1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu/datadir.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "monitor/qdev.h" 36 #include "hw/sysbus.h" 37 #include "hw/arm/boot.h" 38 #include "hw/arm/primecell.h" 39 #include "hw/arm/virt.h" 40 #include "hw/block/flash.h" 41 #include "hw/vfio/vfio-calxeda-xgmac.h" 42 #include "hw/vfio/vfio-amd-xgbe.h" 43 #include "hw/display/ramfb.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/numa.h" 47 #include "sysemu/runstate.h" 48 #include "sysemu/tpm.h" 49 #include "sysemu/tcg.h" 50 #include "sysemu/kvm.h" 51 #include "sysemu/hvf.h" 52 #include "sysemu/qtest.h" 53 #include "hw/loader.h" 54 #include "qapi/error.h" 55 #include "qemu/bitops.h" 56 #include "qemu/error-report.h" 57 #include "qemu/module.h" 58 #include "hw/pci-host/gpex.h" 59 #include "hw/virtio/virtio-pci.h" 60 #include "hw/core/sysbus-fdt.h" 61 #include "hw/platform-bus.h" 62 #include "hw/qdev-properties.h" 63 #include "hw/arm/fdt.h" 64 #include "hw/intc/arm_gic.h" 65 #include "hw/intc/arm_gicv3_common.h" 66 #include "hw/intc/arm_gicv3_its_common.h" 67 #include "hw/irq.h" 68 #include "kvm_arm.h" 69 #include "hw/firmware/smbios.h" 70 #include "qapi/visitor.h" 71 #include "qapi/qapi-visit-common.h" 72 #include "qapi/qmp/qlist.h" 73 #include "standard-headers/linux/input.h" 74 #include "hw/arm/smmuv3.h" 75 #include "hw/acpi/acpi.h" 76 #include "target/arm/cpu-qom.h" 77 #include "target/arm/internals.h" 78 #include "target/arm/multiprocessing.h" 79 #include "target/arm/gtimer.h" 80 #include "hw/mem/pc-dimm.h" 81 #include "hw/mem/nvdimm.h" 82 #include "hw/acpi/generic_event_device.h" 83 #include "hw/virtio/virtio-md-pci.h" 84 #include "hw/virtio/virtio-iommu.h" 85 #include "hw/char/pl011.h" 86 #include "qemu/guest-random.h" 87 88 static GlobalProperty arm_virt_compat[] = { 89 { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" }, 90 }; 91 static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat); 92 93 /* 94 * This cannot be called from the virt_machine_class_init() because 95 * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new() 96 * only is called on virt non abstract class init. 97 */ 98 static void arm_virt_compat_set(MachineClass *mc) 99 { 100 compat_props_add(mc->compat_props, arm_virt_compat, 101 arm_virt_compat_len); 102 } 103 104 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 105 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 106 void *data) \ 107 { \ 108 MachineClass *mc = MACHINE_CLASS(oc); \ 109 arm_virt_compat_set(mc); \ 110 virt_machine_##major##_##minor##_options(mc); \ 111 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 112 if (latest) { \ 113 mc->alias = "virt"; \ 114 } \ 115 } \ 116 static const TypeInfo machvirt_##major##_##minor##_info = { \ 117 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 118 .parent = TYPE_VIRT_MACHINE, \ 119 .class_init = virt_##major##_##minor##_class_init, \ 120 }; \ 121 static void machvirt_machine_##major##_##minor##_init(void) \ 122 { \ 123 type_register_static(&machvirt_##major##_##minor##_info); \ 124 } \ 125 type_init(machvirt_machine_##major##_##minor##_init); 126 127 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 128 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 129 #define DEFINE_VIRT_MACHINE(major, minor) \ 130 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 131 132 133 /* Number of external interrupt lines to configure the GIC with */ 134 #define NUM_IRQS 256 135 136 #define PLATFORM_BUS_NUM_IRQS 64 137 138 /* Legacy RAM limit in GB (< version 4.0) */ 139 #define LEGACY_RAMLIMIT_GB 255 140 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 141 142 /* Addresses and sizes of our components. 143 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 144 * 128MB..256MB is used for miscellaneous device I/O. 145 * 256MB..1GB is reserved for possible future PCI support (ie where the 146 * PCI memory window will go if we add a PCI host controller). 147 * 1GB and up is RAM (which may happily spill over into the 148 * high memory region beyond 4GB). 149 * This represents a compromise between how much RAM can be given to 150 * a 32 bit VM and leaving space for expansion and in particular for PCI. 151 * Note that devices should generally be placed at multiples of 0x10000, 152 * to accommodate guests using 64K pages. 153 */ 154 static const MemMapEntry base_memmap[] = { 155 /* Space up to 0x8000000 is reserved for a boot ROM */ 156 [VIRT_FLASH] = { 0, 0x08000000 }, 157 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 158 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 159 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 160 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 161 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 162 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 163 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 164 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 165 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 166 /* This redistributor space allows up to 2*64kB*123 CPUs */ 167 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 168 [VIRT_UART] = { 0x09000000, 0x00001000 }, 169 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 170 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 171 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 172 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 173 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 174 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 175 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 176 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 177 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 178 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 179 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 180 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 181 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 182 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 183 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 184 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 185 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 186 /* Actual RAM size depends on initial RAM and device memory settings */ 187 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 188 }; 189 190 /* 191 * Highmem IO Regions: This memory map is floating, located after the RAM. 192 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 193 * top of the RAM, so that its base get the same alignment as the size, 194 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 195 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 196 * Note the extended_memmap is sized so that it eventually also includes the 197 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 198 * index of base_memmap). 199 * 200 * The memory map for these Highmem IO Regions can be in legacy or compact 201 * layout, depending on 'compact-highmem' property. With legacy layout, the 202 * PA space for one specific region is always reserved, even if the region 203 * has been disabled or doesn't fit into the PA space. However, the PA space 204 * for the region won't be reserved in these circumstances with compact layout. 205 */ 206 static MemMapEntry extended_memmap[] = { 207 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 208 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 209 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 210 /* Second PCIe window */ 211 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, 212 }; 213 214 static const int a15irqmap[] = { 215 [VIRT_UART] = 1, 216 [VIRT_RTC] = 2, 217 [VIRT_PCIE] = 3, /* ... to 6 */ 218 [VIRT_GPIO] = 7, 219 [VIRT_SECURE_UART] = 8, 220 [VIRT_ACPI_GED] = 9, 221 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 222 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 223 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 224 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 225 }; 226 227 static void create_randomness(MachineState *ms, const char *node) 228 { 229 struct { 230 uint64_t kaslr; 231 uint8_t rng[32]; 232 } seed; 233 234 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 235 return; 236 } 237 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr); 238 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng)); 239 } 240 241 /* 242 * The CPU object always exposes the NS EL2 virt timer IRQ line, 243 * but we don't want to advertise it to the guest in the dtb or ACPI 244 * table unless it's really going to do something. 245 */ 246 static bool ns_el2_virt_timer_present(void) 247 { 248 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); 249 CPUARMState *env = &cpu->env; 250 251 return arm_feature(env, ARM_FEATURE_AARCH64) && 252 arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu); 253 } 254 255 static void create_fdt(VirtMachineState *vms) 256 { 257 MachineState *ms = MACHINE(vms); 258 int nb_numa_nodes = ms->numa_state->num_nodes; 259 void *fdt = create_device_tree(&vms->fdt_size); 260 261 if (!fdt) { 262 error_report("create_device_tree() failed"); 263 exit(1); 264 } 265 266 ms->fdt = fdt; 267 268 /* Header */ 269 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 270 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 271 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 272 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt"); 273 274 /* /chosen must exist for load_dtb to fill in necessary properties later */ 275 qemu_fdt_add_subnode(fdt, "/chosen"); 276 if (vms->dtb_randomness) { 277 create_randomness(ms, "/chosen"); 278 } 279 280 if (vms->secure) { 281 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 282 if (vms->dtb_randomness) { 283 create_randomness(ms, "/secure-chosen"); 284 } 285 } 286 287 /* Clock node, for the benefit of the UART. The kernel device tree 288 * binding documentation claims the PL011 node clock properties are 289 * optional but in practice if you omit them the kernel refuses to 290 * probe for the device. 291 */ 292 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 293 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 294 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 295 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 296 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 297 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 298 "clk24mhz"); 299 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 300 301 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 302 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 303 uint32_t *matrix = g_malloc0(size); 304 int idx, i, j; 305 306 for (i = 0; i < nb_numa_nodes; i++) { 307 for (j = 0; j < nb_numa_nodes; j++) { 308 idx = (i * nb_numa_nodes + j) * 3; 309 matrix[idx + 0] = cpu_to_be32(i); 310 matrix[idx + 1] = cpu_to_be32(j); 311 matrix[idx + 2] = 312 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 313 } 314 } 315 316 qemu_fdt_add_subnode(fdt, "/distance-map"); 317 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 318 "numa-distance-map-v1"); 319 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 320 matrix, size); 321 g_free(matrix); 322 } 323 } 324 325 static void fdt_add_timer_nodes(const VirtMachineState *vms) 326 { 327 /* On real hardware these interrupts are level-triggered. 328 * On KVM they were edge-triggered before host kernel version 4.4, 329 * and level-triggered afterwards. 330 * On emulated QEMU they are level-triggered. 331 * 332 * Getting the DTB info about them wrong is awkward for some 333 * guest kernels: 334 * pre-4.8 ignore the DT and leave the interrupt configured 335 * with whatever the GIC reset value (or the bootloader) left it at 336 * 4.8 before rc6 honour the incorrect data by programming it back 337 * into the GIC, causing problems 338 * 4.8rc6 and later ignore the DT and always write "level triggered" 339 * into the GIC 340 * 341 * For backwards-compatibility, virt-2.8 and earlier will continue 342 * to say these are edge-triggered, but later machines will report 343 * the correct information. 344 */ 345 ARMCPU *armcpu; 346 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 347 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 348 MachineState *ms = MACHINE(vms); 349 350 if (vmc->claim_edge_triggered_timers) { 351 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 352 } 353 354 if (vms->gic_version == VIRT_GIC_VERSION_2) { 355 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 356 GIC_FDT_IRQ_PPI_CPU_WIDTH, 357 (1 << MACHINE(vms)->smp.cpus) - 1); 358 } 359 360 qemu_fdt_add_subnode(ms->fdt, "/timer"); 361 362 armcpu = ARM_CPU(qemu_get_cpu(0)); 363 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 364 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 365 qemu_fdt_setprop(ms->fdt, "/timer", "compatible", 366 compat, sizeof(compat)); 367 } else { 368 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", 369 "arm,armv7-timer"); 370 } 371 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); 372 if (vms->ns_el2_virt_timer_irq) { 373 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 374 GIC_FDT_IRQ_TYPE_PPI, 375 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 376 GIC_FDT_IRQ_TYPE_PPI, 377 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 378 GIC_FDT_IRQ_TYPE_PPI, 379 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 380 GIC_FDT_IRQ_TYPE_PPI, 381 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags, 382 GIC_FDT_IRQ_TYPE_PPI, 383 INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags); 384 } else { 385 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 386 GIC_FDT_IRQ_TYPE_PPI, 387 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 388 GIC_FDT_IRQ_TYPE_PPI, 389 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 390 GIC_FDT_IRQ_TYPE_PPI, 391 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 392 GIC_FDT_IRQ_TYPE_PPI, 393 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags); 394 } 395 } 396 397 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 398 { 399 int cpu; 400 int addr_cells = 1; 401 const MachineState *ms = MACHINE(vms); 402 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 403 int smp_cpus = ms->smp.cpus; 404 405 /* 406 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml 407 * On ARM v8 64-bit systems value should be set to 2, 408 * that corresponds to the MPIDR_EL1 register size. 409 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 410 * in the system, #address-cells can be set to 1, since 411 * MPIDR_EL1[63:32] bits are not used for CPUs 412 * identification. 413 * 414 * Here we actually don't know whether our system is 32- or 64-bit one. 415 * The simplest way to go is to examine affinity IDs of all our CPUs. If 416 * at least one of them has Aff3 populated, we set #address-cells to 2. 417 */ 418 for (cpu = 0; cpu < smp_cpus; cpu++) { 419 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 420 421 if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) { 422 addr_cells = 2; 423 break; 424 } 425 } 426 427 qemu_fdt_add_subnode(ms->fdt, "/cpus"); 428 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); 429 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); 430 431 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 432 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 433 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 434 CPUState *cs = CPU(armcpu); 435 436 qemu_fdt_add_subnode(ms->fdt, nodename); 437 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); 438 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 439 armcpu->dtb_compatible); 440 441 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 442 qemu_fdt_setprop_string(ms->fdt, nodename, 443 "enable-method", "psci"); 444 } 445 446 if (addr_cells == 2) { 447 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", 448 arm_cpu_mp_affinity(armcpu)); 449 } else { 450 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", 451 arm_cpu_mp_affinity(armcpu)); 452 } 453 454 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 455 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", 456 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 457 } 458 459 if (!vmc->no_cpu_topology) { 460 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", 461 qemu_fdt_alloc_phandle(ms->fdt)); 462 } 463 464 g_free(nodename); 465 } 466 467 if (!vmc->no_cpu_topology) { 468 /* 469 * Add vCPU topology description through fdt node cpu-map. 470 * 471 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt 472 * In a SMP system, the hierarchy of CPUs can be defined through 473 * four entities that are used to describe the layout of CPUs in 474 * the system: socket/cluster/core/thread. 475 * 476 * A socket node represents the boundary of system physical package 477 * and its child nodes must be one or more cluster nodes. A system 478 * can contain several layers of clustering within a single physical 479 * package and cluster nodes can be contained in parent cluster nodes. 480 * 481 * Note: currently we only support one layer of clustering within 482 * each physical package. 483 */ 484 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map"); 485 486 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 487 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu); 488 char *map_path; 489 490 if (ms->smp.threads > 1) { 491 map_path = g_strdup_printf( 492 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d", 493 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads), 494 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters, 495 (cpu / ms->smp.threads) % ms->smp.cores, 496 cpu % ms->smp.threads); 497 } else { 498 map_path = g_strdup_printf( 499 "/cpus/cpu-map/socket%d/cluster%d/core%d", 500 cpu / (ms->smp.clusters * ms->smp.cores), 501 (cpu / ms->smp.cores) % ms->smp.clusters, 502 cpu % ms->smp.cores); 503 } 504 qemu_fdt_add_path(ms->fdt, map_path); 505 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path); 506 507 g_free(map_path); 508 g_free(cpu_path); 509 } 510 } 511 } 512 513 static void fdt_add_its_gic_node(VirtMachineState *vms) 514 { 515 char *nodename; 516 MachineState *ms = MACHINE(vms); 517 518 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 519 nodename = g_strdup_printf("/intc/its@%" PRIx64, 520 vms->memmap[VIRT_GIC_ITS].base); 521 qemu_fdt_add_subnode(ms->fdt, nodename); 522 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 523 "arm,gic-v3-its"); 524 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 525 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1); 526 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 527 2, vms->memmap[VIRT_GIC_ITS].base, 528 2, vms->memmap[VIRT_GIC_ITS].size); 529 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 530 g_free(nodename); 531 } 532 533 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 534 { 535 MachineState *ms = MACHINE(vms); 536 char *nodename; 537 538 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 539 vms->memmap[VIRT_GIC_V2M].base); 540 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 541 qemu_fdt_add_subnode(ms->fdt, nodename); 542 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 543 "arm,gic-v2m-frame"); 544 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 545 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 546 2, vms->memmap[VIRT_GIC_V2M].base, 547 2, vms->memmap[VIRT_GIC_V2M].size); 548 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 549 g_free(nodename); 550 } 551 552 static void fdt_add_gic_node(VirtMachineState *vms) 553 { 554 MachineState *ms = MACHINE(vms); 555 char *nodename; 556 557 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); 558 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); 559 560 nodename = g_strdup_printf("/intc@%" PRIx64, 561 vms->memmap[VIRT_GIC_DIST].base); 562 qemu_fdt_add_subnode(ms->fdt, nodename); 563 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); 564 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); 565 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); 566 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); 567 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); 568 if (vms->gic_version != VIRT_GIC_VERSION_2) { 569 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 570 571 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 572 "arm,gic-v3"); 573 574 qemu_fdt_setprop_cell(ms->fdt, nodename, 575 "#redistributor-regions", nb_redist_regions); 576 577 if (nb_redist_regions == 1) { 578 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 579 2, vms->memmap[VIRT_GIC_DIST].base, 580 2, vms->memmap[VIRT_GIC_DIST].size, 581 2, vms->memmap[VIRT_GIC_REDIST].base, 582 2, vms->memmap[VIRT_GIC_REDIST].size); 583 } else { 584 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 585 2, vms->memmap[VIRT_GIC_DIST].base, 586 2, vms->memmap[VIRT_GIC_DIST].size, 587 2, vms->memmap[VIRT_GIC_REDIST].base, 588 2, vms->memmap[VIRT_GIC_REDIST].size, 589 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 590 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 591 } 592 593 if (vms->virt) { 594 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 595 GIC_FDT_IRQ_TYPE_PPI, 596 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 597 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 598 } 599 } else { 600 /* 'cortex-a15-gic' means 'GIC v2' */ 601 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 602 "arm,cortex-a15-gic"); 603 if (!vms->virt) { 604 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 605 2, vms->memmap[VIRT_GIC_DIST].base, 606 2, vms->memmap[VIRT_GIC_DIST].size, 607 2, vms->memmap[VIRT_GIC_CPU].base, 608 2, vms->memmap[VIRT_GIC_CPU].size); 609 } else { 610 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 611 2, vms->memmap[VIRT_GIC_DIST].base, 612 2, vms->memmap[VIRT_GIC_DIST].size, 613 2, vms->memmap[VIRT_GIC_CPU].base, 614 2, vms->memmap[VIRT_GIC_CPU].size, 615 2, vms->memmap[VIRT_GIC_HYP].base, 616 2, vms->memmap[VIRT_GIC_HYP].size, 617 2, vms->memmap[VIRT_GIC_VCPU].base, 618 2, vms->memmap[VIRT_GIC_VCPU].size); 619 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 620 GIC_FDT_IRQ_TYPE_PPI, 621 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 622 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 623 } 624 } 625 626 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); 627 g_free(nodename); 628 } 629 630 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 631 { 632 ARMCPU *armcpu = ARM_CPU(first_cpu); 633 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 634 MachineState *ms = MACHINE(vms); 635 636 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 637 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 638 return; 639 } 640 641 if (vms->gic_version == VIRT_GIC_VERSION_2) { 642 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 643 GIC_FDT_IRQ_PPI_CPU_WIDTH, 644 (1 << MACHINE(vms)->smp.cpus) - 1); 645 } 646 647 qemu_fdt_add_subnode(ms->fdt, "/pmu"); 648 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 649 const char compat[] = "arm,armv8-pmuv3"; 650 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", 651 compat, sizeof(compat)); 652 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", 653 GIC_FDT_IRQ_TYPE_PPI, 654 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags); 655 } 656 } 657 658 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 659 { 660 DeviceState *dev; 661 MachineState *ms = MACHINE(vms); 662 int irq = vms->irqmap[VIRT_ACPI_GED]; 663 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 664 665 if (ms->ram_slots) { 666 event |= ACPI_GED_MEM_HOTPLUG_EVT; 667 } 668 669 if (ms->nvdimms_state->is_enabled) { 670 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 671 } 672 673 dev = qdev_new(TYPE_ACPI_GED); 674 qdev_prop_set_uint32(dev, "ged-event", event); 675 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 676 677 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 678 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 679 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 680 681 return dev; 682 } 683 684 static void create_its(VirtMachineState *vms) 685 { 686 const char *itsclass = its_class_name(); 687 DeviceState *dev; 688 689 if (!strcmp(itsclass, "arm-gicv3-its")) { 690 if (!vms->tcg_its) { 691 itsclass = NULL; 692 } 693 } 694 695 if (!itsclass) { 696 /* Do nothing if not supported */ 697 return; 698 } 699 700 dev = qdev_new(itsclass); 701 702 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 703 &error_abort); 704 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 705 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 706 707 fdt_add_its_gic_node(vms); 708 vms->msi_controller = VIRT_MSI_CTRL_ITS; 709 } 710 711 static void create_v2m(VirtMachineState *vms) 712 { 713 int i; 714 int irq = vms->irqmap[VIRT_GIC_V2M]; 715 DeviceState *dev; 716 717 dev = qdev_new("arm-gicv2m"); 718 qdev_prop_set_uint32(dev, "base-spi", irq); 719 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 720 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 721 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 722 723 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 724 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 725 qdev_get_gpio_in(vms->gic, irq + i)); 726 } 727 728 fdt_add_v2m_gic_node(vms); 729 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 730 } 731 732 static void create_gic(VirtMachineState *vms, MemoryRegion *mem) 733 { 734 MachineState *ms = MACHINE(vms); 735 /* We create a standalone GIC */ 736 SysBusDevice *gicbusdev; 737 const char *gictype; 738 int i; 739 unsigned int smp_cpus = ms->smp.cpus; 740 uint32_t nb_redist_regions = 0; 741 int revision; 742 743 if (vms->gic_version == VIRT_GIC_VERSION_2) { 744 gictype = gic_class_name(); 745 } else { 746 gictype = gicv3_class_name(); 747 } 748 749 switch (vms->gic_version) { 750 case VIRT_GIC_VERSION_2: 751 revision = 2; 752 break; 753 case VIRT_GIC_VERSION_3: 754 revision = 3; 755 break; 756 case VIRT_GIC_VERSION_4: 757 revision = 4; 758 break; 759 default: 760 g_assert_not_reached(); 761 } 762 vms->gic = qdev_new(gictype); 763 qdev_prop_set_uint32(vms->gic, "revision", revision); 764 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 765 /* Note that the num-irq property counts both internal and external 766 * interrupts; there are always 32 of the former (mandated by GIC spec). 767 */ 768 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 769 if (!kvm_irqchip_in_kernel()) { 770 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 771 } 772 773 if (vms->gic_version != VIRT_GIC_VERSION_2) { 774 QList *redist_region_count; 775 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST); 776 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 777 778 nb_redist_regions = virt_gicv3_redist_region_count(vms); 779 780 redist_region_count = qlist_new(); 781 qlist_append_int(redist_region_count, redist0_count); 782 if (nb_redist_regions == 2) { 783 uint32_t redist1_capacity = 784 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 785 786 qlist_append_int(redist_region_count, 787 MIN(smp_cpus - redist0_count, redist1_capacity)); 788 } 789 qdev_prop_set_array(vms->gic, "redist-region-count", 790 redist_region_count); 791 792 if (!kvm_irqchip_in_kernel()) { 793 if (vms->tcg_its) { 794 object_property_set_link(OBJECT(vms->gic), "sysmem", 795 OBJECT(mem), &error_fatal); 796 qdev_prop_set_bit(vms->gic, "has-lpi", true); 797 } 798 } 799 } else { 800 if (!kvm_irqchip_in_kernel()) { 801 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 802 vms->virt); 803 } 804 } 805 gicbusdev = SYS_BUS_DEVICE(vms->gic); 806 sysbus_realize_and_unref(gicbusdev, &error_fatal); 807 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 808 if (vms->gic_version != VIRT_GIC_VERSION_2) { 809 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 810 if (nb_redist_regions == 2) { 811 sysbus_mmio_map(gicbusdev, 2, 812 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 813 } 814 } else { 815 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 816 if (vms->virt) { 817 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 818 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 819 } 820 } 821 822 /* Wire the outputs from each CPU's generic timer and the GICv3 823 * maintenance interrupt signal to the appropriate GIC PPI inputs, 824 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 825 */ 826 for (i = 0; i < smp_cpus; i++) { 827 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 828 int intidbase = NUM_IRQS + i * GIC_INTERNAL; 829 /* Mapping from the output timer irq lines from the CPU to the 830 * GIC PPI inputs we use for the virt board. 831 */ 832 const int timer_irq[] = { 833 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 834 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 835 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 836 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 837 [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ, 838 }; 839 840 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 841 qdev_connect_gpio_out(cpudev, irq, 842 qdev_get_gpio_in(vms->gic, 843 intidbase + timer_irq[irq])); 844 } 845 846 if (vms->gic_version != VIRT_GIC_VERSION_2) { 847 qemu_irq irq = qdev_get_gpio_in(vms->gic, 848 intidbase + ARCH_GIC_MAINT_IRQ); 849 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 850 0, irq); 851 } else if (vms->virt) { 852 qemu_irq irq = qdev_get_gpio_in(vms->gic, 853 intidbase + ARCH_GIC_MAINT_IRQ); 854 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 855 } 856 857 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 858 qdev_get_gpio_in(vms->gic, intidbase 859 + VIRTUAL_PMU_IRQ)); 860 861 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 862 sysbus_connect_irq(gicbusdev, i + smp_cpus, 863 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 864 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 865 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 866 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 867 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 868 } 869 870 fdt_add_gic_node(vms); 871 872 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) { 873 create_its(vms); 874 } else if (vms->gic_version == VIRT_GIC_VERSION_2) { 875 create_v2m(vms); 876 } 877 } 878 879 static void create_uart(const VirtMachineState *vms, int uart, 880 MemoryRegion *mem, Chardev *chr) 881 { 882 char *nodename; 883 hwaddr base = vms->memmap[uart].base; 884 hwaddr size = vms->memmap[uart].size; 885 int irq = vms->irqmap[uart]; 886 const char compat[] = "arm,pl011\0arm,primecell"; 887 const char clocknames[] = "uartclk\0apb_pclk"; 888 DeviceState *dev = qdev_new(TYPE_PL011); 889 SysBusDevice *s = SYS_BUS_DEVICE(dev); 890 MachineState *ms = MACHINE(vms); 891 892 qdev_prop_set_chr(dev, "chardev", chr); 893 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 894 memory_region_add_subregion(mem, base, 895 sysbus_mmio_get_region(s, 0)); 896 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 897 898 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 899 qemu_fdt_add_subnode(ms->fdt, nodename); 900 /* Note that we can't use setprop_string because of the embedded NUL */ 901 qemu_fdt_setprop(ms->fdt, nodename, "compatible", 902 compat, sizeof(compat)); 903 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 904 2, base, 2, size); 905 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 906 GIC_FDT_IRQ_TYPE_SPI, irq, 907 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 908 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", 909 vms->clock_phandle, vms->clock_phandle); 910 qemu_fdt_setprop(ms->fdt, nodename, "clock-names", 911 clocknames, sizeof(clocknames)); 912 913 if (uart == VIRT_UART) { 914 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); 915 } else { 916 /* Mark as not usable by the normal world */ 917 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 918 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 919 920 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", 921 nodename); 922 } 923 924 g_free(nodename); 925 } 926 927 static void create_rtc(const VirtMachineState *vms) 928 { 929 char *nodename; 930 hwaddr base = vms->memmap[VIRT_RTC].base; 931 hwaddr size = vms->memmap[VIRT_RTC].size; 932 int irq = vms->irqmap[VIRT_RTC]; 933 const char compat[] = "arm,pl031\0arm,primecell"; 934 MachineState *ms = MACHINE(vms); 935 936 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 937 938 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 939 qemu_fdt_add_subnode(ms->fdt, nodename); 940 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 941 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 942 2, base, 2, size); 943 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 944 GIC_FDT_IRQ_TYPE_SPI, irq, 945 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 946 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 947 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 948 g_free(nodename); 949 } 950 951 static DeviceState *gpio_key_dev; 952 static void virt_powerdown_req(Notifier *n, void *opaque) 953 { 954 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 955 956 if (s->acpi_dev) { 957 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 958 } else { 959 /* use gpio Pin 3 for power button event */ 960 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 961 } 962 } 963 964 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, 965 uint32_t phandle) 966 { 967 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 968 qdev_get_gpio_in(pl061_dev, 3)); 969 970 qemu_fdt_add_subnode(fdt, "/gpio-keys"); 971 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); 972 973 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); 974 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", 975 "label", "GPIO Key Poweroff"); 976 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", 977 KEY_POWER); 978 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", 979 "gpios", phandle, 3, 0); 980 } 981 982 #define SECURE_GPIO_POWEROFF 0 983 #define SECURE_GPIO_RESET 1 984 985 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, 986 uint32_t phandle) 987 { 988 DeviceState *gpio_pwr_dev; 989 990 /* gpio-pwr */ 991 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 992 993 /* connect secure pl061 to gpio-pwr */ 994 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 995 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 996 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 997 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 998 999 qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); 1000 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", 1001 "gpio-poweroff"); 1002 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", 1003 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 1004 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); 1005 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", 1006 "okay"); 1007 1008 qemu_fdt_add_subnode(fdt, "/gpio-restart"); 1009 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", 1010 "gpio-restart"); 1011 qemu_fdt_setprop_cells(fdt, "/gpio-restart", 1012 "gpios", phandle, SECURE_GPIO_RESET, 0); 1013 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); 1014 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", 1015 "okay"); 1016 } 1017 1018 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 1019 MemoryRegion *mem) 1020 { 1021 char *nodename; 1022 DeviceState *pl061_dev; 1023 hwaddr base = vms->memmap[gpio].base; 1024 hwaddr size = vms->memmap[gpio].size; 1025 int irq = vms->irqmap[gpio]; 1026 const char compat[] = "arm,pl061\0arm,primecell"; 1027 SysBusDevice *s; 1028 MachineState *ms = MACHINE(vms); 1029 1030 pl061_dev = qdev_new("pl061"); 1031 /* Pull lines down to 0 if not driven by the PL061 */ 1032 qdev_prop_set_uint32(pl061_dev, "pullups", 0); 1033 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); 1034 s = SYS_BUS_DEVICE(pl061_dev); 1035 sysbus_realize_and_unref(s, &error_fatal); 1036 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 1037 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 1038 1039 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); 1040 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 1041 qemu_fdt_add_subnode(ms->fdt, nodename); 1042 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1043 2, base, 2, size); 1044 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 1045 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); 1046 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); 1047 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1048 GIC_FDT_IRQ_TYPE_SPI, irq, 1049 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 1050 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 1051 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 1052 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); 1053 1054 if (gpio != VIRT_GPIO) { 1055 /* Mark as not usable by the normal world */ 1056 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1057 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1058 } 1059 g_free(nodename); 1060 1061 /* Child gpio devices */ 1062 if (gpio == VIRT_GPIO) { 1063 create_gpio_keys(ms->fdt, pl061_dev, phandle); 1064 } else { 1065 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); 1066 } 1067 } 1068 1069 static void create_virtio_devices(const VirtMachineState *vms) 1070 { 1071 int i; 1072 hwaddr size = vms->memmap[VIRT_MMIO].size; 1073 MachineState *ms = MACHINE(vms); 1074 1075 /* We create the transports in forwards order. Since qbus_realize() 1076 * prepends (not appends) new child buses, the incrementing loop below will 1077 * create a list of virtio-mmio buses with decreasing base addresses. 1078 * 1079 * When a -device option is processed from the command line, 1080 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 1081 * order. The upshot is that -device options in increasing command line 1082 * order are mapped to virtio-mmio buses with decreasing base addresses. 1083 * 1084 * When this code was originally written, that arrangement ensured that the 1085 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 1086 * the first -device on the command line. (The end-to-end order is a 1087 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 1088 * guest kernel's name-to-address assignment strategy.) 1089 * 1090 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 1091 * the message, if not necessarily the code, of commit 70161ff336. 1092 * Therefore the loop now establishes the inverse of the original intent. 1093 * 1094 * Unfortunately, we can't counteract the kernel change by reversing the 1095 * loop; it would break existing command lines. 1096 * 1097 * In any case, the kernel makes no guarantee about the stability of 1098 * enumeration order of virtio devices (as demonstrated by it changing 1099 * between kernel versions). For reliable and stable identification 1100 * of disks users must use UUIDs or similar mechanisms. 1101 */ 1102 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 1103 int irq = vms->irqmap[VIRT_MMIO] + i; 1104 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1105 1106 sysbus_create_simple("virtio-mmio", base, 1107 qdev_get_gpio_in(vms->gic, irq)); 1108 } 1109 1110 /* We add dtb nodes in reverse order so that they appear in the finished 1111 * device tree lowest address first. 1112 * 1113 * Note that this mapping is independent of the loop above. The previous 1114 * loop influences virtio device to virtio transport assignment, whereas 1115 * this loop controls how virtio transports are laid out in the dtb. 1116 */ 1117 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 1118 char *nodename; 1119 int irq = vms->irqmap[VIRT_MMIO] + i; 1120 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1121 1122 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 1123 qemu_fdt_add_subnode(ms->fdt, nodename); 1124 qemu_fdt_setprop_string(ms->fdt, nodename, 1125 "compatible", "virtio,mmio"); 1126 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1127 2, base, 2, size); 1128 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1129 GIC_FDT_IRQ_TYPE_SPI, irq, 1130 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1131 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1132 g_free(nodename); 1133 } 1134 } 1135 1136 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 1137 1138 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 1139 const char *name, 1140 const char *alias_prop_name) 1141 { 1142 /* 1143 * Create a single flash device. We use the same parameters as 1144 * the flash devices on the Versatile Express board. 1145 */ 1146 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1147 1148 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1149 qdev_prop_set_uint8(dev, "width", 4); 1150 qdev_prop_set_uint8(dev, "device-width", 2); 1151 qdev_prop_set_bit(dev, "big-endian", false); 1152 qdev_prop_set_uint16(dev, "id0", 0x89); 1153 qdev_prop_set_uint16(dev, "id1", 0x18); 1154 qdev_prop_set_uint16(dev, "id2", 0x00); 1155 qdev_prop_set_uint16(dev, "id3", 0x00); 1156 qdev_prop_set_string(dev, "name", name); 1157 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1158 object_property_add_alias(OBJECT(vms), alias_prop_name, 1159 OBJECT(dev), "drive"); 1160 return PFLASH_CFI01(dev); 1161 } 1162 1163 static void virt_flash_create(VirtMachineState *vms) 1164 { 1165 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1166 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1167 } 1168 1169 static void virt_flash_map1(PFlashCFI01 *flash, 1170 hwaddr base, hwaddr size, 1171 MemoryRegion *sysmem) 1172 { 1173 DeviceState *dev = DEVICE(flash); 1174 1175 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1176 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1177 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1178 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1179 1180 memory_region_add_subregion(sysmem, base, 1181 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1182 0)); 1183 } 1184 1185 static void virt_flash_map(VirtMachineState *vms, 1186 MemoryRegion *sysmem, 1187 MemoryRegion *secure_sysmem) 1188 { 1189 /* 1190 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1191 * sysmem is the system memory space. secure_sysmem is the secure view 1192 * of the system, and the first flash device should be made visible only 1193 * there. The second flash device is visible to both secure and nonsecure. 1194 * If sysmem == secure_sysmem this means there is no separate Secure 1195 * address space and both flash devices are generally visible. 1196 */ 1197 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1198 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1199 1200 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1201 secure_sysmem); 1202 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1203 sysmem); 1204 } 1205 1206 static void virt_flash_fdt(VirtMachineState *vms, 1207 MemoryRegion *sysmem, 1208 MemoryRegion *secure_sysmem) 1209 { 1210 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1211 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1212 MachineState *ms = MACHINE(vms); 1213 char *nodename; 1214 1215 if (sysmem == secure_sysmem) { 1216 /* Report both flash devices as a single node in the DT */ 1217 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1218 qemu_fdt_add_subnode(ms->fdt, nodename); 1219 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1220 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1221 2, flashbase, 2, flashsize, 1222 2, flashbase + flashsize, 2, flashsize); 1223 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1224 g_free(nodename); 1225 } else { 1226 /* 1227 * Report the devices as separate nodes so we can mark one as 1228 * only visible to the secure world. 1229 */ 1230 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1231 qemu_fdt_add_subnode(ms->fdt, nodename); 1232 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1233 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1234 2, flashbase, 2, flashsize); 1235 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1236 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1237 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1238 g_free(nodename); 1239 1240 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize); 1241 qemu_fdt_add_subnode(ms->fdt, nodename); 1242 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1243 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1244 2, flashbase + flashsize, 2, flashsize); 1245 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1246 g_free(nodename); 1247 } 1248 } 1249 1250 static bool virt_firmware_init(VirtMachineState *vms, 1251 MemoryRegion *sysmem, 1252 MemoryRegion *secure_sysmem) 1253 { 1254 int i; 1255 const char *bios_name; 1256 BlockBackend *pflash_blk0; 1257 1258 /* Map legacy -drive if=pflash to machine properties */ 1259 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1260 pflash_cfi01_legacy_drive(vms->flash[i], 1261 drive_get(IF_PFLASH, 0, i)); 1262 } 1263 1264 virt_flash_map(vms, sysmem, secure_sysmem); 1265 1266 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1267 1268 bios_name = MACHINE(vms)->firmware; 1269 if (bios_name) { 1270 char *fname; 1271 MemoryRegion *mr; 1272 int image_size; 1273 1274 if (pflash_blk0) { 1275 error_report("The contents of the first flash device may be " 1276 "specified with -bios or with -drive if=pflash... " 1277 "but you cannot use both options at once"); 1278 exit(1); 1279 } 1280 1281 /* Fall back to -bios */ 1282 1283 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1284 if (!fname) { 1285 error_report("Could not find ROM image '%s'", bios_name); 1286 exit(1); 1287 } 1288 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1289 image_size = load_image_mr(fname, mr); 1290 g_free(fname); 1291 if (image_size < 0) { 1292 error_report("Could not load ROM image '%s'", bios_name); 1293 exit(1); 1294 } 1295 } 1296 1297 return pflash_blk0 || bios_name; 1298 } 1299 1300 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1301 { 1302 MachineState *ms = MACHINE(vms); 1303 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1304 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1305 FWCfgState *fw_cfg; 1306 char *nodename; 1307 1308 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1309 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1310 1311 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1312 qemu_fdt_add_subnode(ms->fdt, nodename); 1313 qemu_fdt_setprop_string(ms->fdt, nodename, 1314 "compatible", "qemu,fw-cfg-mmio"); 1315 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1316 2, base, 2, size); 1317 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1318 g_free(nodename); 1319 return fw_cfg; 1320 } 1321 1322 static void create_pcie_irq_map(const MachineState *ms, 1323 uint32_t gic_phandle, 1324 int first_irq, const char *nodename) 1325 { 1326 int devfn, pin; 1327 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1328 uint32_t *irq_map = full_irq_map; 1329 1330 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1331 for (pin = 0; pin < 4; pin++) { 1332 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1333 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1334 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1335 int i; 1336 1337 uint32_t map[] = { 1338 devfn << 8, 0, 0, /* devfn */ 1339 pin + 1, /* PCI pin */ 1340 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1341 1342 /* Convert map to big endian */ 1343 for (i = 0; i < 10; i++) { 1344 irq_map[i] = cpu_to_be32(map[i]); 1345 } 1346 irq_map += 10; 1347 } 1348 } 1349 1350 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", 1351 full_irq_map, sizeof(full_irq_map)); 1352 1353 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", 1354 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1355 0, 0, 1356 0x7 /* PCI irq */); 1357 } 1358 1359 static void create_smmu(const VirtMachineState *vms, 1360 PCIBus *bus) 1361 { 1362 char *node; 1363 const char compat[] = "arm,smmu-v3"; 1364 int irq = vms->irqmap[VIRT_SMMU]; 1365 int i; 1366 hwaddr base = vms->memmap[VIRT_SMMU].base; 1367 hwaddr size = vms->memmap[VIRT_SMMU].size; 1368 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1369 DeviceState *dev; 1370 MachineState *ms = MACHINE(vms); 1371 1372 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1373 return; 1374 } 1375 1376 dev = qdev_new(TYPE_ARM_SMMUV3); 1377 1378 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1379 &error_abort); 1380 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1381 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1382 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1383 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1384 qdev_get_gpio_in(vms->gic, irq + i)); 1385 } 1386 1387 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1388 qemu_fdt_add_subnode(ms->fdt, node); 1389 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1390 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); 1391 1392 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", 1393 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1394 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1395 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1396 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1397 1398 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, 1399 sizeof(irq_names)); 1400 1401 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); 1402 1403 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1404 1405 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1406 g_free(node); 1407 } 1408 1409 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1410 { 1411 const char compat[] = "virtio,pci-iommu\0pci1af4,1057"; 1412 uint16_t bdf = vms->virtio_iommu_bdf; 1413 MachineState *ms = MACHINE(vms); 1414 char *node; 1415 1416 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1417 1418 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename, 1419 PCI_SLOT(bdf), PCI_FUNC(bdf)); 1420 qemu_fdt_add_subnode(ms->fdt, node); 1421 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1422 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1423 1, bdf << 8, 1, 0, 1, 0, 1424 1, 0, 1, 0); 1425 1426 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1427 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1428 g_free(node); 1429 1430 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 1431 0x0, vms->iommu_phandle, 0x0, bdf, 1432 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1433 } 1434 1435 static void create_pcie(VirtMachineState *vms) 1436 { 1437 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1438 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1439 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1440 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1441 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1442 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1443 hwaddr base_ecam, size_ecam; 1444 hwaddr base = base_mmio; 1445 int nr_pcie_buses; 1446 int irq = vms->irqmap[VIRT_PCIE]; 1447 MemoryRegion *mmio_alias; 1448 MemoryRegion *mmio_reg; 1449 MemoryRegion *ecam_alias; 1450 MemoryRegion *ecam_reg; 1451 DeviceState *dev; 1452 char *nodename; 1453 int i, ecam_id; 1454 PCIHostState *pci; 1455 MachineState *ms = MACHINE(vms); 1456 MachineClass *mc = MACHINE_GET_CLASS(ms); 1457 1458 dev = qdev_new(TYPE_GPEX_HOST); 1459 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1460 1461 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1462 base_ecam = vms->memmap[ecam_id].base; 1463 size_ecam = vms->memmap[ecam_id].size; 1464 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1465 /* Map only the first size_ecam bytes of ECAM space */ 1466 ecam_alias = g_new0(MemoryRegion, 1); 1467 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1468 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1469 ecam_reg, 0, size_ecam); 1470 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1471 1472 /* Map the MMIO window into system address space so as to expose 1473 * the section of PCI MMIO space which starts at the same base address 1474 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1475 * the window). 1476 */ 1477 mmio_alias = g_new0(MemoryRegion, 1); 1478 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1479 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1480 mmio_reg, base_mmio, size_mmio); 1481 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1482 1483 if (vms->highmem_mmio) { 1484 /* Map high MMIO space */ 1485 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1486 1487 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1488 mmio_reg, base_mmio_high, size_mmio_high); 1489 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1490 high_mmio_alias); 1491 } 1492 1493 /* Map IO port space */ 1494 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1495 1496 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1497 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1498 qdev_get_gpio_in(vms->gic, irq + i)); 1499 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1500 } 1501 1502 pci = PCI_HOST_BRIDGE(dev); 1503 pci->bypass_iommu = vms->default_bus_bypass_iommu; 1504 vms->bus = pci->bus; 1505 if (vms->bus) { 1506 pci_init_nic_devices(pci->bus, mc->default_nic); 1507 } 1508 1509 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1510 qemu_fdt_add_subnode(ms->fdt, nodename); 1511 qemu_fdt_setprop_string(ms->fdt, nodename, 1512 "compatible", "pci-host-ecam-generic"); 1513 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); 1514 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); 1515 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); 1516 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); 1517 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, 1518 nr_pcie_buses - 1); 1519 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1520 1521 if (vms->msi_phandle) { 1522 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map", 1523 0, vms->msi_phandle, 0, 0x10000); 1524 } 1525 1526 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1527 2, base_ecam, 2, size_ecam); 1528 1529 if (vms->highmem_mmio) { 1530 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1531 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1532 2, base_pio, 2, size_pio, 1533 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1534 2, base_mmio, 2, size_mmio, 1535 1, FDT_PCI_RANGE_MMIO_64BIT, 1536 2, base_mmio_high, 1537 2, base_mmio_high, 2, size_mmio_high); 1538 } else { 1539 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1540 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1541 2, base_pio, 2, size_pio, 1542 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1543 2, base_mmio, 2, size_mmio); 1544 } 1545 1546 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); 1547 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); 1548 1549 if (vms->iommu) { 1550 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1551 1552 switch (vms->iommu) { 1553 case VIRT_IOMMU_SMMUV3: 1554 create_smmu(vms, vms->bus); 1555 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 1556 0x0, vms->iommu_phandle, 0x0, 0x10000); 1557 break; 1558 default: 1559 g_assert_not_reached(); 1560 } 1561 } 1562 } 1563 1564 static void create_platform_bus(VirtMachineState *vms) 1565 { 1566 DeviceState *dev; 1567 SysBusDevice *s; 1568 int i; 1569 MemoryRegion *sysmem = get_system_memory(); 1570 1571 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1572 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE); 1573 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1574 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1575 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1576 vms->platform_bus_dev = dev; 1577 1578 s = SYS_BUS_DEVICE(dev); 1579 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1580 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1581 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1582 } 1583 1584 memory_region_add_subregion(sysmem, 1585 vms->memmap[VIRT_PLATFORM_BUS].base, 1586 sysbus_mmio_get_region(s, 0)); 1587 } 1588 1589 static void create_tag_ram(MemoryRegion *tag_sysmem, 1590 hwaddr base, hwaddr size, 1591 const char *name) 1592 { 1593 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1594 1595 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1596 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1597 } 1598 1599 static void create_secure_ram(VirtMachineState *vms, 1600 MemoryRegion *secure_sysmem, 1601 MemoryRegion *secure_tag_sysmem) 1602 { 1603 MemoryRegion *secram = g_new(MemoryRegion, 1); 1604 char *nodename; 1605 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1606 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1607 MachineState *ms = MACHINE(vms); 1608 1609 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1610 &error_fatal); 1611 memory_region_add_subregion(secure_sysmem, base, secram); 1612 1613 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1614 qemu_fdt_add_subnode(ms->fdt, nodename); 1615 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); 1616 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); 1617 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1618 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1619 1620 if (secure_tag_sysmem) { 1621 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1622 } 1623 1624 g_free(nodename); 1625 } 1626 1627 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1628 { 1629 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1630 bootinfo); 1631 MachineState *ms = MACHINE(board); 1632 1633 1634 *fdt_size = board->fdt_size; 1635 return ms->fdt; 1636 } 1637 1638 static void virt_build_smbios(VirtMachineState *vms) 1639 { 1640 MachineClass *mc = MACHINE_GET_CLASS(vms); 1641 MachineState *ms = MACHINE(vms); 1642 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1643 uint8_t *smbios_tables, *smbios_anchor; 1644 size_t smbios_tables_len, smbios_anchor_len; 1645 struct smbios_phys_mem_area mem_array; 1646 const char *product = "QEMU Virtual Machine"; 1647 1648 if (kvm_enabled()) { 1649 product = "KVM Virtual Machine"; 1650 } 1651 1652 smbios_set_defaults("QEMU", product, 1653 vmc->smbios_old_sys_ver ? "1.0" : mc->name, 1654 true); 1655 1656 /* build the array of physical mem area from base_memmap */ 1657 mem_array.address = vms->memmap[VIRT_MEM].base; 1658 mem_array.length = ms->ram_size; 1659 1660 smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1, 1661 &smbios_tables, &smbios_tables_len, 1662 &smbios_anchor, &smbios_anchor_len, 1663 &error_fatal); 1664 1665 if (smbios_anchor) { 1666 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1667 smbios_tables, smbios_tables_len); 1668 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1669 smbios_anchor, smbios_anchor_len); 1670 } 1671 } 1672 1673 static 1674 void virt_machine_done(Notifier *notifier, void *data) 1675 { 1676 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1677 machine_done); 1678 MachineState *ms = MACHINE(vms); 1679 ARMCPU *cpu = ARM_CPU(first_cpu); 1680 struct arm_boot_info *info = &vms->bootinfo; 1681 AddressSpace *as = arm_boot_address_space(cpu, info); 1682 1683 /* 1684 * If the user provided a dtb, we assume the dynamic sysbus nodes 1685 * already are integrated there. This corresponds to a use case where 1686 * the dynamic sysbus nodes are complex and their generation is not yet 1687 * supported. In that case the user can take charge of the guest dt 1688 * while qemu takes charge of the qom stuff. 1689 */ 1690 if (info->dtb_filename == NULL) { 1691 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", 1692 vms->memmap[VIRT_PLATFORM_BUS].base, 1693 vms->memmap[VIRT_PLATFORM_BUS].size, 1694 vms->irqmap[VIRT_PLATFORM_BUS]); 1695 } 1696 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { 1697 exit(1); 1698 } 1699 1700 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); 1701 1702 virt_acpi_setup(vms); 1703 virt_build_smbios(vms); 1704 } 1705 1706 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1707 { 1708 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1709 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1710 1711 if (!vmc->disallow_affinity_adjustment) { 1712 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1713 * GIC's target-list limitations. 32-bit KVM hosts currently 1714 * always create clusters of 4 CPUs, but that is expected to 1715 * change when they gain support for gicv3. When KVM is enabled 1716 * it will override the changes we make here, therefore our 1717 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1718 * and to improve SGI efficiency. 1719 */ 1720 if (vms->gic_version == VIRT_GIC_VERSION_2) { 1721 clustersz = GIC_TARGETLIST_BITS; 1722 } else { 1723 clustersz = GICV3_TARGETLIST_BITS; 1724 } 1725 } 1726 return arm_build_mp_affinity(idx, clustersz); 1727 } 1728 1729 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms, 1730 int index) 1731 { 1732 bool *enabled_array[] = { 1733 &vms->highmem_redists, 1734 &vms->highmem_ecam, 1735 &vms->highmem_mmio, 1736 }; 1737 1738 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST == 1739 ARRAY_SIZE(enabled_array)); 1740 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array)); 1741 1742 return enabled_array[index - VIRT_LOWMEMMAP_LAST]; 1743 } 1744 1745 static void virt_set_high_memmap(VirtMachineState *vms, 1746 hwaddr base, int pa_bits) 1747 { 1748 hwaddr region_base, region_size; 1749 bool *region_enabled, fits; 1750 int i; 1751 1752 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1753 region_enabled = virt_get_high_memmap_enabled(vms, i); 1754 region_base = ROUND_UP(base, extended_memmap[i].size); 1755 region_size = extended_memmap[i].size; 1756 1757 vms->memmap[i].base = region_base; 1758 vms->memmap[i].size = region_size; 1759 1760 /* 1761 * Check each device to see if it fits in the PA space, 1762 * moving highest_gpa as we go. For compatibility, move 1763 * highest_gpa for disabled fitting devices as well, if 1764 * the compact layout has been disabled. 1765 * 1766 * For each device that doesn't fit, disable it. 1767 */ 1768 fits = (region_base + region_size) <= BIT_ULL(pa_bits); 1769 *region_enabled &= fits; 1770 if (vms->highmem_compact && !*region_enabled) { 1771 continue; 1772 } 1773 1774 base = region_base + region_size; 1775 if (fits) { 1776 vms->highest_gpa = base - 1; 1777 } 1778 } 1779 } 1780 1781 static void virt_set_memmap(VirtMachineState *vms, int pa_bits) 1782 { 1783 MachineState *ms = MACHINE(vms); 1784 hwaddr base, device_memory_base, device_memory_size, memtop; 1785 int i; 1786 1787 vms->memmap = extended_memmap; 1788 1789 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1790 vms->memmap[i] = base_memmap[i]; 1791 } 1792 1793 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1794 error_report("unsupported number of memory slots: %"PRIu64, 1795 ms->ram_slots); 1796 exit(EXIT_FAILURE); 1797 } 1798 1799 /* 1800 * !highmem is exactly the same as limiting the PA space to 32bit, 1801 * irrespective of the underlying capabilities of the HW. 1802 */ 1803 if (!vms->highmem) { 1804 pa_bits = 32; 1805 } 1806 1807 /* 1808 * We compute the base of the high IO region depending on the 1809 * amount of initial and device memory. The device memory start/size 1810 * is aligned on 1GiB. We never put the high IO region below 256GiB 1811 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1812 * The device region size assumes 1GiB page max alignment per slot. 1813 */ 1814 device_memory_base = 1815 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1816 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1817 1818 /* Base address of the high IO region */ 1819 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1820 if (memtop > BIT_ULL(pa_bits)) { 1821 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes", 1822 pa_bits, memtop - BIT_ULL(pa_bits)); 1823 exit(EXIT_FAILURE); 1824 } 1825 if (base < device_memory_base) { 1826 error_report("maxmem/slots too huge"); 1827 exit(EXIT_FAILURE); 1828 } 1829 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1830 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1831 } 1832 1833 /* We know for sure that at least the memory fits in the PA space */ 1834 vms->highest_gpa = memtop - 1; 1835 1836 virt_set_high_memmap(vms, base, pa_bits); 1837 1838 if (device_memory_size > 0) { 1839 machine_memory_devices_init(ms, device_memory_base, device_memory_size); 1840 } 1841 } 1842 1843 static VirtGICType finalize_gic_version_do(const char *accel_name, 1844 VirtGICType gic_version, 1845 int gics_supported, 1846 unsigned int max_cpus) 1847 { 1848 /* Convert host/max/nosel to GIC version number */ 1849 switch (gic_version) { 1850 case VIRT_GIC_VERSION_HOST: 1851 if (!kvm_enabled()) { 1852 error_report("gic-version=host requires KVM"); 1853 exit(1); 1854 } 1855 1856 /* For KVM, gic-version=host means gic-version=max */ 1857 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX, 1858 gics_supported, max_cpus); 1859 case VIRT_GIC_VERSION_MAX: 1860 if (gics_supported & VIRT_GIC_VERSION_4_MASK) { 1861 gic_version = VIRT_GIC_VERSION_4; 1862 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1863 gic_version = VIRT_GIC_VERSION_3; 1864 } else { 1865 gic_version = VIRT_GIC_VERSION_2; 1866 } 1867 break; 1868 case VIRT_GIC_VERSION_NOSEL: 1869 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) && 1870 max_cpus <= GIC_NCPU) { 1871 gic_version = VIRT_GIC_VERSION_2; 1872 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1873 /* 1874 * in case the host does not support v2 emulation or 1875 * the end-user requested more than 8 VCPUs we now default 1876 * to v3. In any case defaulting to v2 would be broken. 1877 */ 1878 gic_version = VIRT_GIC_VERSION_3; 1879 } else if (max_cpus > GIC_NCPU) { 1880 error_report("%s only supports GICv2 emulation but more than 8 " 1881 "vcpus are requested", accel_name); 1882 exit(1); 1883 } 1884 break; 1885 case VIRT_GIC_VERSION_2: 1886 case VIRT_GIC_VERSION_3: 1887 case VIRT_GIC_VERSION_4: 1888 break; 1889 } 1890 1891 /* Check chosen version is effectively supported */ 1892 switch (gic_version) { 1893 case VIRT_GIC_VERSION_2: 1894 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) { 1895 error_report("%s does not support GICv2 emulation", accel_name); 1896 exit(1); 1897 } 1898 break; 1899 case VIRT_GIC_VERSION_3: 1900 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) { 1901 error_report("%s does not support GICv3 emulation", accel_name); 1902 exit(1); 1903 } 1904 break; 1905 case VIRT_GIC_VERSION_4: 1906 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) { 1907 error_report("%s does not support GICv4 emulation, is virtualization=on?", 1908 accel_name); 1909 exit(1); 1910 } 1911 break; 1912 default: 1913 error_report("logic error in finalize_gic_version"); 1914 exit(1); 1915 break; 1916 } 1917 1918 return gic_version; 1919 } 1920 1921 /* 1922 * finalize_gic_version - Determines the final gic_version 1923 * according to the gic-version property 1924 * 1925 * Default GIC type is v2 1926 */ 1927 static void finalize_gic_version(VirtMachineState *vms) 1928 { 1929 const char *accel_name = current_accel_name(); 1930 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1931 int gics_supported = 0; 1932 1933 /* Determine which GIC versions the current environment supports */ 1934 if (kvm_enabled() && kvm_irqchip_in_kernel()) { 1935 int probe_bitmap = kvm_arm_vgic_probe(); 1936 1937 if (!probe_bitmap) { 1938 error_report("Unable to determine GIC version supported by host"); 1939 exit(1); 1940 } 1941 1942 if (probe_bitmap & KVM_ARM_VGIC_V2) { 1943 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1944 } 1945 if (probe_bitmap & KVM_ARM_VGIC_V3) { 1946 gics_supported |= VIRT_GIC_VERSION_3_MASK; 1947 } 1948 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) { 1949 /* KVM w/o kernel irqchip can only deal with GICv2 */ 1950 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1951 accel_name = "KVM with kernel-irqchip=off"; 1952 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) { 1953 gics_supported |= VIRT_GIC_VERSION_2_MASK; 1954 if (module_object_class_by_name("arm-gicv3")) { 1955 gics_supported |= VIRT_GIC_VERSION_3_MASK; 1956 if (vms->virt) { 1957 /* GICv4 only makes sense if CPU has EL2 */ 1958 gics_supported |= VIRT_GIC_VERSION_4_MASK; 1959 } 1960 } 1961 } else { 1962 error_report("Unsupported accelerator, can not determine GIC support"); 1963 exit(1); 1964 } 1965 1966 /* 1967 * Then convert helpers like host/max to concrete GIC versions and ensure 1968 * the desired version is supported 1969 */ 1970 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version, 1971 gics_supported, max_cpus); 1972 } 1973 1974 /* 1975 * virt_cpu_post_init() must be called after the CPUs have 1976 * been realized and the GIC has been created. 1977 */ 1978 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 1979 { 1980 int max_cpus = MACHINE(vms)->smp.max_cpus; 1981 bool aarch64, pmu, steal_time; 1982 CPUState *cpu; 1983 1984 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 1985 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 1986 steal_time = object_property_get_bool(OBJECT(first_cpu), 1987 "kvm-steal-time", NULL); 1988 1989 if (kvm_enabled()) { 1990 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 1991 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 1992 1993 if (steal_time) { 1994 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 1995 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 1996 1997 /* The memory region size must be a multiple of host page size. */ 1998 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 1999 2000 if (pvtime_size > pvtime_reg_size) { 2001 error_report("pvtime requires a %" HWADDR_PRId 2002 " byte memory region for %d CPUs," 2003 " but only %" HWADDR_PRId " has been reserved", 2004 pvtime_size, max_cpus, pvtime_reg_size); 2005 exit(1); 2006 } 2007 2008 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 2009 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 2010 } 2011 2012 CPU_FOREACH(cpu) { 2013 if (pmu) { 2014 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 2015 if (kvm_irqchip_in_kernel()) { 2016 kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ); 2017 } 2018 kvm_arm_pmu_init(ARM_CPU(cpu)); 2019 } 2020 if (steal_time) { 2021 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base 2022 + cpu->cpu_index 2023 * PVTIME_SIZE_PER_CPU); 2024 } 2025 } 2026 } else { 2027 if (aarch64 && vms->highmem) { 2028 int requested_pa_size = 64 - clz64(vms->highest_gpa); 2029 int pamax = arm_pamax(ARM_CPU(first_cpu)); 2030 2031 if (pamax < requested_pa_size) { 2032 error_report("VCPU supports less PA bits (%d) than " 2033 "requested by the memory map (%d)", 2034 pamax, requested_pa_size); 2035 exit(1); 2036 } 2037 } 2038 } 2039 } 2040 2041 static void machvirt_init(MachineState *machine) 2042 { 2043 VirtMachineState *vms = VIRT_MACHINE(machine); 2044 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 2045 MachineClass *mc = MACHINE_GET_CLASS(machine); 2046 const CPUArchIdList *possible_cpus; 2047 MemoryRegion *sysmem = get_system_memory(); 2048 MemoryRegion *secure_sysmem = NULL; 2049 MemoryRegion *tag_sysmem = NULL; 2050 MemoryRegion *secure_tag_sysmem = NULL; 2051 int n, virt_max_cpus; 2052 bool firmware_loaded; 2053 bool aarch64 = true; 2054 bool has_ged = !vmc->no_ged; 2055 unsigned int smp_cpus = machine->smp.cpus; 2056 unsigned int max_cpus = machine->smp.max_cpus; 2057 2058 possible_cpus = mc->possible_cpu_arch_ids(machine); 2059 2060 /* 2061 * In accelerated mode, the memory map is computed earlier in kvm_type() 2062 * to create a VM with the right number of IPA bits. 2063 */ 2064 if (!vms->memmap) { 2065 Object *cpuobj; 2066 ARMCPU *armcpu; 2067 int pa_bits; 2068 2069 /* 2070 * Instantiate a temporary CPU object to find out about what 2071 * we are about to deal with. Once this is done, get rid of 2072 * the object. 2073 */ 2074 cpuobj = object_new(possible_cpus->cpus[0].type); 2075 armcpu = ARM_CPU(cpuobj); 2076 2077 pa_bits = arm_pamax(armcpu); 2078 2079 object_unref(cpuobj); 2080 2081 virt_set_memmap(vms, pa_bits); 2082 } 2083 2084 /* We can probe only here because during property set 2085 * KVM is not available yet 2086 */ 2087 finalize_gic_version(vms); 2088 2089 if (vms->secure) { 2090 /* 2091 * The Secure view of the world is the same as the NonSecure, 2092 * but with a few extra devices. Create it as a container region 2093 * containing the system memory at low priority; any secure-only 2094 * devices go in at higher priority and take precedence. 2095 */ 2096 secure_sysmem = g_new(MemoryRegion, 1); 2097 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 2098 UINT64_MAX); 2099 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 2100 } 2101 2102 firmware_loaded = virt_firmware_init(vms, sysmem, 2103 secure_sysmem ?: sysmem); 2104 2105 /* If we have an EL3 boot ROM then the assumption is that it will 2106 * implement PSCI itself, so disable QEMU's internal implementation 2107 * so it doesn't get in the way. Instead of starting secondary 2108 * CPUs in PSCI powerdown state we will start them all running and 2109 * let the boot ROM sort them out. 2110 * The usual case is that we do use QEMU's PSCI implementation; 2111 * if the guest has EL2 then we will use SMC as the conduit, 2112 * and otherwise we will use HVC (for backwards compatibility and 2113 * because if we're using KVM then we must use HVC). 2114 */ 2115 if (vms->secure && firmware_loaded) { 2116 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 2117 } else if (vms->virt) { 2118 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 2119 } else { 2120 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 2121 } 2122 2123 /* 2124 * The maximum number of CPUs depends on the GIC version, or on how 2125 * many redistributors we can fit into the memory map (which in turn 2126 * depends on whether this is a GICv3 or v4). 2127 */ 2128 if (vms->gic_version == VIRT_GIC_VERSION_2) { 2129 virt_max_cpus = GIC_NCPU; 2130 } else { 2131 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST); 2132 if (vms->highmem_redists) { 2133 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 2134 } 2135 } 2136 2137 if (max_cpus > virt_max_cpus) { 2138 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 2139 "supported by machine 'mach-virt' (%d)", 2140 max_cpus, virt_max_cpus); 2141 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) { 2142 error_printf("Try 'highmem-redists=on' for more CPUs\n"); 2143 } 2144 2145 exit(1); 2146 } 2147 2148 if (vms->secure && (kvm_enabled() || hvf_enabled())) { 2149 error_report("mach-virt: %s does not support providing " 2150 "Security extensions (TrustZone) to the guest CPU", 2151 current_accel_name()); 2152 exit(1); 2153 } 2154 2155 if (vms->virt && (kvm_enabled() || hvf_enabled())) { 2156 error_report("mach-virt: %s does not support providing " 2157 "Virtualization extensions to the guest CPU", 2158 current_accel_name()); 2159 exit(1); 2160 } 2161 2162 if (vms->mte && (kvm_enabled() || hvf_enabled())) { 2163 error_report("mach-virt: %s does not support providing " 2164 "MTE to the guest CPU", 2165 current_accel_name()); 2166 exit(1); 2167 } 2168 2169 create_fdt(vms); 2170 2171 assert(possible_cpus->len == max_cpus); 2172 for (n = 0; n < possible_cpus->len; n++) { 2173 Object *cpuobj; 2174 CPUState *cs; 2175 2176 if (n >= smp_cpus) { 2177 break; 2178 } 2179 2180 cpuobj = object_new(possible_cpus->cpus[n].type); 2181 object_property_set_int(cpuobj, "mp-affinity", 2182 possible_cpus->cpus[n].arch_id, NULL); 2183 2184 cs = CPU(cpuobj); 2185 cs->cpu_index = n; 2186 2187 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 2188 &error_fatal); 2189 2190 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 2191 2192 if (!vms->secure) { 2193 object_property_set_bool(cpuobj, "has_el3", false, NULL); 2194 } 2195 2196 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 2197 object_property_set_bool(cpuobj, "has_el2", false, NULL); 2198 } 2199 2200 if (vmc->kvm_no_adjvtime && 2201 object_property_find(cpuobj, "kvm-no-adjvtime")) { 2202 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 2203 } 2204 2205 if (vmc->no_kvm_steal_time && 2206 object_property_find(cpuobj, "kvm-steal-time")) { 2207 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 2208 } 2209 2210 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 2211 object_property_set_bool(cpuobj, "pmu", false, NULL); 2212 } 2213 2214 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) { 2215 object_property_set_bool(cpuobj, "lpa2", false, NULL); 2216 } 2217 2218 if (object_property_find(cpuobj, "reset-cbar")) { 2219 object_property_set_int(cpuobj, "reset-cbar", 2220 vms->memmap[VIRT_CPUPERIPHS].base, 2221 &error_abort); 2222 } 2223 2224 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 2225 &error_abort); 2226 if (vms->secure) { 2227 object_property_set_link(cpuobj, "secure-memory", 2228 OBJECT(secure_sysmem), &error_abort); 2229 } 2230 2231 if (vms->mte) { 2232 /* Create the memory region only once, but link to all cpus. */ 2233 if (!tag_sysmem) { 2234 /* 2235 * The property exists only if MemTag is supported. 2236 * If it is, we must allocate the ram to back that up. 2237 */ 2238 if (!object_property_find(cpuobj, "tag-memory")) { 2239 error_report("MTE requested, but not supported " 2240 "by the guest CPU"); 2241 exit(1); 2242 } 2243 2244 tag_sysmem = g_new(MemoryRegion, 1); 2245 memory_region_init(tag_sysmem, OBJECT(machine), 2246 "tag-memory", UINT64_MAX / 32); 2247 2248 if (vms->secure) { 2249 secure_tag_sysmem = g_new(MemoryRegion, 1); 2250 memory_region_init(secure_tag_sysmem, OBJECT(machine), 2251 "secure-tag-memory", UINT64_MAX / 32); 2252 2253 /* As with ram, secure-tag takes precedence over tag. */ 2254 memory_region_add_subregion_overlap(secure_tag_sysmem, 0, 2255 tag_sysmem, -1); 2256 } 2257 } 2258 2259 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), 2260 &error_abort); 2261 if (vms->secure) { 2262 object_property_set_link(cpuobj, "secure-tag-memory", 2263 OBJECT(secure_tag_sysmem), 2264 &error_abort); 2265 } 2266 } 2267 2268 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2269 object_unref(cpuobj); 2270 } 2271 2272 /* Now we've created the CPUs we can see if they have the hypvirt timer */ 2273 vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() && 2274 !vmc->no_ns_el2_virt_timer_irq; 2275 2276 fdt_add_timer_nodes(vms); 2277 fdt_add_cpu_nodes(vms); 2278 2279 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2280 machine->ram); 2281 2282 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2283 2284 create_gic(vms, sysmem); 2285 2286 virt_cpu_post_init(vms, sysmem); 2287 2288 fdt_add_pmu_nodes(vms); 2289 2290 create_uart(vms, VIRT_UART, sysmem, serial_hd(0)); 2291 2292 if (vms->secure) { 2293 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2294 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 2295 } 2296 2297 if (tag_sysmem) { 2298 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2299 machine->ram_size, "mach-virt.tag"); 2300 } 2301 2302 vms->highmem_ecam &= (!firmware_loaded || aarch64); 2303 2304 create_rtc(vms); 2305 2306 create_pcie(vms); 2307 2308 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2309 vms->acpi_dev = create_acpi_ged(vms); 2310 } else { 2311 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2312 } 2313 2314 if (vms->secure && !vmc->no_secure_gpio) { 2315 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2316 } 2317 2318 /* connect powerdown request */ 2319 vms->powerdown_notifier.notify = virt_powerdown_req; 2320 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2321 2322 /* Create mmio transports, so the user can create virtio backends 2323 * (which will be automatically plugged in to the transports). If 2324 * no backend is created the transport will just sit harmlessly idle. 2325 */ 2326 create_virtio_devices(vms); 2327 2328 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2329 rom_set_fw(vms->fw_cfg); 2330 2331 create_platform_bus(vms); 2332 2333 if (machine->nvdimms_state->is_enabled) { 2334 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2335 .space_id = AML_AS_SYSTEM_MEMORY, 2336 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2337 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2338 }; 2339 2340 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2341 arm_virt_nvdimm_acpi_dsmio, 2342 vms->fw_cfg, OBJECT(vms)); 2343 } 2344 2345 vms->bootinfo.ram_size = machine->ram_size; 2346 vms->bootinfo.board_id = -1; 2347 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2348 vms->bootinfo.get_dtb = machvirt_dtb; 2349 vms->bootinfo.skip_dtb_autoload = true; 2350 vms->bootinfo.firmware_loaded = firmware_loaded; 2351 vms->bootinfo.psci_conduit = vms->psci_conduit; 2352 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2353 2354 vms->machine_done.notify = virt_machine_done; 2355 qemu_add_machine_init_done_notifier(&vms->machine_done); 2356 } 2357 2358 static bool virt_get_secure(Object *obj, Error **errp) 2359 { 2360 VirtMachineState *vms = VIRT_MACHINE(obj); 2361 2362 return vms->secure; 2363 } 2364 2365 static void virt_set_secure(Object *obj, bool value, Error **errp) 2366 { 2367 VirtMachineState *vms = VIRT_MACHINE(obj); 2368 2369 vms->secure = value; 2370 } 2371 2372 static bool virt_get_virt(Object *obj, Error **errp) 2373 { 2374 VirtMachineState *vms = VIRT_MACHINE(obj); 2375 2376 return vms->virt; 2377 } 2378 2379 static void virt_set_virt(Object *obj, bool value, Error **errp) 2380 { 2381 VirtMachineState *vms = VIRT_MACHINE(obj); 2382 2383 vms->virt = value; 2384 } 2385 2386 static bool virt_get_highmem(Object *obj, Error **errp) 2387 { 2388 VirtMachineState *vms = VIRT_MACHINE(obj); 2389 2390 return vms->highmem; 2391 } 2392 2393 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2394 { 2395 VirtMachineState *vms = VIRT_MACHINE(obj); 2396 2397 vms->highmem = value; 2398 } 2399 2400 static bool virt_get_compact_highmem(Object *obj, Error **errp) 2401 { 2402 VirtMachineState *vms = VIRT_MACHINE(obj); 2403 2404 return vms->highmem_compact; 2405 } 2406 2407 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp) 2408 { 2409 VirtMachineState *vms = VIRT_MACHINE(obj); 2410 2411 vms->highmem_compact = value; 2412 } 2413 2414 static bool virt_get_highmem_redists(Object *obj, Error **errp) 2415 { 2416 VirtMachineState *vms = VIRT_MACHINE(obj); 2417 2418 return vms->highmem_redists; 2419 } 2420 2421 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp) 2422 { 2423 VirtMachineState *vms = VIRT_MACHINE(obj); 2424 2425 vms->highmem_redists = value; 2426 } 2427 2428 static bool virt_get_highmem_ecam(Object *obj, Error **errp) 2429 { 2430 VirtMachineState *vms = VIRT_MACHINE(obj); 2431 2432 return vms->highmem_ecam; 2433 } 2434 2435 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp) 2436 { 2437 VirtMachineState *vms = VIRT_MACHINE(obj); 2438 2439 vms->highmem_ecam = value; 2440 } 2441 2442 static bool virt_get_highmem_mmio(Object *obj, Error **errp) 2443 { 2444 VirtMachineState *vms = VIRT_MACHINE(obj); 2445 2446 return vms->highmem_mmio; 2447 } 2448 2449 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp) 2450 { 2451 VirtMachineState *vms = VIRT_MACHINE(obj); 2452 2453 vms->highmem_mmio = value; 2454 } 2455 2456 2457 static bool virt_get_its(Object *obj, Error **errp) 2458 { 2459 VirtMachineState *vms = VIRT_MACHINE(obj); 2460 2461 return vms->its; 2462 } 2463 2464 static void virt_set_its(Object *obj, bool value, Error **errp) 2465 { 2466 VirtMachineState *vms = VIRT_MACHINE(obj); 2467 2468 vms->its = value; 2469 } 2470 2471 static bool virt_get_dtb_randomness(Object *obj, Error **errp) 2472 { 2473 VirtMachineState *vms = VIRT_MACHINE(obj); 2474 2475 return vms->dtb_randomness; 2476 } 2477 2478 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp) 2479 { 2480 VirtMachineState *vms = VIRT_MACHINE(obj); 2481 2482 vms->dtb_randomness = value; 2483 } 2484 2485 static char *virt_get_oem_id(Object *obj, Error **errp) 2486 { 2487 VirtMachineState *vms = VIRT_MACHINE(obj); 2488 2489 return g_strdup(vms->oem_id); 2490 } 2491 2492 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2493 { 2494 VirtMachineState *vms = VIRT_MACHINE(obj); 2495 size_t len = strlen(value); 2496 2497 if (len > 6) { 2498 error_setg(errp, 2499 "User specified oem-id value is bigger than 6 bytes in size"); 2500 return; 2501 } 2502 2503 strncpy(vms->oem_id, value, 6); 2504 } 2505 2506 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2507 { 2508 VirtMachineState *vms = VIRT_MACHINE(obj); 2509 2510 return g_strdup(vms->oem_table_id); 2511 } 2512 2513 static void virt_set_oem_table_id(Object *obj, const char *value, 2514 Error **errp) 2515 { 2516 VirtMachineState *vms = VIRT_MACHINE(obj); 2517 size_t len = strlen(value); 2518 2519 if (len > 8) { 2520 error_setg(errp, 2521 "User specified oem-table-id value is bigger than 8 bytes in size"); 2522 return; 2523 } 2524 strncpy(vms->oem_table_id, value, 8); 2525 } 2526 2527 2528 bool virt_is_acpi_enabled(VirtMachineState *vms) 2529 { 2530 if (vms->acpi == ON_OFF_AUTO_OFF) { 2531 return false; 2532 } 2533 return true; 2534 } 2535 2536 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2537 void *opaque, Error **errp) 2538 { 2539 VirtMachineState *vms = VIRT_MACHINE(obj); 2540 OnOffAuto acpi = vms->acpi; 2541 2542 visit_type_OnOffAuto(v, name, &acpi, errp); 2543 } 2544 2545 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2546 void *opaque, Error **errp) 2547 { 2548 VirtMachineState *vms = VIRT_MACHINE(obj); 2549 2550 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2551 } 2552 2553 static bool virt_get_ras(Object *obj, Error **errp) 2554 { 2555 VirtMachineState *vms = VIRT_MACHINE(obj); 2556 2557 return vms->ras; 2558 } 2559 2560 static void virt_set_ras(Object *obj, bool value, Error **errp) 2561 { 2562 VirtMachineState *vms = VIRT_MACHINE(obj); 2563 2564 vms->ras = value; 2565 } 2566 2567 static bool virt_get_mte(Object *obj, Error **errp) 2568 { 2569 VirtMachineState *vms = VIRT_MACHINE(obj); 2570 2571 return vms->mte; 2572 } 2573 2574 static void virt_set_mte(Object *obj, bool value, Error **errp) 2575 { 2576 VirtMachineState *vms = VIRT_MACHINE(obj); 2577 2578 vms->mte = value; 2579 } 2580 2581 static char *virt_get_gic_version(Object *obj, Error **errp) 2582 { 2583 VirtMachineState *vms = VIRT_MACHINE(obj); 2584 const char *val; 2585 2586 switch (vms->gic_version) { 2587 case VIRT_GIC_VERSION_4: 2588 val = "4"; 2589 break; 2590 case VIRT_GIC_VERSION_3: 2591 val = "3"; 2592 break; 2593 default: 2594 val = "2"; 2595 break; 2596 } 2597 return g_strdup(val); 2598 } 2599 2600 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2601 { 2602 VirtMachineState *vms = VIRT_MACHINE(obj); 2603 2604 if (!strcmp(value, "4")) { 2605 vms->gic_version = VIRT_GIC_VERSION_4; 2606 } else if (!strcmp(value, "3")) { 2607 vms->gic_version = VIRT_GIC_VERSION_3; 2608 } else if (!strcmp(value, "2")) { 2609 vms->gic_version = VIRT_GIC_VERSION_2; 2610 } else if (!strcmp(value, "host")) { 2611 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2612 } else if (!strcmp(value, "max")) { 2613 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2614 } else { 2615 error_setg(errp, "Invalid gic-version value"); 2616 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2617 } 2618 } 2619 2620 static char *virt_get_iommu(Object *obj, Error **errp) 2621 { 2622 VirtMachineState *vms = VIRT_MACHINE(obj); 2623 2624 switch (vms->iommu) { 2625 case VIRT_IOMMU_NONE: 2626 return g_strdup("none"); 2627 case VIRT_IOMMU_SMMUV3: 2628 return g_strdup("smmuv3"); 2629 default: 2630 g_assert_not_reached(); 2631 } 2632 } 2633 2634 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2635 { 2636 VirtMachineState *vms = VIRT_MACHINE(obj); 2637 2638 if (!strcmp(value, "smmuv3")) { 2639 vms->iommu = VIRT_IOMMU_SMMUV3; 2640 } else if (!strcmp(value, "none")) { 2641 vms->iommu = VIRT_IOMMU_NONE; 2642 } else { 2643 error_setg(errp, "Invalid iommu value"); 2644 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2645 } 2646 } 2647 2648 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) 2649 { 2650 VirtMachineState *vms = VIRT_MACHINE(obj); 2651 2652 return vms->default_bus_bypass_iommu; 2653 } 2654 2655 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, 2656 Error **errp) 2657 { 2658 VirtMachineState *vms = VIRT_MACHINE(obj); 2659 2660 vms->default_bus_bypass_iommu = value; 2661 } 2662 2663 static CpuInstanceProperties 2664 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2665 { 2666 MachineClass *mc = MACHINE_GET_CLASS(ms); 2667 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2668 2669 assert(cpu_index < possible_cpus->len); 2670 return possible_cpus->cpus[cpu_index].props; 2671 } 2672 2673 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2674 { 2675 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id; 2676 2677 return socket_id % ms->numa_state->num_nodes; 2678 } 2679 2680 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2681 { 2682 int n; 2683 unsigned int max_cpus = ms->smp.max_cpus; 2684 VirtMachineState *vms = VIRT_MACHINE(ms); 2685 MachineClass *mc = MACHINE_GET_CLASS(vms); 2686 2687 if (ms->possible_cpus) { 2688 assert(ms->possible_cpus->len == max_cpus); 2689 return ms->possible_cpus; 2690 } 2691 2692 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2693 sizeof(CPUArchId) * max_cpus); 2694 ms->possible_cpus->len = max_cpus; 2695 for (n = 0; n < ms->possible_cpus->len; n++) { 2696 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2697 ms->possible_cpus->cpus[n].arch_id = 2698 virt_cpu_mp_affinity(vms, n); 2699 2700 assert(!mc->smp_props.dies_supported); 2701 ms->possible_cpus->cpus[n].props.has_socket_id = true; 2702 ms->possible_cpus->cpus[n].props.socket_id = 2703 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads); 2704 ms->possible_cpus->cpus[n].props.has_cluster_id = true; 2705 ms->possible_cpus->cpus[n].props.cluster_id = 2706 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters; 2707 ms->possible_cpus->cpus[n].props.has_core_id = true; 2708 ms->possible_cpus->cpus[n].props.core_id = 2709 (n / ms->smp.threads) % ms->smp.cores; 2710 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2711 ms->possible_cpus->cpus[n].props.thread_id = 2712 n % ms->smp.threads; 2713 } 2714 return ms->possible_cpus; 2715 } 2716 2717 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2718 Error **errp) 2719 { 2720 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2721 const MachineState *ms = MACHINE(hotplug_dev); 2722 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2723 2724 if (!vms->acpi_dev) { 2725 error_setg(errp, 2726 "memory hotplug is not enabled: missing acpi-ged device"); 2727 return; 2728 } 2729 2730 if (vms->mte) { 2731 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2732 return; 2733 } 2734 2735 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2736 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2737 return; 2738 } 2739 2740 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp); 2741 } 2742 2743 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2744 DeviceState *dev, Error **errp) 2745 { 2746 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2747 MachineState *ms = MACHINE(hotplug_dev); 2748 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2749 2750 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2751 2752 if (is_nvdimm) { 2753 nvdimm_plug(ms->nvdimms_state); 2754 } 2755 2756 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2757 dev, &error_abort); 2758 } 2759 2760 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2761 DeviceState *dev, Error **errp) 2762 { 2763 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2764 2765 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2766 virt_memory_pre_plug(hotplug_dev, dev, errp); 2767 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2768 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2769 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2770 hwaddr db_start = 0, db_end = 0; 2771 QList *reserved_regions; 2772 char *resv_prop_str; 2773 2774 if (vms->iommu != VIRT_IOMMU_NONE) { 2775 error_setg(errp, "virt machine does not support multiple IOMMUs"); 2776 return; 2777 } 2778 2779 switch (vms->msi_controller) { 2780 case VIRT_MSI_CTRL_NONE: 2781 return; 2782 case VIRT_MSI_CTRL_ITS: 2783 /* GITS_TRANSLATER page */ 2784 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2785 db_end = base_memmap[VIRT_GIC_ITS].base + 2786 base_memmap[VIRT_GIC_ITS].size - 1; 2787 break; 2788 case VIRT_MSI_CTRL_GICV2M: 2789 /* MSI_SETSPI_NS page */ 2790 db_start = base_memmap[VIRT_GIC_V2M].base; 2791 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2792 break; 2793 } 2794 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2795 db_start, db_end, 2796 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2797 2798 reserved_regions = qlist_new(); 2799 qlist_append_str(reserved_regions, resv_prop_str); 2800 qdev_prop_set_array(dev, "reserved-regions", reserved_regions); 2801 g_free(resv_prop_str); 2802 } 2803 } 2804 2805 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2806 DeviceState *dev, Error **errp) 2807 { 2808 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2809 2810 if (vms->platform_bus_dev) { 2811 MachineClass *mc = MACHINE_GET_CLASS(vms); 2812 2813 if (device_is_dynamic_sysbus(mc, dev)) { 2814 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2815 SYS_BUS_DEVICE(dev)); 2816 } 2817 } 2818 2819 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2820 virt_memory_plug(hotplug_dev, dev, errp); 2821 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2822 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2823 } 2824 2825 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2826 PCIDevice *pdev = PCI_DEVICE(dev); 2827 2828 vms->iommu = VIRT_IOMMU_VIRTIO; 2829 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2830 create_virtio_iommu_dt_bindings(vms); 2831 } 2832 } 2833 2834 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2835 DeviceState *dev, Error **errp) 2836 { 2837 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2838 2839 if (!vms->acpi_dev) { 2840 error_setg(errp, 2841 "memory hotplug is not enabled: missing acpi-ged device"); 2842 return; 2843 } 2844 2845 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2846 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 2847 return; 2848 } 2849 2850 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2851 errp); 2852 } 2853 2854 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2855 DeviceState *dev, Error **errp) 2856 { 2857 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2858 Error *local_err = NULL; 2859 2860 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2861 if (local_err) { 2862 goto out; 2863 } 2864 2865 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2866 qdev_unrealize(dev); 2867 2868 out: 2869 error_propagate(errp, local_err); 2870 } 2871 2872 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2873 DeviceState *dev, Error **errp) 2874 { 2875 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2876 virt_dimm_unplug_request(hotplug_dev, dev, errp); 2877 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2878 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), 2879 errp); 2880 } else { 2881 error_setg(errp, "device unplug request for unsupported device" 2882 " type: %s", object_get_typename(OBJECT(dev))); 2883 } 2884 } 2885 2886 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2887 DeviceState *dev, Error **errp) 2888 { 2889 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2890 virt_dimm_unplug(hotplug_dev, dev, errp); 2891 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2892 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2893 } else { 2894 error_setg(errp, "virt: device unplug for unsupported device" 2895 " type: %s", object_get_typename(OBJECT(dev))); 2896 } 2897 } 2898 2899 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 2900 DeviceState *dev) 2901 { 2902 MachineClass *mc = MACHINE_GET_CLASS(machine); 2903 2904 if (device_is_dynamic_sysbus(mc, dev) || 2905 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2906 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) || 2907 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2908 return HOTPLUG_HANDLER(machine); 2909 } 2910 return NULL; 2911 } 2912 2913 /* 2914 * for arm64 kvm_type [7-0] encodes the requested number of bits 2915 * in the IPA address space 2916 */ 2917 static int virt_kvm_type(MachineState *ms, const char *type_str) 2918 { 2919 VirtMachineState *vms = VIRT_MACHINE(ms); 2920 int max_vm_pa_size, requested_pa_size; 2921 bool fixed_ipa; 2922 2923 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 2924 2925 /* we freeze the memory map to compute the highest gpa */ 2926 virt_set_memmap(vms, max_vm_pa_size); 2927 2928 requested_pa_size = 64 - clz64(vms->highest_gpa); 2929 2930 /* 2931 * KVM requires the IPA size to be at least 32 bits. 2932 */ 2933 if (requested_pa_size < 32) { 2934 requested_pa_size = 32; 2935 } 2936 2937 if (requested_pa_size > max_vm_pa_size) { 2938 error_report("-m and ,maxmem option values " 2939 "require an IPA range (%d bits) larger than " 2940 "the one supported by the host (%d bits)", 2941 requested_pa_size, max_vm_pa_size); 2942 return -1; 2943 } 2944 /* 2945 * We return the requested PA log size, unless KVM only supports 2946 * the implicit legacy 40b IPA setting, in which case the kvm_type 2947 * must be 0. 2948 */ 2949 return fixed_ipa ? 0 : requested_pa_size; 2950 } 2951 2952 static void virt_machine_class_init(ObjectClass *oc, void *data) 2953 { 2954 MachineClass *mc = MACHINE_CLASS(oc); 2955 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2956 static const char * const valid_cpu_types[] = { 2957 #ifdef CONFIG_TCG 2958 ARM_CPU_TYPE_NAME("cortex-a7"), 2959 ARM_CPU_TYPE_NAME("cortex-a15"), 2960 #ifdef TARGET_AARCH64 2961 ARM_CPU_TYPE_NAME("cortex-a35"), 2962 ARM_CPU_TYPE_NAME("cortex-a55"), 2963 ARM_CPU_TYPE_NAME("cortex-a72"), 2964 ARM_CPU_TYPE_NAME("cortex-a76"), 2965 ARM_CPU_TYPE_NAME("cortex-a710"), 2966 ARM_CPU_TYPE_NAME("a64fx"), 2967 ARM_CPU_TYPE_NAME("neoverse-n1"), 2968 ARM_CPU_TYPE_NAME("neoverse-v1"), 2969 ARM_CPU_TYPE_NAME("neoverse-n2"), 2970 #endif /* TARGET_AARCH64 */ 2971 #endif /* CONFIG_TCG */ 2972 #ifdef TARGET_AARCH64 2973 ARM_CPU_TYPE_NAME("cortex-a53"), 2974 ARM_CPU_TYPE_NAME("cortex-a57"), 2975 #if defined(CONFIG_KVM) || defined(CONFIG_HVF) 2976 ARM_CPU_TYPE_NAME("host"), 2977 #endif /* CONFIG_KVM || CONFIG_HVF */ 2978 #endif /* TARGET_AARCH64 */ 2979 ARM_CPU_TYPE_NAME("max"), 2980 NULL 2981 }; 2982 2983 mc->init = machvirt_init; 2984 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 2985 * The value may be reduced later when we have more information about the 2986 * configuration of the particular instance. 2987 */ 2988 mc->max_cpus = 512; 2989 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 2990 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 2991 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 2992 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 2993 #ifdef CONFIG_TPM 2994 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 2995 #endif 2996 mc->block_default_type = IF_VIRTIO; 2997 mc->no_cdrom = 1; 2998 mc->pci_allow_0_address = true; 2999 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 3000 mc->minimum_page_bits = 12; 3001 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 3002 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 3003 #ifdef CONFIG_TCG 3004 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 3005 #else 3006 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max"); 3007 #endif 3008 mc->valid_cpu_types = valid_cpu_types; 3009 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 3010 mc->kvm_type = virt_kvm_type; 3011 assert(!mc->get_hotplug_handler); 3012 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 3013 hc->pre_plug = virt_machine_device_pre_plug_cb; 3014 hc->plug = virt_machine_device_plug_cb; 3015 hc->unplug_request = virt_machine_device_unplug_request_cb; 3016 hc->unplug = virt_machine_device_unplug_cb; 3017 mc->nvdimm_supported = true; 3018 mc->smp_props.clusters_supported = true; 3019 mc->auto_enable_numa_with_memhp = true; 3020 mc->auto_enable_numa_with_memdev = true; 3021 /* platform instead of architectural choice */ 3022 mc->cpu_cluster_has_numa_boundary = true; 3023 mc->default_ram_id = "mach-virt.ram"; 3024 mc->default_nic = "virtio-net-pci"; 3025 3026 object_class_property_add(oc, "acpi", "OnOffAuto", 3027 virt_get_acpi, virt_set_acpi, 3028 NULL, NULL); 3029 object_class_property_set_description(oc, "acpi", 3030 "Enable ACPI"); 3031 object_class_property_add_bool(oc, "secure", virt_get_secure, 3032 virt_set_secure); 3033 object_class_property_set_description(oc, "secure", 3034 "Set on/off to enable/disable the ARM " 3035 "Security Extensions (TrustZone)"); 3036 3037 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 3038 virt_set_virt); 3039 object_class_property_set_description(oc, "virtualization", 3040 "Set on/off to enable/disable emulating a " 3041 "guest CPU which implements the ARM " 3042 "Virtualization Extensions"); 3043 3044 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 3045 virt_set_highmem); 3046 object_class_property_set_description(oc, "highmem", 3047 "Set on/off to enable/disable using " 3048 "physical address space above 32 bits"); 3049 3050 object_class_property_add_bool(oc, "compact-highmem", 3051 virt_get_compact_highmem, 3052 virt_set_compact_highmem); 3053 object_class_property_set_description(oc, "compact-highmem", 3054 "Set on/off to enable/disable compact " 3055 "layout for high memory regions"); 3056 3057 object_class_property_add_bool(oc, "highmem-redists", 3058 virt_get_highmem_redists, 3059 virt_set_highmem_redists); 3060 object_class_property_set_description(oc, "highmem-redists", 3061 "Set on/off to enable/disable high " 3062 "memory region for GICv3 or GICv4 " 3063 "redistributor"); 3064 3065 object_class_property_add_bool(oc, "highmem-ecam", 3066 virt_get_highmem_ecam, 3067 virt_set_highmem_ecam); 3068 object_class_property_set_description(oc, "highmem-ecam", 3069 "Set on/off to enable/disable high " 3070 "memory region for PCI ECAM"); 3071 3072 object_class_property_add_bool(oc, "highmem-mmio", 3073 virt_get_highmem_mmio, 3074 virt_set_highmem_mmio); 3075 object_class_property_set_description(oc, "highmem-mmio", 3076 "Set on/off to enable/disable high " 3077 "memory region for PCI MMIO"); 3078 3079 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 3080 virt_set_gic_version); 3081 object_class_property_set_description(oc, "gic-version", 3082 "Set GIC version. " 3083 "Valid values are 2, 3, 4, host and max"); 3084 3085 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 3086 object_class_property_set_description(oc, "iommu", 3087 "Set the IOMMU type. " 3088 "Valid values are none and smmuv3"); 3089 3090 object_class_property_add_bool(oc, "default-bus-bypass-iommu", 3091 virt_get_default_bus_bypass_iommu, 3092 virt_set_default_bus_bypass_iommu); 3093 object_class_property_set_description(oc, "default-bus-bypass-iommu", 3094 "Set on/off to enable/disable " 3095 "bypass_iommu for default root bus"); 3096 3097 object_class_property_add_bool(oc, "ras", virt_get_ras, 3098 virt_set_ras); 3099 object_class_property_set_description(oc, "ras", 3100 "Set on/off to enable/disable reporting host memory errors " 3101 "to a KVM guest using ACPI and guest external abort exceptions"); 3102 3103 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 3104 object_class_property_set_description(oc, "mte", 3105 "Set on/off to enable/disable emulating a " 3106 "guest CPU which implements the ARM " 3107 "Memory Tagging Extension"); 3108 3109 object_class_property_add_bool(oc, "its", virt_get_its, 3110 virt_set_its); 3111 object_class_property_set_description(oc, "its", 3112 "Set on/off to enable/disable " 3113 "ITS instantiation"); 3114 3115 object_class_property_add_bool(oc, "dtb-randomness", 3116 virt_get_dtb_randomness, 3117 virt_set_dtb_randomness); 3118 object_class_property_set_description(oc, "dtb-randomness", 3119 "Set off to disable passing random or " 3120 "non-deterministic dtb nodes to guest"); 3121 3122 object_class_property_add_bool(oc, "dtb-kaslr-seed", 3123 virt_get_dtb_randomness, 3124 virt_set_dtb_randomness); 3125 object_class_property_set_description(oc, "dtb-kaslr-seed", 3126 "Deprecated synonym of dtb-randomness"); 3127 3128 object_class_property_add_str(oc, "x-oem-id", 3129 virt_get_oem_id, 3130 virt_set_oem_id); 3131 object_class_property_set_description(oc, "x-oem-id", 3132 "Override the default value of field OEMID " 3133 "in ACPI table header." 3134 "The string may be up to 6 bytes in size"); 3135 3136 3137 object_class_property_add_str(oc, "x-oem-table-id", 3138 virt_get_oem_table_id, 3139 virt_set_oem_table_id); 3140 object_class_property_set_description(oc, "x-oem-table-id", 3141 "Override the default value of field OEM Table ID " 3142 "in ACPI table header." 3143 "The string may be up to 8 bytes in size"); 3144 3145 } 3146 3147 static void virt_instance_init(Object *obj) 3148 { 3149 VirtMachineState *vms = VIRT_MACHINE(obj); 3150 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 3151 3152 /* EL3 is disabled by default on virt: this makes us consistent 3153 * between KVM and TCG for this board, and it also allows us to 3154 * boot UEFI blobs which assume no TrustZone support. 3155 */ 3156 vms->secure = false; 3157 3158 /* EL2 is also disabled by default, for similar reasons */ 3159 vms->virt = false; 3160 3161 /* High memory is enabled by default */ 3162 vms->highmem = true; 3163 vms->highmem_compact = !vmc->no_highmem_compact; 3164 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 3165 3166 vms->highmem_ecam = !vmc->no_highmem_ecam; 3167 vms->highmem_mmio = true; 3168 vms->highmem_redists = true; 3169 3170 if (vmc->no_its) { 3171 vms->its = false; 3172 } else { 3173 /* Default allows ITS instantiation */ 3174 vms->its = true; 3175 3176 if (vmc->no_tcg_its) { 3177 vms->tcg_its = false; 3178 } else { 3179 vms->tcg_its = true; 3180 } 3181 } 3182 3183 /* Default disallows iommu instantiation */ 3184 vms->iommu = VIRT_IOMMU_NONE; 3185 3186 /* The default root bus is attached to iommu by default */ 3187 vms->default_bus_bypass_iommu = false; 3188 3189 /* Default disallows RAS instantiation */ 3190 vms->ras = false; 3191 3192 /* MTE is disabled by default. */ 3193 vms->mte = false; 3194 3195 /* Supply kaslr-seed and rng-seed by default */ 3196 vms->dtb_randomness = true; 3197 3198 vms->irqmap = a15irqmap; 3199 3200 virt_flash_create(vms); 3201 3202 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 3203 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 3204 } 3205 3206 static const TypeInfo virt_machine_info = { 3207 .name = TYPE_VIRT_MACHINE, 3208 .parent = TYPE_MACHINE, 3209 .abstract = true, 3210 .instance_size = sizeof(VirtMachineState), 3211 .class_size = sizeof(VirtMachineClass), 3212 .class_init = virt_machine_class_init, 3213 .instance_init = virt_instance_init, 3214 .interfaces = (InterfaceInfo[]) { 3215 { TYPE_HOTPLUG_HANDLER }, 3216 { } 3217 }, 3218 }; 3219 3220 static void machvirt_machine_init(void) 3221 { 3222 type_register_static(&virt_machine_info); 3223 } 3224 type_init(machvirt_machine_init); 3225 3226 static void virt_machine_9_1_options(MachineClass *mc) 3227 { 3228 } 3229 DEFINE_VIRT_MACHINE_AS_LATEST(9, 1) 3230 3231 static void virt_machine_9_0_options(MachineClass *mc) 3232 { 3233 virt_machine_9_1_options(mc); 3234 compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len); 3235 } 3236 DEFINE_VIRT_MACHINE(9, 0) 3237 3238 static void virt_machine_8_2_options(MachineClass *mc) 3239 { 3240 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3241 3242 virt_machine_9_0_options(mc); 3243 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 3244 /* 3245 * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and 3246 * earlier machines. (Exposing it tickles a bug in older EDK2 3247 * guest BIOS binaries.) 3248 */ 3249 vmc->no_ns_el2_virt_timer_irq = true; 3250 } 3251 DEFINE_VIRT_MACHINE(8, 2) 3252 3253 static void virt_machine_8_1_options(MachineClass *mc) 3254 { 3255 virt_machine_8_2_options(mc); 3256 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 3257 } 3258 DEFINE_VIRT_MACHINE(8, 1) 3259 3260 static void virt_machine_8_0_options(MachineClass *mc) 3261 { 3262 virt_machine_8_1_options(mc); 3263 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 3264 } 3265 DEFINE_VIRT_MACHINE(8, 0) 3266 3267 static void virt_machine_7_2_options(MachineClass *mc) 3268 { 3269 virt_machine_8_0_options(mc); 3270 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 3271 } 3272 DEFINE_VIRT_MACHINE(7, 2) 3273 3274 static void virt_machine_7_1_options(MachineClass *mc) 3275 { 3276 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3277 3278 virt_machine_7_2_options(mc); 3279 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 3280 /* Compact layout for high memory regions was introduced with 7.2 */ 3281 vmc->no_highmem_compact = true; 3282 } 3283 DEFINE_VIRT_MACHINE(7, 1) 3284 3285 static void virt_machine_7_0_options(MachineClass *mc) 3286 { 3287 virt_machine_7_1_options(mc); 3288 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 3289 } 3290 DEFINE_VIRT_MACHINE(7, 0) 3291 3292 static void virt_machine_6_2_options(MachineClass *mc) 3293 { 3294 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3295 3296 virt_machine_7_0_options(mc); 3297 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 3298 vmc->no_tcg_lpa2 = true; 3299 } 3300 DEFINE_VIRT_MACHINE(6, 2) 3301 3302 static void virt_machine_6_1_options(MachineClass *mc) 3303 { 3304 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3305 3306 virt_machine_6_2_options(mc); 3307 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 3308 mc->smp_props.prefer_sockets = true; 3309 vmc->no_cpu_topology = true; 3310 3311 /* qemu ITS was introduced with 6.2 */ 3312 vmc->no_tcg_its = true; 3313 } 3314 DEFINE_VIRT_MACHINE(6, 1) 3315 3316 static void virt_machine_6_0_options(MachineClass *mc) 3317 { 3318 virt_machine_6_1_options(mc); 3319 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 3320 } 3321 DEFINE_VIRT_MACHINE(6, 0) 3322 3323 static void virt_machine_5_2_options(MachineClass *mc) 3324 { 3325 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3326 3327 virt_machine_6_0_options(mc); 3328 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 3329 vmc->no_secure_gpio = true; 3330 } 3331 DEFINE_VIRT_MACHINE(5, 2) 3332 3333 static void virt_machine_5_1_options(MachineClass *mc) 3334 { 3335 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3336 3337 virt_machine_5_2_options(mc); 3338 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 3339 vmc->no_kvm_steal_time = true; 3340 } 3341 DEFINE_VIRT_MACHINE(5, 1) 3342 3343 static void virt_machine_5_0_options(MachineClass *mc) 3344 { 3345 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3346 3347 virt_machine_5_1_options(mc); 3348 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 3349 mc->numa_mem_supported = true; 3350 vmc->acpi_expose_flash = true; 3351 mc->auto_enable_numa_with_memdev = false; 3352 } 3353 DEFINE_VIRT_MACHINE(5, 0) 3354 3355 static void virt_machine_4_2_options(MachineClass *mc) 3356 { 3357 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3358 3359 virt_machine_5_0_options(mc); 3360 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 3361 vmc->kvm_no_adjvtime = true; 3362 } 3363 DEFINE_VIRT_MACHINE(4, 2) 3364 3365 static void virt_machine_4_1_options(MachineClass *mc) 3366 { 3367 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3368 3369 virt_machine_4_2_options(mc); 3370 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 3371 vmc->no_ged = true; 3372 mc->auto_enable_numa_with_memhp = false; 3373 } 3374 DEFINE_VIRT_MACHINE(4, 1) 3375 3376 static void virt_machine_4_0_options(MachineClass *mc) 3377 { 3378 virt_machine_4_1_options(mc); 3379 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 3380 } 3381 DEFINE_VIRT_MACHINE(4, 0) 3382 3383 static void virt_machine_3_1_options(MachineClass *mc) 3384 { 3385 virt_machine_4_0_options(mc); 3386 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 3387 } 3388 DEFINE_VIRT_MACHINE(3, 1) 3389 3390 static void virt_machine_3_0_options(MachineClass *mc) 3391 { 3392 virt_machine_3_1_options(mc); 3393 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 3394 } 3395 DEFINE_VIRT_MACHINE(3, 0) 3396 3397 static void virt_machine_2_12_options(MachineClass *mc) 3398 { 3399 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3400 3401 virt_machine_3_0_options(mc); 3402 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 3403 vmc->no_highmem_ecam = true; 3404 mc->max_cpus = 255; 3405 } 3406 DEFINE_VIRT_MACHINE(2, 12) 3407 3408 static void virt_machine_2_11_options(MachineClass *mc) 3409 { 3410 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3411 3412 virt_machine_2_12_options(mc); 3413 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 3414 vmc->smbios_old_sys_ver = true; 3415 } 3416 DEFINE_VIRT_MACHINE(2, 11) 3417 3418 static void virt_machine_2_10_options(MachineClass *mc) 3419 { 3420 virt_machine_2_11_options(mc); 3421 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 3422 /* before 2.11 we never faulted accesses to bad addresses */ 3423 mc->ignore_memory_transaction_failures = true; 3424 } 3425 DEFINE_VIRT_MACHINE(2, 10) 3426 3427 static void virt_machine_2_9_options(MachineClass *mc) 3428 { 3429 virt_machine_2_10_options(mc); 3430 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 3431 } 3432 DEFINE_VIRT_MACHINE(2, 9) 3433 3434 static void virt_machine_2_8_options(MachineClass *mc) 3435 { 3436 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3437 3438 virt_machine_2_9_options(mc); 3439 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 3440 /* For 2.8 and earlier we falsely claimed in the DT that 3441 * our timers were edge-triggered, not level-triggered. 3442 */ 3443 vmc->claim_edge_triggered_timers = true; 3444 } 3445 DEFINE_VIRT_MACHINE(2, 8) 3446 3447 static void virt_machine_2_7_options(MachineClass *mc) 3448 { 3449 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3450 3451 virt_machine_2_8_options(mc); 3452 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 3453 /* ITS was introduced with 2.8 */ 3454 vmc->no_its = true; 3455 /* Stick with 1K pages for migration compatibility */ 3456 mc->minimum_page_bits = 0; 3457 } 3458 DEFINE_VIRT_MACHINE(2, 7) 3459 3460 static void virt_machine_2_6_options(MachineClass *mc) 3461 { 3462 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3463 3464 virt_machine_2_7_options(mc); 3465 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 3466 vmc->disallow_affinity_adjustment = true; 3467 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 3468 vmc->no_pmu = true; 3469 } 3470 DEFINE_VIRT_MACHINE(2, 6) 3471