xref: /openbmc/qemu/hw/arm/virt.c (revision 200dbf37)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/units.h"
33 #include "qemu/option.h"
34 #include "qapi/error.h"
35 #include "hw/sysbus.h"
36 #include "hw/arm/boot.h"
37 #include "hw/arm/primecell.h"
38 #include "hw/arm/virt.h"
39 #include "hw/block/flash.h"
40 #include "hw/vfio/vfio-calxeda-xgmac.h"
41 #include "hw/vfio/vfio-amd-xgbe.h"
42 #include "hw/display/ramfb.h"
43 #include "net/net.h"
44 #include "sysemu/device_tree.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/kvm.h"
48 #include "hw/loader.h"
49 #include "exec/address-spaces.h"
50 #include "qemu/bitops.h"
51 #include "qemu/error-report.h"
52 #include "hw/pci-host/gpex.h"
53 #include "hw/arm/sysbus-fdt.h"
54 #include "hw/platform-bus.h"
55 #include "hw/arm/fdt.h"
56 #include "hw/intc/arm_gic.h"
57 #include "hw/intc/arm_gicv3_common.h"
58 #include "kvm_arm.h"
59 #include "hw/firmware/smbios.h"
60 #include "qapi/visitor.h"
61 #include "standard-headers/linux/input.h"
62 #include "hw/arm/smmuv3.h"
63 #include "hw/acpi/acpi.h"
64 #include "target/arm/internals.h"
65 
66 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
67     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
68                                                     void *data) \
69     { \
70         MachineClass *mc = MACHINE_CLASS(oc); \
71         virt_machine_##major##_##minor##_options(mc); \
72         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
73         if (latest) { \
74             mc->alias = "virt"; \
75         } \
76     } \
77     static const TypeInfo machvirt_##major##_##minor##_info = { \
78         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
79         .parent = TYPE_VIRT_MACHINE, \
80         .class_init = virt_##major##_##minor##_class_init, \
81     }; \
82     static void machvirt_machine_##major##_##minor##_init(void) \
83     { \
84         type_register_static(&machvirt_##major##_##minor##_info); \
85     } \
86     type_init(machvirt_machine_##major##_##minor##_init);
87 
88 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
89     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
90 #define DEFINE_VIRT_MACHINE(major, minor) \
91     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
92 
93 
94 /* Number of external interrupt lines to configure the GIC with */
95 #define NUM_IRQS 256
96 
97 #define PLATFORM_BUS_NUM_IRQS 64
98 
99 /* Legacy RAM limit in GB (< version 4.0) */
100 #define LEGACY_RAMLIMIT_GB 255
101 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
102 
103 /* Addresses and sizes of our components.
104  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
105  * 128MB..256MB is used for miscellaneous device I/O.
106  * 256MB..1GB is reserved for possible future PCI support (ie where the
107  * PCI memory window will go if we add a PCI host controller).
108  * 1GB and up is RAM (which may happily spill over into the
109  * high memory region beyond 4GB).
110  * This represents a compromise between how much RAM can be given to
111  * a 32 bit VM and leaving space for expansion and in particular for PCI.
112  * Note that devices should generally be placed at multiples of 0x10000,
113  * to accommodate guests using 64K pages.
114  */
115 static const MemMapEntry base_memmap[] = {
116     /* Space up to 0x8000000 is reserved for a boot ROM */
117     [VIRT_FLASH] =              {          0, 0x08000000 },
118     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
119     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
120     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
121     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
122     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
123     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
124     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
125     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
126     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
127     /* This redistributor space allows up to 2*64kB*123 CPUs */
128     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
129     [VIRT_UART] =               { 0x09000000, 0x00001000 },
130     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
131     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
132     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
133     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
134     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
135     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
136     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
137     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
138     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
139     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
140     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
141     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
142     /* Actual RAM size depends on initial RAM and device memory settings */
143     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
144 };
145 
146 /*
147  * Highmem IO Regions: This memory map is floating, located after the RAM.
148  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
149  * top of the RAM, so that its base get the same alignment as the size,
150  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
151  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
152  * Note the extended_memmap is sized so that it eventually also includes the
153  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
154  * index of base_memmap).
155  */
156 static MemMapEntry extended_memmap[] = {
157     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
158     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
159     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
160     /* Second PCIe window */
161     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
162 };
163 
164 static const int a15irqmap[] = {
165     [VIRT_UART] = 1,
166     [VIRT_RTC] = 2,
167     [VIRT_PCIE] = 3, /* ... to 6 */
168     [VIRT_GPIO] = 7,
169     [VIRT_SECURE_UART] = 8,
170     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
171     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
172     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
173     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
174 };
175 
176 static const char *valid_cpus[] = {
177     ARM_CPU_TYPE_NAME("cortex-a15"),
178     ARM_CPU_TYPE_NAME("cortex-a53"),
179     ARM_CPU_TYPE_NAME("cortex-a57"),
180     ARM_CPU_TYPE_NAME("cortex-a72"),
181     ARM_CPU_TYPE_NAME("host"),
182     ARM_CPU_TYPE_NAME("max"),
183 };
184 
185 static bool cpu_type_valid(const char *cpu)
186 {
187     int i;
188 
189     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
190         if (strcmp(cpu, valid_cpus[i]) == 0) {
191             return true;
192         }
193     }
194     return false;
195 }
196 
197 static void create_fdt(VirtMachineState *vms)
198 {
199     void *fdt = create_device_tree(&vms->fdt_size);
200 
201     if (!fdt) {
202         error_report("create_device_tree() failed");
203         exit(1);
204     }
205 
206     vms->fdt = fdt;
207 
208     /* Header */
209     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
210     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
211     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
212 
213     /* /chosen must exist for load_dtb to fill in necessary properties later */
214     qemu_fdt_add_subnode(fdt, "/chosen");
215 
216     /* Clock node, for the benefit of the UART. The kernel device tree
217      * binding documentation claims the PL011 node clock properties are
218      * optional but in practice if you omit them the kernel refuses to
219      * probe for the device.
220      */
221     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
222     qemu_fdt_add_subnode(fdt, "/apb-pclk");
223     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
224     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
225     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
226     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
227                                 "clk24mhz");
228     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
229 
230     if (have_numa_distance) {
231         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
232         uint32_t *matrix = g_malloc0(size);
233         int idx, i, j;
234 
235         for (i = 0; i < nb_numa_nodes; i++) {
236             for (j = 0; j < nb_numa_nodes; j++) {
237                 idx = (i * nb_numa_nodes + j) * 3;
238                 matrix[idx + 0] = cpu_to_be32(i);
239                 matrix[idx + 1] = cpu_to_be32(j);
240                 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
241             }
242         }
243 
244         qemu_fdt_add_subnode(fdt, "/distance-map");
245         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
246                                 "numa-distance-map-v1");
247         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
248                          matrix, size);
249         g_free(matrix);
250     }
251 }
252 
253 static void fdt_add_timer_nodes(const VirtMachineState *vms)
254 {
255     /* On real hardware these interrupts are level-triggered.
256      * On KVM they were edge-triggered before host kernel version 4.4,
257      * and level-triggered afterwards.
258      * On emulated QEMU they are level-triggered.
259      *
260      * Getting the DTB info about them wrong is awkward for some
261      * guest kernels:
262      *  pre-4.8 ignore the DT and leave the interrupt configured
263      *   with whatever the GIC reset value (or the bootloader) left it at
264      *  4.8 before rc6 honour the incorrect data by programming it back
265      *   into the GIC, causing problems
266      *  4.8rc6 and later ignore the DT and always write "level triggered"
267      *   into the GIC
268      *
269      * For backwards-compatibility, virt-2.8 and earlier will continue
270      * to say these are edge-triggered, but later machines will report
271      * the correct information.
272      */
273     ARMCPU *armcpu;
274     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
275     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
276 
277     if (vmc->claim_edge_triggered_timers) {
278         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
279     }
280 
281     if (vms->gic_version == 2) {
282         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
283                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
284                              (1 << vms->smp_cpus) - 1);
285     }
286 
287     qemu_fdt_add_subnode(vms->fdt, "/timer");
288 
289     armcpu = ARM_CPU(qemu_get_cpu(0));
290     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
291         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
292         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
293                          compat, sizeof(compat));
294     } else {
295         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
296                                 "arm,armv7-timer");
297     }
298     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
299     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
300                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
301                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
302                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
303                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
304 }
305 
306 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
307 {
308     int cpu;
309     int addr_cells = 1;
310     const MachineState *ms = MACHINE(vms);
311 
312     /*
313      * From Documentation/devicetree/bindings/arm/cpus.txt
314      *  On ARM v8 64-bit systems value should be set to 2,
315      *  that corresponds to the MPIDR_EL1 register size.
316      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
317      *  in the system, #address-cells can be set to 1, since
318      *  MPIDR_EL1[63:32] bits are not used for CPUs
319      *  identification.
320      *
321      *  Here we actually don't know whether our system is 32- or 64-bit one.
322      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
323      *  at least one of them has Aff3 populated, we set #address-cells to 2.
324      */
325     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
326         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
327 
328         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
329             addr_cells = 2;
330             break;
331         }
332     }
333 
334     qemu_fdt_add_subnode(vms->fdt, "/cpus");
335     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
336     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
337 
338     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
339         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
340         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
341         CPUState *cs = CPU(armcpu);
342 
343         qemu_fdt_add_subnode(vms->fdt, nodename);
344         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
345         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
346                                     armcpu->dtb_compatible);
347 
348         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
349             && vms->smp_cpus > 1) {
350             qemu_fdt_setprop_string(vms->fdt, nodename,
351                                         "enable-method", "psci");
352         }
353 
354         if (addr_cells == 2) {
355             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
356                                  armcpu->mp_affinity);
357         } else {
358             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
359                                   armcpu->mp_affinity);
360         }
361 
362         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
363             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
364                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
365         }
366 
367         g_free(nodename);
368     }
369 }
370 
371 static void fdt_add_its_gic_node(VirtMachineState *vms)
372 {
373     char *nodename;
374 
375     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
376     nodename = g_strdup_printf("/intc/its@%" PRIx64,
377                                vms->memmap[VIRT_GIC_ITS].base);
378     qemu_fdt_add_subnode(vms->fdt, nodename);
379     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
380                             "arm,gic-v3-its");
381     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
382     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
383                                  2, vms->memmap[VIRT_GIC_ITS].base,
384                                  2, vms->memmap[VIRT_GIC_ITS].size);
385     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
386     g_free(nodename);
387 }
388 
389 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
390 {
391     char *nodename;
392 
393     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
394                                vms->memmap[VIRT_GIC_V2M].base);
395     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
396     qemu_fdt_add_subnode(vms->fdt, nodename);
397     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
398                             "arm,gic-v2m-frame");
399     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
400     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
401                                  2, vms->memmap[VIRT_GIC_V2M].base,
402                                  2, vms->memmap[VIRT_GIC_V2M].size);
403     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
404     g_free(nodename);
405 }
406 
407 static void fdt_add_gic_node(VirtMachineState *vms)
408 {
409     char *nodename;
410 
411     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
412     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
413 
414     nodename = g_strdup_printf("/intc@%" PRIx64,
415                                vms->memmap[VIRT_GIC_DIST].base);
416     qemu_fdt_add_subnode(vms->fdt, nodename);
417     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
418     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
419     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
420     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
421     qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
422     if (vms->gic_version == 3) {
423         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
424 
425         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
426                                 "arm,gic-v3");
427 
428         qemu_fdt_setprop_cell(vms->fdt, nodename,
429                               "#redistributor-regions", nb_redist_regions);
430 
431         if (nb_redist_regions == 1) {
432             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
433                                          2, vms->memmap[VIRT_GIC_DIST].base,
434                                          2, vms->memmap[VIRT_GIC_DIST].size,
435                                          2, vms->memmap[VIRT_GIC_REDIST].base,
436                                          2, vms->memmap[VIRT_GIC_REDIST].size);
437         } else {
438             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
439                                  2, vms->memmap[VIRT_GIC_DIST].base,
440                                  2, vms->memmap[VIRT_GIC_DIST].size,
441                                  2, vms->memmap[VIRT_GIC_REDIST].base,
442                                  2, vms->memmap[VIRT_GIC_REDIST].size,
443                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
444                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
445         }
446 
447         if (vms->virt) {
448             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
449                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
450                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
451         }
452     } else {
453         /* 'cortex-a15-gic' means 'GIC v2' */
454         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
455                                 "arm,cortex-a15-gic");
456         if (!vms->virt) {
457             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
458                                          2, vms->memmap[VIRT_GIC_DIST].base,
459                                          2, vms->memmap[VIRT_GIC_DIST].size,
460                                          2, vms->memmap[VIRT_GIC_CPU].base,
461                                          2, vms->memmap[VIRT_GIC_CPU].size);
462         } else {
463             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
464                                          2, vms->memmap[VIRT_GIC_DIST].base,
465                                          2, vms->memmap[VIRT_GIC_DIST].size,
466                                          2, vms->memmap[VIRT_GIC_CPU].base,
467                                          2, vms->memmap[VIRT_GIC_CPU].size,
468                                          2, vms->memmap[VIRT_GIC_HYP].base,
469                                          2, vms->memmap[VIRT_GIC_HYP].size,
470                                          2, vms->memmap[VIRT_GIC_VCPU].base,
471                                          2, vms->memmap[VIRT_GIC_VCPU].size);
472             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
473                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
474                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
475         }
476     }
477 
478     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
479     g_free(nodename);
480 }
481 
482 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
483 {
484     CPUState *cpu;
485     ARMCPU *armcpu;
486     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
487 
488     CPU_FOREACH(cpu) {
489         armcpu = ARM_CPU(cpu);
490         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
491             return;
492         }
493         if (kvm_enabled()) {
494             if (kvm_irqchip_in_kernel()) {
495                 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
496             }
497             kvm_arm_pmu_init(cpu);
498         }
499     }
500 
501     if (vms->gic_version == 2) {
502         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
503                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
504                              (1 << vms->smp_cpus) - 1);
505     }
506 
507     armcpu = ARM_CPU(qemu_get_cpu(0));
508     qemu_fdt_add_subnode(vms->fdt, "/pmu");
509     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
510         const char compat[] = "arm,armv8-pmuv3";
511         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
512                          compat, sizeof(compat));
513         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
514                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
515     }
516 }
517 
518 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
519 {
520     const char *itsclass = its_class_name();
521     DeviceState *dev;
522 
523     if (!itsclass) {
524         /* Do nothing if not supported */
525         return;
526     }
527 
528     dev = qdev_create(NULL, itsclass);
529 
530     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
531                              &error_abort);
532     qdev_init_nofail(dev);
533     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
534 
535     fdt_add_its_gic_node(vms);
536 }
537 
538 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
539 {
540     int i;
541     int irq = vms->irqmap[VIRT_GIC_V2M];
542     DeviceState *dev;
543 
544     dev = qdev_create(NULL, "arm-gicv2m");
545     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
546     qdev_prop_set_uint32(dev, "base-spi", irq);
547     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
548     qdev_init_nofail(dev);
549 
550     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
551         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
552     }
553 
554     fdt_add_v2m_gic_node(vms);
555 }
556 
557 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
558 {
559     /* We create a standalone GIC */
560     DeviceState *gicdev;
561     SysBusDevice *gicbusdev;
562     const char *gictype;
563     int type = vms->gic_version, i;
564     uint32_t nb_redist_regions = 0;
565 
566     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
567 
568     gicdev = qdev_create(NULL, gictype);
569     qdev_prop_set_uint32(gicdev, "revision", type);
570     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
571     /* Note that the num-irq property counts both internal and external
572      * interrupts; there are always 32 of the former (mandated by GIC spec).
573      */
574     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
575     if (!kvm_irqchip_in_kernel()) {
576         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
577     }
578 
579     if (type == 3) {
580         uint32_t redist0_capacity =
581                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
582         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
583 
584         nb_redist_regions = virt_gicv3_redist_region_count(vms);
585 
586         qdev_prop_set_uint32(gicdev, "len-redist-region-count",
587                              nb_redist_regions);
588         qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
589 
590         if (nb_redist_regions == 2) {
591             uint32_t redist1_capacity =
592                     vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
593 
594             qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
595                 MIN(smp_cpus - redist0_count, redist1_capacity));
596         }
597     } else {
598         if (!kvm_irqchip_in_kernel()) {
599             qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
600                               vms->virt);
601         }
602     }
603     qdev_init_nofail(gicdev);
604     gicbusdev = SYS_BUS_DEVICE(gicdev);
605     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
606     if (type == 3) {
607         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
608         if (nb_redist_regions == 2) {
609             sysbus_mmio_map(gicbusdev, 2,
610                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
611         }
612     } else {
613         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
614         if (vms->virt) {
615             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
616             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
617         }
618     }
619 
620     /* Wire the outputs from each CPU's generic timer and the GICv3
621      * maintenance interrupt signal to the appropriate GIC PPI inputs,
622      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
623      */
624     for (i = 0; i < smp_cpus; i++) {
625         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
626         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
627         int irq;
628         /* Mapping from the output timer irq lines from the CPU to the
629          * GIC PPI inputs we use for the virt board.
630          */
631         const int timer_irq[] = {
632             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
633             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
634             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
635             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
636         };
637 
638         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
639             qdev_connect_gpio_out(cpudev, irq,
640                                   qdev_get_gpio_in(gicdev,
641                                                    ppibase + timer_irq[irq]));
642         }
643 
644         if (type == 3) {
645             qemu_irq irq = qdev_get_gpio_in(gicdev,
646                                             ppibase + ARCH_GIC_MAINT_IRQ);
647             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
648                                         0, irq);
649         } else if (vms->virt) {
650             qemu_irq irq = qdev_get_gpio_in(gicdev,
651                                             ppibase + ARCH_GIC_MAINT_IRQ);
652             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
653         }
654 
655         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
656                                     qdev_get_gpio_in(gicdev, ppibase
657                                                      + VIRTUAL_PMU_IRQ));
658 
659         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
660         sysbus_connect_irq(gicbusdev, i + smp_cpus,
661                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
662         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
663                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
664         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
665                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
666     }
667 
668     for (i = 0; i < NUM_IRQS; i++) {
669         pic[i] = qdev_get_gpio_in(gicdev, i);
670     }
671 
672     fdt_add_gic_node(vms);
673 
674     if (type == 3 && vms->its) {
675         create_its(vms, gicdev);
676     } else if (type == 2) {
677         create_v2m(vms, pic);
678     }
679 }
680 
681 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
682                         MemoryRegion *mem, Chardev *chr)
683 {
684     char *nodename;
685     hwaddr base = vms->memmap[uart].base;
686     hwaddr size = vms->memmap[uart].size;
687     int irq = vms->irqmap[uart];
688     const char compat[] = "arm,pl011\0arm,primecell";
689     const char clocknames[] = "uartclk\0apb_pclk";
690     DeviceState *dev = qdev_create(NULL, "pl011");
691     SysBusDevice *s = SYS_BUS_DEVICE(dev);
692 
693     qdev_prop_set_chr(dev, "chardev", chr);
694     qdev_init_nofail(dev);
695     memory_region_add_subregion(mem, base,
696                                 sysbus_mmio_get_region(s, 0));
697     sysbus_connect_irq(s, 0, pic[irq]);
698 
699     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
700     qemu_fdt_add_subnode(vms->fdt, nodename);
701     /* Note that we can't use setprop_string because of the embedded NUL */
702     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
703                          compat, sizeof(compat));
704     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
705                                      2, base, 2, size);
706     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
707                                GIC_FDT_IRQ_TYPE_SPI, irq,
708                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
709     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
710                                vms->clock_phandle, vms->clock_phandle);
711     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
712                          clocknames, sizeof(clocknames));
713 
714     if (uart == VIRT_UART) {
715         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
716     } else {
717         /* Mark as not usable by the normal world */
718         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
719         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
720 
721         qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
722         qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
723                                 nodename);
724     }
725 
726     g_free(nodename);
727 }
728 
729 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
730 {
731     char *nodename;
732     hwaddr base = vms->memmap[VIRT_RTC].base;
733     hwaddr size = vms->memmap[VIRT_RTC].size;
734     int irq = vms->irqmap[VIRT_RTC];
735     const char compat[] = "arm,pl031\0arm,primecell";
736 
737     sysbus_create_simple("pl031", base, pic[irq]);
738 
739     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
740     qemu_fdt_add_subnode(vms->fdt, nodename);
741     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
742     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
743                                  2, base, 2, size);
744     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
745                            GIC_FDT_IRQ_TYPE_SPI, irq,
746                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
747     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
748     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
749     g_free(nodename);
750 }
751 
752 static DeviceState *gpio_key_dev;
753 static void virt_powerdown_req(Notifier *n, void *opaque)
754 {
755     /* use gpio Pin 3 for power button event */
756     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
757 }
758 
759 static Notifier virt_system_powerdown_notifier = {
760     .notify = virt_powerdown_req
761 };
762 
763 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
764 {
765     char *nodename;
766     DeviceState *pl061_dev;
767     hwaddr base = vms->memmap[VIRT_GPIO].base;
768     hwaddr size = vms->memmap[VIRT_GPIO].size;
769     int irq = vms->irqmap[VIRT_GPIO];
770     const char compat[] = "arm,pl061\0arm,primecell";
771 
772     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
773 
774     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
775     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
776     qemu_fdt_add_subnode(vms->fdt, nodename);
777     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
778                                  2, base, 2, size);
779     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
780     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
781     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
782     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
783                            GIC_FDT_IRQ_TYPE_SPI, irq,
784                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
785     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
786     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
787     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
788 
789     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
790                                         qdev_get_gpio_in(pl061_dev, 3));
791     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
792     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
793     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
794     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
795 
796     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
797     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
798                             "label", "GPIO Key Poweroff");
799     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
800                           KEY_POWER);
801     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
802                            "gpios", phandle, 3, 0);
803 
804     /* connect powerdown request */
805     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
806 
807     g_free(nodename);
808 }
809 
810 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
811 {
812     int i;
813     hwaddr size = vms->memmap[VIRT_MMIO].size;
814 
815     /* We create the transports in forwards order. Since qbus_realize()
816      * prepends (not appends) new child buses, the incrementing loop below will
817      * create a list of virtio-mmio buses with decreasing base addresses.
818      *
819      * When a -device option is processed from the command line,
820      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
821      * order. The upshot is that -device options in increasing command line
822      * order are mapped to virtio-mmio buses with decreasing base addresses.
823      *
824      * When this code was originally written, that arrangement ensured that the
825      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
826      * the first -device on the command line. (The end-to-end order is a
827      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
828      * guest kernel's name-to-address assignment strategy.)
829      *
830      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
831      * the message, if not necessarily the code, of commit 70161ff336.
832      * Therefore the loop now establishes the inverse of the original intent.
833      *
834      * Unfortunately, we can't counteract the kernel change by reversing the
835      * loop; it would break existing command lines.
836      *
837      * In any case, the kernel makes no guarantee about the stability of
838      * enumeration order of virtio devices (as demonstrated by it changing
839      * between kernel versions). For reliable and stable identification
840      * of disks users must use UUIDs or similar mechanisms.
841      */
842     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
843         int irq = vms->irqmap[VIRT_MMIO] + i;
844         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
845 
846         sysbus_create_simple("virtio-mmio", base, pic[irq]);
847     }
848 
849     /* We add dtb nodes in reverse order so that they appear in the finished
850      * device tree lowest address first.
851      *
852      * Note that this mapping is independent of the loop above. The previous
853      * loop influences virtio device to virtio transport assignment, whereas
854      * this loop controls how virtio transports are laid out in the dtb.
855      */
856     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
857         char *nodename;
858         int irq = vms->irqmap[VIRT_MMIO] + i;
859         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
860 
861         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
862         qemu_fdt_add_subnode(vms->fdt, nodename);
863         qemu_fdt_setprop_string(vms->fdt, nodename,
864                                 "compatible", "virtio,mmio");
865         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
866                                      2, base, 2, size);
867         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
868                                GIC_FDT_IRQ_TYPE_SPI, irq,
869                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
870         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
871         g_free(nodename);
872     }
873 }
874 
875 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
876 
877 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
878                                         const char *name,
879                                         const char *alias_prop_name)
880 {
881     /*
882      * Create a single flash device.  We use the same parameters as
883      * the flash devices on the Versatile Express board.
884      */
885     DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
886 
887     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
888     qdev_prop_set_uint8(dev, "width", 4);
889     qdev_prop_set_uint8(dev, "device-width", 2);
890     qdev_prop_set_bit(dev, "big-endian", false);
891     qdev_prop_set_uint16(dev, "id0", 0x89);
892     qdev_prop_set_uint16(dev, "id1", 0x18);
893     qdev_prop_set_uint16(dev, "id2", 0x00);
894     qdev_prop_set_uint16(dev, "id3", 0x00);
895     qdev_prop_set_string(dev, "name", name);
896     object_property_add_child(OBJECT(vms), name, OBJECT(dev),
897                               &error_abort);
898     object_property_add_alias(OBJECT(vms), alias_prop_name,
899                               OBJECT(dev), "drive", &error_abort);
900     return PFLASH_CFI01(dev);
901 }
902 
903 static void virt_flash_create(VirtMachineState *vms)
904 {
905     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
906     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
907 }
908 
909 static void virt_flash_map1(PFlashCFI01 *flash,
910                             hwaddr base, hwaddr size,
911                             MemoryRegion *sysmem)
912 {
913     DeviceState *dev = DEVICE(flash);
914 
915     assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
916     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
917     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
918     qdev_init_nofail(dev);
919 
920     memory_region_add_subregion(sysmem, base,
921                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
922                                                        0));
923 }
924 
925 static void virt_flash_map(VirtMachineState *vms,
926                            MemoryRegion *sysmem,
927                            MemoryRegion *secure_sysmem)
928 {
929     /*
930      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
931      * sysmem is the system memory space. secure_sysmem is the secure view
932      * of the system, and the first flash device should be made visible only
933      * there. The second flash device is visible to both secure and nonsecure.
934      * If sysmem == secure_sysmem this means there is no separate Secure
935      * address space and both flash devices are generally visible.
936      */
937     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
938     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
939 
940     virt_flash_map1(vms->flash[0], flashbase, flashsize,
941                     secure_sysmem);
942     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
943                     sysmem);
944 }
945 
946 static void virt_flash_fdt(VirtMachineState *vms,
947                            MemoryRegion *sysmem,
948                            MemoryRegion *secure_sysmem)
949 {
950     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
951     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
952     char *nodename;
953 
954     if (sysmem == secure_sysmem) {
955         /* Report both flash devices as a single node in the DT */
956         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
957         qemu_fdt_add_subnode(vms->fdt, nodename);
958         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
959         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
960                                      2, flashbase, 2, flashsize,
961                                      2, flashbase + flashsize, 2, flashsize);
962         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
963         g_free(nodename);
964     } else {
965         /*
966          * Report the devices as separate nodes so we can mark one as
967          * only visible to the secure world.
968          */
969         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
970         qemu_fdt_add_subnode(vms->fdt, nodename);
971         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
972         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
973                                      2, flashbase, 2, flashsize);
974         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
975         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
976         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
977         g_free(nodename);
978 
979         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
980         qemu_fdt_add_subnode(vms->fdt, nodename);
981         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
982         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
983                                      2, flashbase + flashsize, 2, flashsize);
984         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
985         g_free(nodename);
986     }
987 }
988 
989 static bool virt_firmware_init(VirtMachineState *vms,
990                                MemoryRegion *sysmem,
991                                MemoryRegion *secure_sysmem)
992 {
993     int i;
994     BlockBackend *pflash_blk0;
995 
996     /* Map legacy -drive if=pflash to machine properties */
997     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
998         pflash_cfi01_legacy_drive(vms->flash[i],
999                                   drive_get(IF_PFLASH, 0, i));
1000     }
1001 
1002     virt_flash_map(vms, sysmem, secure_sysmem);
1003 
1004     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1005 
1006     if (bios_name) {
1007         char *fname;
1008         MemoryRegion *mr;
1009         int image_size;
1010 
1011         if (pflash_blk0) {
1012             error_report("The contents of the first flash device may be "
1013                          "specified with -bios or with -drive if=pflash... "
1014                          "but you cannot use both options at once");
1015             exit(1);
1016         }
1017 
1018         /* Fall back to -bios */
1019 
1020         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1021         if (!fname) {
1022             error_report("Could not find ROM image '%s'", bios_name);
1023             exit(1);
1024         }
1025         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1026         image_size = load_image_mr(fname, mr);
1027         g_free(fname);
1028         if (image_size < 0) {
1029             error_report("Could not load ROM image '%s'", bios_name);
1030             exit(1);
1031         }
1032     }
1033 
1034     return pflash_blk0 || bios_name;
1035 }
1036 
1037 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1038 {
1039     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1040     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1041     FWCfgState *fw_cfg;
1042     char *nodename;
1043 
1044     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1045     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
1046 
1047     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1048     qemu_fdt_add_subnode(vms->fdt, nodename);
1049     qemu_fdt_setprop_string(vms->fdt, nodename,
1050                             "compatible", "qemu,fw-cfg-mmio");
1051     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1052                                  2, base, 2, size);
1053     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1054     g_free(nodename);
1055     return fw_cfg;
1056 }
1057 
1058 static void create_pcie_irq_map(const VirtMachineState *vms,
1059                                 uint32_t gic_phandle,
1060                                 int first_irq, const char *nodename)
1061 {
1062     int devfn, pin;
1063     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1064     uint32_t *irq_map = full_irq_map;
1065 
1066     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1067         for (pin = 0; pin < 4; pin++) {
1068             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1069             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1070             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1071             int i;
1072 
1073             uint32_t map[] = {
1074                 devfn << 8, 0, 0,                           /* devfn */
1075                 pin + 1,                                    /* PCI pin */
1076                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1077 
1078             /* Convert map to big endian */
1079             for (i = 0; i < 10; i++) {
1080                 irq_map[i] = cpu_to_be32(map[i]);
1081             }
1082             irq_map += 10;
1083         }
1084     }
1085 
1086     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1087                      full_irq_map, sizeof(full_irq_map));
1088 
1089     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1090                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1091                            0x7           /* PCI irq */);
1092 }
1093 
1094 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1095                         PCIBus *bus)
1096 {
1097     char *node;
1098     const char compat[] = "arm,smmu-v3";
1099     int irq =  vms->irqmap[VIRT_SMMU];
1100     int i;
1101     hwaddr base = vms->memmap[VIRT_SMMU].base;
1102     hwaddr size = vms->memmap[VIRT_SMMU].size;
1103     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1104     DeviceState *dev;
1105 
1106     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1107         return;
1108     }
1109 
1110     dev = qdev_create(NULL, "arm-smmuv3");
1111 
1112     object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1113                              &error_abort);
1114     qdev_init_nofail(dev);
1115     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1116     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1117         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1118     }
1119 
1120     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1121     qemu_fdt_add_subnode(vms->fdt, node);
1122     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1123     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1124 
1125     qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1126             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1127             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1128             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1129             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1130 
1131     qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1132                      sizeof(irq_names));
1133 
1134     qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1135     qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1136     qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1137 
1138     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1139 
1140     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1141     g_free(node);
1142 }
1143 
1144 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1145 {
1146     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1147     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1148     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1149     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1150     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1151     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1152     hwaddr base_ecam, size_ecam;
1153     hwaddr base = base_mmio;
1154     int nr_pcie_buses;
1155     int irq = vms->irqmap[VIRT_PCIE];
1156     MemoryRegion *mmio_alias;
1157     MemoryRegion *mmio_reg;
1158     MemoryRegion *ecam_alias;
1159     MemoryRegion *ecam_reg;
1160     DeviceState *dev;
1161     char *nodename;
1162     int i, ecam_id;
1163     PCIHostState *pci;
1164 
1165     dev = qdev_create(NULL, TYPE_GPEX_HOST);
1166     qdev_init_nofail(dev);
1167 
1168     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1169     base_ecam = vms->memmap[ecam_id].base;
1170     size_ecam = vms->memmap[ecam_id].size;
1171     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1172     /* Map only the first size_ecam bytes of ECAM space */
1173     ecam_alias = g_new0(MemoryRegion, 1);
1174     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1175     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1176                              ecam_reg, 0, size_ecam);
1177     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1178 
1179     /* Map the MMIO window into system address space so as to expose
1180      * the section of PCI MMIO space which starts at the same base address
1181      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1182      * the window).
1183      */
1184     mmio_alias = g_new0(MemoryRegion, 1);
1185     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1186     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1187                              mmio_reg, base_mmio, size_mmio);
1188     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1189 
1190     if (vms->highmem) {
1191         /* Map high MMIO space */
1192         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1193 
1194         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1195                                  mmio_reg, base_mmio_high, size_mmio_high);
1196         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1197                                     high_mmio_alias);
1198     }
1199 
1200     /* Map IO port space */
1201     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1202 
1203     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1204         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1205         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1206     }
1207 
1208     pci = PCI_HOST_BRIDGE(dev);
1209     if (pci->bus) {
1210         for (i = 0; i < nb_nics; i++) {
1211             NICInfo *nd = &nd_table[i];
1212 
1213             if (!nd->model) {
1214                 nd->model = g_strdup("virtio");
1215             }
1216 
1217             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1218         }
1219     }
1220 
1221     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1222     qemu_fdt_add_subnode(vms->fdt, nodename);
1223     qemu_fdt_setprop_string(vms->fdt, nodename,
1224                             "compatible", "pci-host-ecam-generic");
1225     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1226     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1227     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1228     qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1229     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1230                            nr_pcie_buses - 1);
1231     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1232 
1233     if (vms->msi_phandle) {
1234         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1235                                vms->msi_phandle);
1236     }
1237 
1238     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1239                                  2, base_ecam, 2, size_ecam);
1240 
1241     if (vms->highmem) {
1242         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1243                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1244                                      2, base_pio, 2, size_pio,
1245                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1246                                      2, base_mmio, 2, size_mmio,
1247                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1248                                      2, base_mmio_high,
1249                                      2, base_mmio_high, 2, size_mmio_high);
1250     } else {
1251         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1252                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1253                                      2, base_pio, 2, size_pio,
1254                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1255                                      2, base_mmio, 2, size_mmio);
1256     }
1257 
1258     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1259     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1260 
1261     if (vms->iommu) {
1262         vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1263 
1264         create_smmu(vms, pic, pci->bus);
1265 
1266         qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1267                                0x0, vms->iommu_phandle, 0x0, 0x10000);
1268     }
1269 
1270     g_free(nodename);
1271 }
1272 
1273 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1274 {
1275     DeviceState *dev;
1276     SysBusDevice *s;
1277     int i;
1278     MemoryRegion *sysmem = get_system_memory();
1279 
1280     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1281     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1282     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1283     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1284     qdev_init_nofail(dev);
1285     vms->platform_bus_dev = dev;
1286 
1287     s = SYS_BUS_DEVICE(dev);
1288     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1289         int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1290         sysbus_connect_irq(s, i, pic[irqn]);
1291     }
1292 
1293     memory_region_add_subregion(sysmem,
1294                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1295                                 sysbus_mmio_get_region(s, 0));
1296 }
1297 
1298 static void create_secure_ram(VirtMachineState *vms,
1299                               MemoryRegion *secure_sysmem)
1300 {
1301     MemoryRegion *secram = g_new(MemoryRegion, 1);
1302     char *nodename;
1303     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1304     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1305 
1306     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1307                            &error_fatal);
1308     memory_region_add_subregion(secure_sysmem, base, secram);
1309 
1310     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1311     qemu_fdt_add_subnode(vms->fdt, nodename);
1312     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1313     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1314     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1315     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1316 
1317     g_free(nodename);
1318 }
1319 
1320 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1321 {
1322     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1323                                                  bootinfo);
1324 
1325     *fdt_size = board->fdt_size;
1326     return board->fdt;
1327 }
1328 
1329 static void virt_build_smbios(VirtMachineState *vms)
1330 {
1331     MachineClass *mc = MACHINE_GET_CLASS(vms);
1332     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1333     uint8_t *smbios_tables, *smbios_anchor;
1334     size_t smbios_tables_len, smbios_anchor_len;
1335     const char *product = "QEMU Virtual Machine";
1336 
1337     if (kvm_enabled()) {
1338         product = "KVM Virtual Machine";
1339     }
1340 
1341     smbios_set_defaults("QEMU", product,
1342                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1343                         true, SMBIOS_ENTRY_POINT_30);
1344 
1345     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1346                       &smbios_anchor, &smbios_anchor_len);
1347 
1348     if (smbios_anchor) {
1349         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1350                         smbios_tables, smbios_tables_len);
1351         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1352                         smbios_anchor, smbios_anchor_len);
1353     }
1354 }
1355 
1356 static
1357 void virt_machine_done(Notifier *notifier, void *data)
1358 {
1359     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1360                                          machine_done);
1361     ARMCPU *cpu = ARM_CPU(first_cpu);
1362     struct arm_boot_info *info = &vms->bootinfo;
1363     AddressSpace *as = arm_boot_address_space(cpu, info);
1364 
1365     /*
1366      * If the user provided a dtb, we assume the dynamic sysbus nodes
1367      * already are integrated there. This corresponds to a use case where
1368      * the dynamic sysbus nodes are complex and their generation is not yet
1369      * supported. In that case the user can take charge of the guest dt
1370      * while qemu takes charge of the qom stuff.
1371      */
1372     if (info->dtb_filename == NULL) {
1373         platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1374                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1375                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1376                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1377     }
1378     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1379         exit(1);
1380     }
1381 
1382     virt_acpi_setup(vms);
1383     virt_build_smbios(vms);
1384 }
1385 
1386 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1387 {
1388     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1389     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1390 
1391     if (!vmc->disallow_affinity_adjustment) {
1392         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1393          * GIC's target-list limitations. 32-bit KVM hosts currently
1394          * always create clusters of 4 CPUs, but that is expected to
1395          * change when they gain support for gicv3. When KVM is enabled
1396          * it will override the changes we make here, therefore our
1397          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1398          * and to improve SGI efficiency.
1399          */
1400         if (vms->gic_version == 3) {
1401             clustersz = GICV3_TARGETLIST_BITS;
1402         } else {
1403             clustersz = GIC_TARGETLIST_BITS;
1404         }
1405     }
1406     return arm_cpu_mp_affinity(idx, clustersz);
1407 }
1408 
1409 static void virt_set_memmap(VirtMachineState *vms)
1410 {
1411     MachineState *ms = MACHINE(vms);
1412     hwaddr base, device_memory_base, device_memory_size;
1413     int i;
1414 
1415     vms->memmap = extended_memmap;
1416 
1417     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1418         vms->memmap[i] = base_memmap[i];
1419     }
1420 
1421     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1422         error_report("unsupported number of memory slots: %"PRIu64,
1423                      ms->ram_slots);
1424         exit(EXIT_FAILURE);
1425     }
1426 
1427     /*
1428      * We compute the base of the high IO region depending on the
1429      * amount of initial and device memory. The device memory start/size
1430      * is aligned on 1GiB. We never put the high IO region below 256GiB
1431      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1432      * The device region size assumes 1GiB page max alignment per slot.
1433      */
1434     device_memory_base =
1435         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1436     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1437 
1438     /* Base address of the high IO region */
1439     base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1440     if (base < device_memory_base) {
1441         error_report("maxmem/slots too huge");
1442         exit(EXIT_FAILURE);
1443     }
1444     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1445         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1446     }
1447 
1448     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1449         hwaddr size = extended_memmap[i].size;
1450 
1451         base = ROUND_UP(base, size);
1452         vms->memmap[i].base = base;
1453         vms->memmap[i].size = size;
1454         base += size;
1455     }
1456     vms->highest_gpa = base - 1;
1457     if (device_memory_size > 0) {
1458         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1459         ms->device_memory->base = device_memory_base;
1460         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1461                            "device-memory", device_memory_size);
1462     }
1463 }
1464 
1465 static void machvirt_init(MachineState *machine)
1466 {
1467     VirtMachineState *vms = VIRT_MACHINE(machine);
1468     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1469     MachineClass *mc = MACHINE_GET_CLASS(machine);
1470     const CPUArchIdList *possible_cpus;
1471     qemu_irq pic[NUM_IRQS];
1472     MemoryRegion *sysmem = get_system_memory();
1473     MemoryRegion *secure_sysmem = NULL;
1474     int n, virt_max_cpus;
1475     MemoryRegion *ram = g_new(MemoryRegion, 1);
1476     bool firmware_loaded;
1477     bool aarch64 = true;
1478 
1479     /*
1480      * In accelerated mode, the memory map is computed earlier in kvm_type()
1481      * to create a VM with the right number of IPA bits.
1482      */
1483     if (!vms->memmap) {
1484         virt_set_memmap(vms);
1485     }
1486 
1487     /* We can probe only here because during property set
1488      * KVM is not available yet
1489      */
1490     if (vms->gic_version <= 0) {
1491         /* "host" or "max" */
1492         if (!kvm_enabled()) {
1493             if (vms->gic_version == 0) {
1494                 error_report("gic-version=host requires KVM");
1495                 exit(1);
1496             } else {
1497                 /* "max": currently means 3 for TCG */
1498                 vms->gic_version = 3;
1499             }
1500         } else {
1501             vms->gic_version = kvm_arm_vgic_probe();
1502             if (!vms->gic_version) {
1503                 error_report(
1504                     "Unable to determine GIC version supported by host");
1505                 exit(1);
1506             }
1507         }
1508     }
1509 
1510     if (!cpu_type_valid(machine->cpu_type)) {
1511         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1512         exit(1);
1513     }
1514 
1515     if (vms->secure) {
1516         if (kvm_enabled()) {
1517             error_report("mach-virt: KVM does not support Security extensions");
1518             exit(1);
1519         }
1520 
1521         /*
1522          * The Secure view of the world is the same as the NonSecure,
1523          * but with a few extra devices. Create it as a container region
1524          * containing the system memory at low priority; any secure-only
1525          * devices go in at higher priority and take precedence.
1526          */
1527         secure_sysmem = g_new(MemoryRegion, 1);
1528         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1529                            UINT64_MAX);
1530         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1531     }
1532 
1533     firmware_loaded = virt_firmware_init(vms, sysmem,
1534                                          secure_sysmem ?: sysmem);
1535 
1536     /* If we have an EL3 boot ROM then the assumption is that it will
1537      * implement PSCI itself, so disable QEMU's internal implementation
1538      * so it doesn't get in the way. Instead of starting secondary
1539      * CPUs in PSCI powerdown state we will start them all running and
1540      * let the boot ROM sort them out.
1541      * The usual case is that we do use QEMU's PSCI implementation;
1542      * if the guest has EL2 then we will use SMC as the conduit,
1543      * and otherwise we will use HVC (for backwards compatibility and
1544      * because if we're using KVM then we must use HVC).
1545      */
1546     if (vms->secure && firmware_loaded) {
1547         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1548     } else if (vms->virt) {
1549         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1550     } else {
1551         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1552     }
1553 
1554     /* The maximum number of CPUs depends on the GIC version, or on how
1555      * many redistributors we can fit into the memory map.
1556      */
1557     if (vms->gic_version == 3) {
1558         virt_max_cpus =
1559             vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1560         virt_max_cpus +=
1561             vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1562     } else {
1563         virt_max_cpus = GIC_NCPU;
1564     }
1565 
1566     if (max_cpus > virt_max_cpus) {
1567         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1568                      "supported by machine 'mach-virt' (%d)",
1569                      max_cpus, virt_max_cpus);
1570         exit(1);
1571     }
1572 
1573     vms->smp_cpus = smp_cpus;
1574 
1575     if (vms->virt && kvm_enabled()) {
1576         error_report("mach-virt: KVM does not support providing "
1577                      "Virtualization extensions to the guest CPU");
1578         exit(1);
1579     }
1580 
1581     create_fdt(vms);
1582 
1583     possible_cpus = mc->possible_cpu_arch_ids(machine);
1584     for (n = 0; n < possible_cpus->len; n++) {
1585         Object *cpuobj;
1586         CPUState *cs;
1587 
1588         if (n >= smp_cpus) {
1589             break;
1590         }
1591 
1592         cpuobj = object_new(possible_cpus->cpus[n].type);
1593         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1594                                 "mp-affinity", NULL);
1595 
1596         cs = CPU(cpuobj);
1597         cs->cpu_index = n;
1598 
1599         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1600                           &error_fatal);
1601 
1602         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1603 
1604         if (!vms->secure) {
1605             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1606         }
1607 
1608         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1609             object_property_set_bool(cpuobj, false, "has_el2", NULL);
1610         }
1611 
1612         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1613             object_property_set_int(cpuobj, vms->psci_conduit,
1614                                     "psci-conduit", NULL);
1615 
1616             /* Secondary CPUs start in PSCI powered-down state */
1617             if (n > 0) {
1618                 object_property_set_bool(cpuobj, true,
1619                                          "start-powered-off", NULL);
1620             }
1621         }
1622 
1623         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1624             object_property_set_bool(cpuobj, false, "pmu", NULL);
1625         }
1626 
1627         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1628             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1629                                     "reset-cbar", &error_abort);
1630         }
1631 
1632         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1633                                  &error_abort);
1634         if (vms->secure) {
1635             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1636                                      "secure-memory", &error_abort);
1637         }
1638 
1639         object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1640         object_unref(cpuobj);
1641     }
1642     fdt_add_timer_nodes(vms);
1643     fdt_add_cpu_nodes(vms);
1644 
1645    if (!kvm_enabled()) {
1646         ARMCPU *cpu = ARM_CPU(first_cpu);
1647         bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1648 
1649         if (aarch64 && vms->highmem) {
1650             int requested_pa_size, pamax = arm_pamax(cpu);
1651 
1652             requested_pa_size = 64 - clz64(vms->highest_gpa);
1653             if (pamax < requested_pa_size) {
1654                 error_report("VCPU supports less PA bits (%d) than requested "
1655                             "by the memory map (%d)", pamax, requested_pa_size);
1656                 exit(1);
1657             }
1658         }
1659     }
1660 
1661     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1662                                          machine->ram_size);
1663     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1664     if (machine->device_memory) {
1665         memory_region_add_subregion(sysmem, machine->device_memory->base,
1666                                     &machine->device_memory->mr);
1667     }
1668 
1669     virt_flash_fdt(vms, sysmem, secure_sysmem);
1670 
1671     create_gic(vms, pic);
1672 
1673     fdt_add_pmu_nodes(vms);
1674 
1675     create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1676 
1677     if (vms->secure) {
1678         create_secure_ram(vms, secure_sysmem);
1679         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1680     }
1681 
1682     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1683 
1684     create_rtc(vms, pic);
1685 
1686     create_pcie(vms, pic);
1687 
1688     create_gpio(vms, pic);
1689 
1690     /* Create mmio transports, so the user can create virtio backends
1691      * (which will be automatically plugged in to the transports). If
1692      * no backend is created the transport will just sit harmlessly idle.
1693      */
1694     create_virtio_devices(vms, pic);
1695 
1696     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1697     rom_set_fw(vms->fw_cfg);
1698 
1699     create_platform_bus(vms, pic);
1700 
1701     vms->bootinfo.ram_size = machine->ram_size;
1702     vms->bootinfo.kernel_filename = machine->kernel_filename;
1703     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1704     vms->bootinfo.initrd_filename = machine->initrd_filename;
1705     vms->bootinfo.nb_cpus = smp_cpus;
1706     vms->bootinfo.board_id = -1;
1707     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1708     vms->bootinfo.get_dtb = machvirt_dtb;
1709     vms->bootinfo.skip_dtb_autoload = true;
1710     vms->bootinfo.firmware_loaded = firmware_loaded;
1711     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1712 
1713     vms->machine_done.notify = virt_machine_done;
1714     qemu_add_machine_init_done_notifier(&vms->machine_done);
1715 }
1716 
1717 static bool virt_get_secure(Object *obj, Error **errp)
1718 {
1719     VirtMachineState *vms = VIRT_MACHINE(obj);
1720 
1721     return vms->secure;
1722 }
1723 
1724 static void virt_set_secure(Object *obj, bool value, Error **errp)
1725 {
1726     VirtMachineState *vms = VIRT_MACHINE(obj);
1727 
1728     vms->secure = value;
1729 }
1730 
1731 static bool virt_get_virt(Object *obj, Error **errp)
1732 {
1733     VirtMachineState *vms = VIRT_MACHINE(obj);
1734 
1735     return vms->virt;
1736 }
1737 
1738 static void virt_set_virt(Object *obj, bool value, Error **errp)
1739 {
1740     VirtMachineState *vms = VIRT_MACHINE(obj);
1741 
1742     vms->virt = value;
1743 }
1744 
1745 static bool virt_get_highmem(Object *obj, Error **errp)
1746 {
1747     VirtMachineState *vms = VIRT_MACHINE(obj);
1748 
1749     return vms->highmem;
1750 }
1751 
1752 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1753 {
1754     VirtMachineState *vms = VIRT_MACHINE(obj);
1755 
1756     vms->highmem = value;
1757 }
1758 
1759 static bool virt_get_its(Object *obj, Error **errp)
1760 {
1761     VirtMachineState *vms = VIRT_MACHINE(obj);
1762 
1763     return vms->its;
1764 }
1765 
1766 static void virt_set_its(Object *obj, bool value, Error **errp)
1767 {
1768     VirtMachineState *vms = VIRT_MACHINE(obj);
1769 
1770     vms->its = value;
1771 }
1772 
1773 static char *virt_get_gic_version(Object *obj, Error **errp)
1774 {
1775     VirtMachineState *vms = VIRT_MACHINE(obj);
1776     const char *val = vms->gic_version == 3 ? "3" : "2";
1777 
1778     return g_strdup(val);
1779 }
1780 
1781 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1782 {
1783     VirtMachineState *vms = VIRT_MACHINE(obj);
1784 
1785     if (!strcmp(value, "3")) {
1786         vms->gic_version = 3;
1787     } else if (!strcmp(value, "2")) {
1788         vms->gic_version = 2;
1789     } else if (!strcmp(value, "host")) {
1790         vms->gic_version = 0; /* Will probe later */
1791     } else if (!strcmp(value, "max")) {
1792         vms->gic_version = -1; /* Will probe later */
1793     } else {
1794         error_setg(errp, "Invalid gic-version value");
1795         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1796     }
1797 }
1798 
1799 static char *virt_get_iommu(Object *obj, Error **errp)
1800 {
1801     VirtMachineState *vms = VIRT_MACHINE(obj);
1802 
1803     switch (vms->iommu) {
1804     case VIRT_IOMMU_NONE:
1805         return g_strdup("none");
1806     case VIRT_IOMMU_SMMUV3:
1807         return g_strdup("smmuv3");
1808     default:
1809         g_assert_not_reached();
1810     }
1811 }
1812 
1813 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1814 {
1815     VirtMachineState *vms = VIRT_MACHINE(obj);
1816 
1817     if (!strcmp(value, "smmuv3")) {
1818         vms->iommu = VIRT_IOMMU_SMMUV3;
1819     } else if (!strcmp(value, "none")) {
1820         vms->iommu = VIRT_IOMMU_NONE;
1821     } else {
1822         error_setg(errp, "Invalid iommu value");
1823         error_append_hint(errp, "Valid values are none, smmuv3.\n");
1824     }
1825 }
1826 
1827 static CpuInstanceProperties
1828 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1829 {
1830     MachineClass *mc = MACHINE_GET_CLASS(ms);
1831     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1832 
1833     assert(cpu_index < possible_cpus->len);
1834     return possible_cpus->cpus[cpu_index].props;
1835 }
1836 
1837 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1838 {
1839     return idx % nb_numa_nodes;
1840 }
1841 
1842 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1843 {
1844     int n;
1845     VirtMachineState *vms = VIRT_MACHINE(ms);
1846 
1847     if (ms->possible_cpus) {
1848         assert(ms->possible_cpus->len == max_cpus);
1849         return ms->possible_cpus;
1850     }
1851 
1852     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1853                                   sizeof(CPUArchId) * max_cpus);
1854     ms->possible_cpus->len = max_cpus;
1855     for (n = 0; n < ms->possible_cpus->len; n++) {
1856         ms->possible_cpus->cpus[n].type = ms->cpu_type;
1857         ms->possible_cpus->cpus[n].arch_id =
1858             virt_cpu_mp_affinity(vms, n);
1859         ms->possible_cpus->cpus[n].props.has_thread_id = true;
1860         ms->possible_cpus->cpus[n].props.thread_id = n;
1861     }
1862     return ms->possible_cpus;
1863 }
1864 
1865 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1866                                         DeviceState *dev, Error **errp)
1867 {
1868     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1869 
1870     if (vms->platform_bus_dev) {
1871         if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1872             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1873                                      SYS_BUS_DEVICE(dev));
1874         }
1875     }
1876 }
1877 
1878 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1879                                                         DeviceState *dev)
1880 {
1881     if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1882         return HOTPLUG_HANDLER(machine);
1883     }
1884 
1885     return NULL;
1886 }
1887 
1888 /*
1889  * for arm64 kvm_type [7-0] encodes the requested number of bits
1890  * in the IPA address space
1891  */
1892 static int virt_kvm_type(MachineState *ms, const char *type_str)
1893 {
1894     VirtMachineState *vms = VIRT_MACHINE(ms);
1895     int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1896     int requested_pa_size;
1897 
1898     /* we freeze the memory map to compute the highest gpa */
1899     virt_set_memmap(vms);
1900 
1901     requested_pa_size = 64 - clz64(vms->highest_gpa);
1902 
1903     if (requested_pa_size > max_vm_pa_size) {
1904         error_report("-m and ,maxmem option values "
1905                      "require an IPA range (%d bits) larger than "
1906                      "the one supported by the host (%d bits)",
1907                      requested_pa_size, max_vm_pa_size);
1908        exit(1);
1909     }
1910     /*
1911      * By default we return 0 which corresponds to an implicit legacy
1912      * 40b IPA setting. Otherwise we return the actual requested PA
1913      * logsize
1914      */
1915     return requested_pa_size > 40 ? requested_pa_size : 0;
1916 }
1917 
1918 static void virt_machine_class_init(ObjectClass *oc, void *data)
1919 {
1920     MachineClass *mc = MACHINE_CLASS(oc);
1921     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1922 
1923     mc->init = machvirt_init;
1924     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1925      * The value may be reduced later when we have more information about the
1926      * configuration of the particular instance.
1927      */
1928     mc->max_cpus = 512;
1929     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1930     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1931     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1932     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1933     mc->block_default_type = IF_VIRTIO;
1934     mc->no_cdrom = 1;
1935     mc->pci_allow_0_address = true;
1936     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1937     mc->minimum_page_bits = 12;
1938     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1939     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1940     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1941     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1942     mc->kvm_type = virt_kvm_type;
1943     assert(!mc->get_hotplug_handler);
1944     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1945     hc->plug = virt_machine_device_plug_cb;
1946 }
1947 
1948 static void virt_instance_init(Object *obj)
1949 {
1950     VirtMachineState *vms = VIRT_MACHINE(obj);
1951     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1952 
1953     /* EL3 is disabled by default on virt: this makes us consistent
1954      * between KVM and TCG for this board, and it also allows us to
1955      * boot UEFI blobs which assume no TrustZone support.
1956      */
1957     vms->secure = false;
1958     object_property_add_bool(obj, "secure", virt_get_secure,
1959                              virt_set_secure, NULL);
1960     object_property_set_description(obj, "secure",
1961                                     "Set on/off to enable/disable the ARM "
1962                                     "Security Extensions (TrustZone)",
1963                                     NULL);
1964 
1965     /* EL2 is also disabled by default, for similar reasons */
1966     vms->virt = false;
1967     object_property_add_bool(obj, "virtualization", virt_get_virt,
1968                              virt_set_virt, NULL);
1969     object_property_set_description(obj, "virtualization",
1970                                     "Set on/off to enable/disable emulating a "
1971                                     "guest CPU which implements the ARM "
1972                                     "Virtualization Extensions",
1973                                     NULL);
1974 
1975     /* High memory is enabled by default */
1976     vms->highmem = true;
1977     object_property_add_bool(obj, "highmem", virt_get_highmem,
1978                              virt_set_highmem, NULL);
1979     object_property_set_description(obj, "highmem",
1980                                     "Set on/off to enable/disable using "
1981                                     "physical address space above 32 bits",
1982                                     NULL);
1983     /* Default GIC type is v2 */
1984     vms->gic_version = 2;
1985     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1986                         virt_set_gic_version, NULL);
1987     object_property_set_description(obj, "gic-version",
1988                                     "Set GIC version. "
1989                                     "Valid values are 2, 3 and host", NULL);
1990 
1991     vms->highmem_ecam = !vmc->no_highmem_ecam;
1992 
1993     if (vmc->no_its) {
1994         vms->its = false;
1995     } else {
1996         /* Default allows ITS instantiation */
1997         vms->its = true;
1998         object_property_add_bool(obj, "its", virt_get_its,
1999                                  virt_set_its, NULL);
2000         object_property_set_description(obj, "its",
2001                                         "Set on/off to enable/disable "
2002                                         "ITS instantiation",
2003                                         NULL);
2004     }
2005 
2006     /* Default disallows iommu instantiation */
2007     vms->iommu = VIRT_IOMMU_NONE;
2008     object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2009     object_property_set_description(obj, "iommu",
2010                                     "Set the IOMMU type. "
2011                                     "Valid values are none and smmuv3",
2012                                     NULL);
2013 
2014     vms->irqmap = a15irqmap;
2015 
2016     virt_flash_create(vms);
2017 }
2018 
2019 static const TypeInfo virt_machine_info = {
2020     .name          = TYPE_VIRT_MACHINE,
2021     .parent        = TYPE_MACHINE,
2022     .abstract      = true,
2023     .instance_size = sizeof(VirtMachineState),
2024     .class_size    = sizeof(VirtMachineClass),
2025     .class_init    = virt_machine_class_init,
2026     .instance_init = virt_instance_init,
2027     .interfaces = (InterfaceInfo[]) {
2028          { TYPE_HOTPLUG_HANDLER },
2029          { }
2030     },
2031 };
2032 
2033 static void machvirt_machine_init(void)
2034 {
2035     type_register_static(&virt_machine_info);
2036 }
2037 type_init(machvirt_machine_init);
2038 
2039 static void virt_machine_4_1_options(MachineClass *mc)
2040 {
2041 }
2042 DEFINE_VIRT_MACHINE_AS_LATEST(4, 1)
2043 
2044 static void virt_machine_4_0_options(MachineClass *mc)
2045 {
2046     virt_machine_4_1_options(mc);
2047     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2048 }
2049 DEFINE_VIRT_MACHINE(4, 0)
2050 
2051 static void virt_machine_3_1_options(MachineClass *mc)
2052 {
2053     virt_machine_4_0_options(mc);
2054     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2055 }
2056 DEFINE_VIRT_MACHINE(3, 1)
2057 
2058 static void virt_machine_3_0_options(MachineClass *mc)
2059 {
2060     virt_machine_3_1_options(mc);
2061     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2062 }
2063 DEFINE_VIRT_MACHINE(3, 0)
2064 
2065 static void virt_machine_2_12_options(MachineClass *mc)
2066 {
2067     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2068 
2069     virt_machine_3_0_options(mc);
2070     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2071     vmc->no_highmem_ecam = true;
2072     mc->max_cpus = 255;
2073 }
2074 DEFINE_VIRT_MACHINE(2, 12)
2075 
2076 static void virt_machine_2_11_options(MachineClass *mc)
2077 {
2078     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2079 
2080     virt_machine_2_12_options(mc);
2081     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2082     vmc->smbios_old_sys_ver = true;
2083 }
2084 DEFINE_VIRT_MACHINE(2, 11)
2085 
2086 static void virt_machine_2_10_options(MachineClass *mc)
2087 {
2088     virt_machine_2_11_options(mc);
2089     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2090     /* before 2.11 we never faulted accesses to bad addresses */
2091     mc->ignore_memory_transaction_failures = true;
2092 }
2093 DEFINE_VIRT_MACHINE(2, 10)
2094 
2095 static void virt_machine_2_9_options(MachineClass *mc)
2096 {
2097     virt_machine_2_10_options(mc);
2098     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2099 }
2100 DEFINE_VIRT_MACHINE(2, 9)
2101 
2102 static void virt_machine_2_8_options(MachineClass *mc)
2103 {
2104     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2105 
2106     virt_machine_2_9_options(mc);
2107     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2108     /* For 2.8 and earlier we falsely claimed in the DT that
2109      * our timers were edge-triggered, not level-triggered.
2110      */
2111     vmc->claim_edge_triggered_timers = true;
2112 }
2113 DEFINE_VIRT_MACHINE(2, 8)
2114 
2115 static void virt_machine_2_7_options(MachineClass *mc)
2116 {
2117     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2118 
2119     virt_machine_2_8_options(mc);
2120     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2121     /* ITS was introduced with 2.8 */
2122     vmc->no_its = true;
2123     /* Stick with 1K pages for migration compatibility */
2124     mc->minimum_page_bits = 0;
2125 }
2126 DEFINE_VIRT_MACHINE(2, 7)
2127 
2128 static void virt_machine_2_6_options(MachineClass *mc)
2129 {
2130     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2131 
2132     virt_machine_2_7_options(mc);
2133     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2134     vmc->disallow_affinity_adjustment = true;
2135     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2136     vmc->no_pmu = true;
2137 }
2138 DEFINE_VIRT_MACHINE(2, 6)
2139