g_free(nodename);
1331 }
1332 
1333 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1334 {
1335     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1336                                                  bootinfo);
1337 
1338     *fdt_size = board->fdt_size;
1339     return board->fdt;
1340 }
1341 
1342 static void virt_build_smbios(VirtMachineState *vms)
1343 {
1344     MachineClass *mc = MACHINE_GET_CLASS(vms);
1345     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1346     uint8_t *smbios_tables, *smbios_anchor;
1347     size_t smbios_tables_len, smbios_anchor_len;
1348     const char *product = "QEMU Virtual Machine";
1349 
1350     if (kvm_enabled()) {
1351         product = "KVM Virtual Machine";
1352     }
1353 
1354     smbios_set_defaults("QEMU", product,
1355                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1356                         true, SMBIOS_ENTRY_POINT_30);
1357 
1358     smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1359                       &smbios_anchor, &smbios_anchor_len);
1360 
1361     if (smbios_anchor) {
1362         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1363                         smbios_tables, smbios_tables_len);
1364         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1365                         smbios_anchor, smbios_anchor_len);
1366     }
1367 }
1368 
1369 static
1370 void virt_machine_done(Notifier *notifier, void *data)
1371 {
1372     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1373                                          machine_done);
1374     MachineState *ms = MACHINE(vms);
1375     ARMCPU *cpu = ARM_CPU(first_cpu);
1376     struct arm_boot_info *info = &vms->bootinfo;
1377     AddressSpace *as = arm_boot_address_space(cpu, info);
1378 
1379     /*
1380      * If the user provided a dtb, we assume the dynamic sysbus nodes
1381      * already are integrated there. This corresponds to a use case where
1382      * the dynamic sysbus nodes are complex and their generation is not yet
1383      * supported. In that case the user can take charge of the guest dt
1384      * while qemu takes charge of the qom stuff.
1385      */
1386     if (info->dtb_filename == NULL) {
1387         platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1388                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1389                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1390                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1391     }
1392     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1393         exit(1);
1394     }
1395 
1396     virt_acpi_setup(vms);
1397     virt_build_smbios(vms);
1398 }
1399 
1400 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1401 {
1402     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1403     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1404 
1405     if (!vmc->disallow_affinity_adjustment) {
1406         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1407          * GIC's target-list limitations. 32-bit KVM hosts currently
1408          * always create clusters of 4 CPUs, but that is expected to
1409          * change when they gain support for gicv3. When KVM is enabled
1410          * it will override the changes we make here, therefore our
1411          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1412          * and to improve SGI efficiency.
1413          */
1414         if (vms->gic_version == 3) {
1415             clustersz = GICV3_TARGETLIST_BITS;
1416         } else {
1417             clustersz = GIC_TARGETLIST_BITS;
1418         }
1419     }
1420     return arm_cpu_mp_affinity(idx, clustersz);
1421 }
1422 
1423 static void virt_set_memmap(VirtMachineState *vms)
1424 {
1425     MachineState *ms = MACHINE(vms);
1426     hwaddr base, device_memory_base, device_memory_size;
1427     int i;
1428 
1429     vms->memmap = extended_memmap;
1430 
1431     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1432         vms->memmap[i] = base_memmap[i];
1433     }
1434 
1435     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1436         error_report("unsupported number of memory slots: %"PRIu64,
1437                      ms->ram_slots);
1438         exit(EXIT_FAILURE);
1439     }
1440 
1441     /*
1442      * We compute the base of the high IO region depending on the
1443      * amount of initial and device memory. The device memory start/size
1444      * is aligned on 1GiB. We never put the high IO region below 256GiB
1445      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1446      * The device region size assumes 1GiB page max alignment per slot.
1447      */
1448     device_memory_base =
1449         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1450     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1451 
1452     /* Base address of the high IO region */
1453     base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1454     if (base < device_memory_base) {
1455         error_report("maxmem/slots too huge");
1456         exit(EXIT_FAILURE);
1457     }
1458     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1459         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1460     }
1461 
1462     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1463         hwaddr size = extended_memmap[i].size;
1464 
1465         base = ROUND_UP(base, size);
1466         vms->memmap[i].base = base;
1467         vms->memmap[i].size = size;
1468         base += size;
1469     }
1470     vms->highest_gpa = base - 1;
1471     if (device_memory_size > 0) {
1472         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1473         ms->device_memory->base = device_memory_base;
1474         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1475                            "device-memory", device_memory_size);
1476     }
1477 }
1478 
1479 static void machvirt_init(MachineState *machine)
1480 {
1481     VirtMachineState *vms = VIRT_MACHINE(machine);
1482     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1483     MachineClass *mc = MACHINE_GET_CLASS(machine);
1484     const CPUArchIdList *possible_cpus;
1485     qemu_irq pic[NUM_IRQS];
1486     MemoryRegion *sysmem = get_system_memory();
1487     MemoryRegion *secure_sysmem = NULL;
1488     int n, virt_max_cpus;
1489     MemoryRegion *ram = g_new(MemoryRegion, 1);
1490     bool firmware_loaded;
1491     bool aarch64 = true;
1492     unsigned int smp_cpus = machine->smp.cpus;
1493     unsigned int max_cpus = machine->smp.max_cpus;
1494 
1495     /*
1496      * In accelerated mode, the memory map is computed earlier in kvm_type()
1497      * to create a VM with the right number of IPA bits.
1498      */
1499     if (!vms->memmap) {
1500         virt_set_memmap(vms);
1501     }
1502 
1503     /* We can probe only here because during property set
1504      * KVM is not available yet
1505      */
1506     if (vms->gic_version <= 0) {
1507         /* "host" or "max" */
1508         if (!kvm_enabled()) {
1509             if (vms->gic_version == 0) {
1510                 error_report("gic-version=host requires KVM");
1511                 exit(1);
1512             } else {
1513                 /* "max": currently means 3 for TCG */
1514                 vms->gic_version = 3;
1515             }
1516         } else {
1517             vms->gic_version = kvm_arm_vgic_probe();
1518             if (!vms->gic_version) {
1519                 error_report(
1520                     "Unable to determine GIC version supported by host");
1521                 exit(1);
1522             }
1523         }
1524     }
1525 
1526     if (!cpu_type_valid(machine->cpu_type)) {
1527         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1528         exit(1);
1529     }
1530 
1531     if (vms->secure) {
1532         if (kvm_enabled()) {
1533             error_report("mach-virt: KVM does not support Security extensions");
1534             exit(1);
1535         }
1536 
1537         /*
1538          * The Secure view of the world is the same as the NonSecure,
1539          * but with a few extra devices. Create it as a container region
1540          * containing the system memory at low priority; any secure-only
1541          * devices go in at higher priority and take precedence.
1542          */
1543         secure_sysmem = g_new(MemoryRegion, 1);
1544         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1545                            UINT64_MAX);
1546         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1547     }
1548 
1549     firmware_loaded = virt_firmware_init(vms, sysmem,
1550                                          secure_sysmem ?: sysmem);
1551 
1552     /* If we have an EL3 boot ROM then the assumption is that it will
1553      * implement PSCI itself, so disable QEMU's internal implementation
1554      * so it doesn't get in the way. Instead of starting secondary
1555      * CPUs in PSCI powerdown state we will start them all running and
1556      * let the boot ROM sort them out.
1557      * The usual case is that we do use QEMU's PSCI implementation;
1558      * if the guest has EL2 then we will use SMC as the conduit,
1559      * and otherwise we will use HVC (for backwards compatibility and
1560      * because if we're using KVM then we must use HVC).
1561      */
1562     if (vms->secure && firmware_loaded) {
1563         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1564     } else if (vms->virt) {
1565         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1566     } else {
1567         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1568     }
1569 
1570     /* The maximum number of CPUs depends on the GIC version, or on how
1571      * many redistributors we can fit into the memory map.
1572      */
1573     if (vms->gic_version == 3) {
1574         virt_max_cpus =
1575             vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1576         virt_max_cpus +=
1577             vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1578     } else {
1579         virt_max_cpus = GIC_NCPU;
1580     }
1581 
1582     if (max_cpus > virt_max_cpus) {
1583         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1584                      "supported by machine 'mach-virt' (%d)",
1585                      max_cpus, virt_max_cpus);
1586         exit(1);
1587     }
1588 
1589     vms->smp_cpus = smp_cpus;
1590 
1591     if (vms->virt && kvm_enabled()) {
1592         error_report("mach-virt: KVM does not support providing "
1593                      "Virtualization extensions to the guest CPU");
1594         exit(1);
1595     }
1596 
1597     create_fdt(vms);
1598 
1599     possible_cpus = mc->possible_cpu_arch_ids(machine);
1600     for (n = 0; n < possible_cpus->len; n++) {
1601         Object *cpuobj;
1602         CPUState *cs;
1603 
1604         if (n >= smp_cpus) {
1605             break;
1606         }
1607 
1608         cpuobj = object_new(possible_cpus->cpus[n].type);
1609         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1610                                 "mp-affinity", NULL);
1611 
1612         cs = CPU(cpuobj);
1613         cs->cpu_index = n;
1614 
1615         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1616                           &error_fatal);
1617 
1618         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1619 
1620         if (!vms->secure) {
1621             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1622         }
1623 
1624         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1625             object_property_set_bool(cpuobj, false, "has_el2", NULL);
1626         }
1627 
1628         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1629             object_property_set_int(cpuobj, vms->psci_conduit,
1630                                     "psci-conduit", NULL);
1631 
1632             /* Secondary CPUs start in PSCI powered-down state */
1633             if (n > 0) {
1634                 object_property_set_bool(cpuobj, true,
1635                                          "start-powered-off", NULL);
1636             }
1637         }
1638 
1639         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1640             object_property_set_bool(cpuobj, false, "pmu", NULL);
1641         }
1642 
1643         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1644             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1645                                     "reset-cbar", &error_abort);
1646         }
1647 
1648         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1649                                  &error_abort);
1650         if (vms->secure) {
1651             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1652                                      "secure-memory", &error_abort);
1653         }
1654 
1655         object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1656         object_unref(cpuobj);
1657     }
1658     fdt_add_timer_nodes(vms);
1659     fdt_add_cpu_nodes(vms);
1660 
1661    if (!kvm_enabled()) {
1662         ARMCPU *cpu = ARM_CPU(first_cpu);
1663         bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1664 
1665         if (aarch64 && vms->highmem) {
1666             int requested_pa_size, pamax = arm_pamax(cpu);
1667 
1668             requested_pa_size = 64 - clz64(vms->highest_gpa);
1669             if (pamax < requested_pa_size) {
1670                 error_report("VCPU supports less PA bits (%d) than requested "
1671                             "by the memory map (%d)", pamax, requested_pa_size);
1672                 exit(1);
1673             }
1674         }
1675     }
1676 
1677     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1678                                          machine->ram_size);
1679     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1680     if (machine->device_memory) {
1681         memory_region_add_subregion(sysmem, machine->device_memory->base,
1682                                     &machine->device_memory->mr);
1683     }
1684 
1685     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
1686 
1687     create_gic(vms, pic);
1688 
1689     fdt_add_pmu_nodes(vms);
1690 
1691     create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1692 
1693     if (vms->secure) {
1694         create_secure_ram(vms, secure_sysmem);
1695         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1696     }
1697 
1698     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1699 
1700     create_rtc(vms, pic);
1701 
1702     create_pcie(vms, pic);
1703 
1704     create_gpio(vms, pic);
1705 
1706     /* Create mmio transports, so the user can create virtio backends
1707      * (which will be automatically plugged in to the transports). If
1708      * no backend is created the transport will just sit harmlessly idle.
1709      */
1710     create_virtio_devices(vms, pic);
1711 
1712     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1713     rom_set_fw(vms->fw_cfg);
1714 
1715     create_platform_bus(vms, pic);
1716 
1717     vms->bootinfo.ram_size = machine->ram_size;
1718     vms->bootinfo.nb_cpus = smp_cpus;
1719     vms->bootinfo.board_id = -1;
1720     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1721     vms->bootinfo.get_dtb = machvirt_dtb;
1722     vms->bootinfo.skip_dtb_autoload = true;
1723     vms->bootinfo.firmware_loaded = firmware_loaded;
1724     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
1725 
1726     vms->machine_done.notify = virt_machine_done;
1727     qemu_add_machine_init_done_notifier(&vms->machine_done);
1728 }
1729 
1730 static bool virt_get_secure(Object *obj, Error **errp)
1731 {
1732     VirtMachineState *vms = VIRT_MACHINE(obj);
1733 
1734     return vms->secure;
1735 }
1736 
1737 static void virt_set_secure(Object *obj, bool value, Error **errp)
1738 {
1739     VirtMachineState *vms = VIRT_MACHINE(obj);
1740 
1741     vms->secure = value;
1742 }
1743 
1744 static bool virt_get_virt(Object *obj, Error **errp)
1745 {
1746     VirtMachineState *vms = VIRT_MACHINE(obj);
1747 
1748     return vms->virt;
1749 }
1750 
1751 static void virt_set_virt(Object *obj, bool value, Error **errp)
1752 {
1753     VirtMachineState *vms = VIRT_MACHINE(obj);
1754 
1755     vms->virt = value;
1756 }
1757 
1758 static bool virt_get_highmem(Object *obj, Error **errp)
1759 {
1760     VirtMachineState *vms = VIRT_MACHINE(obj);
1761 
1762     return vms->highmem;
1763 }
1764 
1765 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1766 {
1767     VirtMachineState *vms = VIRT_MACHINE(obj);
1768 
1769     vms->highmem = value;
1770 }
1771 
1772 static bool virt_get_its(Object *obj, Error **errp)
1773 {
1774     VirtMachineState *vms = VIRT_MACHINE(obj);
1775 
1776     return vms->its;
1777 }
1778 
1779 static void virt_set_its(Object *obj, bool value, Error **errp)
1780 {
1781     VirtMachineState *vms = VIRT_MACHINE(obj);
1782 
1783     vms->its = value;
1784 }
1785 
1786 static char *virt_get_gic_version(Object *obj, Error **errp)
1787 {
1788     VirtMachineState *vms = VIRT_MACHINE(obj);
1789     const char *val = vms->gic_version == 3 ? "3" : "2";
1790 
1791     return g_strdup(val);
1792 }
1793 
1794 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1795 {
1796     VirtMachineState *vms = VIRT_MACHINE(obj);
1797 
1798     if (!strcmp(value, "3")) {
1799         vms->gic_version = 3;
1800     } else if (!strcmp(value, "2")) {
1801         vms->gic_version = 2;
1802     } else if (!strcmp(value, "host")) {
1803         vms->gic_version = 0; /* Will probe later */
1804     } else if (!strcmp(value, "max")) {
1805         vms->gic_version = -1; /* Will probe later */
1806     } else {
1807         error_setg(errp, "Invalid gic-version value");
1808         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1809     }
1810 }
1811 
1812 static char *virt_get_iommu(Object *obj, Error **errp)
1813 {
1814     VirtMachineState *vms = VIRT_MACHINE(obj);
1815 
1816     switch (vms->iommu) {
1817     case VIRT_IOMMU_NONE:
1818         return g_strdup("none");
1819     case VIRT_IOMMU_SMMUV3:
1820         return g_strdup("smmuv3");
1821     default:
1822         g_assert_not_reached();
1823     }
1824 }
1825 
1826 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1827 {
1828     VirtMachineState *vms = VIRT_MACHINE(obj);
1829 
1830     if (!strcmp(value, "smmuv3")) {
1831         vms->iommu = VIRT_IOMMU_SMMUV3;
1832     } else if (!strcmp(value, "none")) {
1833         vms->iommu = VIRT_IOMMU_NONE;
1834     } else {
1835         error_setg(errp, "Invalid iommu value");
1836         error_append_hint(errp, "Valid values are none, smmuv3.\n");
1837     }
1838 }
1839 
1840 static CpuInstanceProperties
1841 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1842 {
1843     MachineClass *mc = MACHINE_GET_CLASS(ms);
1844     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1845 
1846     assert(cpu_index < possible_cpus->len);
1847     return possible_cpus->cpus[cpu_index].props;
1848 }
1849 
1850 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1851 {
1852     return idx % ms->numa_state->num_nodes;
1853 }
1854 
1855 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1856 {
1857     int n;
1858     unsigned int max_cpus = ms->smp.max_cpus;
1859     VirtMachineState *vms = VIRT_MACHINE(ms);
1860 
1861     if (ms->possible_cpus) {
1862         assert(ms->possible_cpus->len == max_cpus);
1863         return ms->possible_cpus;
1864     }
1865 
1866     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1867                                   sizeof(CPUArchId) * max_cpus);
1868     ms->possible_cpus->len = max_cpus;
1869     for (n = 0; n < ms->possible_cpus->len; n++) {
1870         ms->possible_cpus->cpus[n].type = ms->cpu_type;
1871         ms->possible_cpus->cpus[n].arch_id =
1872             virt_cpu_mp_affinity(vms, n);
1873         ms->possible_cpus->cpus[n].props.has_thread_id = true;
1874         ms->possible_cpus->cpus[n].props.thread_id = n;
1875     }
1876     return ms->possible_cpus;
1877 }
1878 
1879 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1880                                         DeviceState *dev, Error **errp)
1881 {
1882     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1883 
1884     if (vms->platform_bus_dev) {
1885         if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1886             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1887                                      SYS_BUS_DEVICE(dev));
1888         }
1889     }
1890 }
1891 
1892 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1893                                                         DeviceState *dev)
1894 {
1895     if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1896         return HOTPLUG_HANDLER(machine);
1897     }
1898 
1899     return NULL;
1900 }
1901 
1902 /*
1903  * for arm64 kvm_type [7-0] encodes the requested number of bits
1904  * in the IPA address space
1905  */
1906 static int virt_kvm_type(MachineState *ms, const char *type_str)
1907 {
1908     VirtMachineState *vms = VIRT_MACHINE(ms);
1909     int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1910     int requested_pa_size;
1911 
1912     /* we freeze the memory map to compute the highest gpa */
1913     virt_set_memmap(vms);
1914 
1915     requested_pa_size = 64 - clz64(vms->highest_gpa);
1916 
1917     if (requested_pa_size > max_vm_pa_size) {
1918         error_report("-m and ,maxmem option values "
1919                      "require an IPA range (%d bits) larger than "
1920                      "the one supported by the host (%d bits)",
1921                      requested_pa_size, max_vm_pa_size);
1922        exit(1);
1923     }
1924     /*
1925      * By default we return 0 which corresponds to an implicit legacy
1926      * 40b IPA setting. Otherwise we return the actual requested PA
1927      * logsize
1928      */
1929     return requested_pa_size > 40 ? requested_pa_size : 0;
1930 }
1931 
1932 static void virt_machine_class_init(ObjectClass *oc, void *data)
1933 {
1934     MachineClass *mc = MACHINE_CLASS(oc);
1935     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1936 
1937     mc->init = machvirt_init;
1938     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1939      * The value may be reduced later when we have more information about the
1940      * configuration of the particular instance.
1941      */
1942     mc->max_cpus = 512;
1943     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1944     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1945     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1946     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1947     mc->block_default_type = IF_VIRTIO;
1948     mc->no_cdrom = 1;
1949     mc->pci_allow_0_address = true;
1950     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1951     mc->minimum_page_bits = 12;
1952     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1953     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1954     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1955     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1956     mc->kvm_type = virt_kvm_type;
1957     assert(!mc->get_hotplug_handler);
1958     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1959     hc->plug = virt_machine_device_plug_cb;
1960     mc->numa_mem_supported = true;
1961 }
1962 
1963 static void virt_instance_init(Object *obj)
1964 {
1965     VirtMachineState *vms = VIRT_MACHINE(obj);
1966     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1967 
1968     /* EL3 is disabled by default on virt: this makes us consistent
1969      * between KVM and TCG for this board, and it also allows us to
1970      * boot UEFI blobs which assume no TrustZone support.
1971      */
1972     vms->secure = false;
1973     object_property_add_bool(obj, "secure", virt_get_secure,
1974                              virt_set_secure, NULL);
1975     object_property_set_description(obj, "secure",
1976                                     "Set on/off to enable/disable the ARM "
1977                                     "Security Extensions (TrustZone)",
1978                                     NULL);
1979 
1980     /* EL2 is also disabled by default, for similar reasons */
1981     vms->virt = false;
1982     object_property_add_bool(obj, "virtualization", virt_get_virt,
1983                              virt_set_virt, NULL);
1984     object_property_set_description(obj, "virtualization",
1985                                     "Set on/off to enable/disable emulating a "
1986                                     "guest CPU which implements the ARM "
1987                                     "Virtualization Extensions",
1988                                     NULL);
1989 
1990     /* High memory is enabled by default */
1991     vms->highmem = true;
1992     object_property_add_bool(obj, "highmem", virt_get_highmem,
1993                              virt_set_highmem, NULL);
1994     object_property_set_description(obj, "highmem",
1995                                     "Set on/off to enable/disable using "
1996                                     "physical address space above 32 bits",
1997                                     NULL);
1998     /* Default GIC type is v2 */
1999     vms->gic_version = 2;
2000     object_property_add_str(obj, "gic-version", virt_get_gic_version,
2001                         virt_set_gic_version, NULL);
2002     object_property_set_description(obj, "gic-version",
2003                                     "Set GIC version. "
2004                                     "Valid values are 2, 3 and host", NULL);
2005 
2006     vms->highmem_ecam = !vmc->no_highmem_ecam;
2007 
2008     if (vmc->no_its) {
2009         vms->its = false;
2010     } else {
2011         /* Default allows ITS instantiation */
2012         vms->its = true;
2013         object_property_add_bool(obj, "its", virt_get_its,
2014                                  virt_set_its, NULL);
2015         object_property_set_description(obj, "its",
2016                                         "Set on/off to enable/disable "
2017                                         "ITS instantiation",
2018                                         NULL);
2019     }
2020 
2021     /* Default disallows iommu instantiation */
2022     vms->iommu = VIRT_IOMMU_NONE;
2023     object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2024     object_property_set_description(obj, "iommu",
2025                                     "Set the IOMMU type. "
2026                                     "Valid values are none and smmuv3",
2027                                     NULL);
2028 
2029     vms->irqmap = a15irqmap;
2030 
2031     virt_flash_create(vms);
2032 }
2033 
2034 static const TypeInfo virt_machine_info = {
2035     .name          = TYPE_VIRT_MACHINE,
2036     .parent        = TYPE_MACHINE,
2037     .abstract      = true,
2038     .instance_size = sizeof(VirtMachineState),
2039     .class_size    = sizeof(VirtMachineClass),
2040     .class_init    = virt_machine_class_init,
2041     .instance_init = virt_instance_init,
2042     .interfaces = (InterfaceInfo[]) {
2043          { TYPE_HOTPLUG_HANDLER },
2044          { }
2045     },
2046 };
2047 
2048 static void machvirt_machine_init(void)
2049 {
2050     type_register_static(&virt_machine_info);
2051 }
2052 type_init(machvirt_machine_init);
2053 
2054 static void virt_machine_4_2_options(MachineClass *mc)
2055 {
2056 }
2057 DEFINE_VIRT_MACHINE_AS_LATEST(4, 2)
2058 
2059 static void virt_machine_4_1_options(MachineClass *mc)
2060 {
2061     virt_machine_4_2_options(mc);
2062     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2063 }
2064 DEFINE_VIRT_MACHINE(4, 1)
2065 
2066 static void virt_machine_4_0_options(MachineClass *mc)
2067 {
2068     virt_machine_4_1_options(mc);
2069     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2070 }
2071 DEFINE_VIRT_MACHINE(4, 0)
2072 
2073 static void virt_machine_3_1_options(MachineClass *mc)
2074 {
2075     virt_machine_4_0_options(mc);
2076     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2077 }
2078 DEFINE_VIRT_MACHINE(3, 1)
2079 
2080 static void virt_machine_3_0_options(MachineClass *mc)
2081 {
2082     virt_machine_3_1_options(mc);
2083     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2084 }
2085 DEFINE_VIRT_MACHINE(3, 0)
2086 
2087 static void virt_machine_2_12_options(MachineClass *mc)
2088 {
2089     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2090 
2091     virt_machine_3_0_options(mc);
2092     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2093     vmc->no_highmem_ecam = true;
2094     mc->max_cpus = 255;
2095 }
2096 DEFINE_VIRT_MACHINE(2, 12)
2097 
2098 static void virt_machine_2_11_options(MachineClass *mc)
2099 {
2100     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2101 
2102     virt_machine_2_12_options(mc);
2103     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2104     vmc->smbios_old_sys_ver = true;
2105 }
2106 DEFINE_VIRT_MACHINE(2, 11)
2107 
2108 static void virt_machine_2_10_options(MachineClass *mc)
2109 {
2110     virt_machine_2_11_options(mc);
2111     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2112     /* before 2.11 we never faulted accesses to bad addresses */
2113     mc->ignore_memory_transaction_failures = true;
2114 }
2115 DEFINE_VIRT_MACHINE(2, 10)
2116 
2117 static void virt_machine_2_9_options(MachineClass *mc)
2118 {
2119     virt_machine_2_10_options(mc);
2120     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2121 }
2122 DEFINE_VIRT_MACHINE(2, 9)
2123 
2124 static void virt_machine_2_8_options(MachineClass *mc)
2125 {
2126     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2127 
2128     virt_machine_2_9_options(mc);
2129     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2130     /* For 2.8 and earlier we falsely claimed in the DT that
2131      * our timers were edge-triggered, not level-triggered.
2132      */
2133     vmc->claim_edge_triggered_timers = true;
2134 }
2135 DEFINE_VIRT_MACHINE(2, 8)
2136 
2137 static void virt_machine_2_7_options(MachineClass *mc)
2138 {
2139     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2140 
2141     virt_machine_2_8_options(mc);
2142     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2143     /* ITS was introduced with 2.8 */
2144     vmc->no_its = true;
2145     /* Stick with 1K pages for migration compatibility */
2146     mc->minimum_page_bits = 0;
2147 }
2148 DEFINE_VIRT_MACHINE(2, 7)
2149 
2150 static void virt_machine_2_6_options(MachineClass *mc)
2151 {
2152     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2153 
2154     virt_machine_2_7_options(mc);
2155     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2156     vmc->disallow_affinity_adjustment = true;
2157     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2158     vmc->no_pmu = true;
2159 }
2160 DEFINE_VIRT_MACHINE(2, 6)
2161