1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "hw/sysbus.h" 32 #include "hw/arm/arm.h" 33 #include "hw/arm/primecell.h" 34 #include "hw/devices.h" 35 #include "net/net.h" 36 #include "sysemu/device_tree.h" 37 #include "sysemu/sysemu.h" 38 #include "sysemu/kvm.h" 39 #include "hw/boards.h" 40 #include "hw/loader.h" 41 #include "exec/address-spaces.h" 42 #include "qemu/bitops.h" 43 #include "qemu/error-report.h" 44 45 #define NUM_VIRTIO_TRANSPORTS 32 46 47 /* Number of external interrupt lines to configure the GIC with */ 48 #define NUM_IRQS 128 49 50 #define GIC_FDT_IRQ_TYPE_SPI 0 51 #define GIC_FDT_IRQ_TYPE_PPI 1 52 53 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1 54 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2 55 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4 56 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8 57 58 #define GIC_FDT_IRQ_PPI_CPU_START 8 59 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8 60 61 enum { 62 VIRT_FLASH, 63 VIRT_MEM, 64 VIRT_CPUPERIPHS, 65 VIRT_GIC_DIST, 66 VIRT_GIC_CPU, 67 VIRT_UART, 68 VIRT_MMIO, 69 VIRT_RTC, 70 }; 71 72 typedef struct MemMapEntry { 73 hwaddr base; 74 hwaddr size; 75 } MemMapEntry; 76 77 typedef struct VirtBoardInfo { 78 struct arm_boot_info bootinfo; 79 const char *cpu_model; 80 const MemMapEntry *memmap; 81 const int *irqmap; 82 int smp_cpus; 83 void *fdt; 84 int fdt_size; 85 uint32_t clock_phandle; 86 } VirtBoardInfo; 87 88 /* Addresses and sizes of our components. 89 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 90 * 128MB..256MB is used for miscellaneous device I/O. 91 * 256MB..1GB is reserved for possible future PCI support (ie where the 92 * PCI memory window will go if we add a PCI host controller). 93 * 1GB and up is RAM (which may happily spill over into the 94 * high memory region beyond 4GB). 95 * This represents a compromise between how much RAM can be given to 96 * a 32 bit VM and leaving space for expansion and in particular for PCI. 97 * Note that devices should generally be placed at multiples of 0x10000, 98 * to accommodate guests using 64K pages. 99 */ 100 static const MemMapEntry a15memmap[] = { 101 /* Space up to 0x8000000 is reserved for a boot ROM */ 102 [VIRT_FLASH] = { 0, 0x08000000 }, 103 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 104 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 105 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 106 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 107 [VIRT_UART] = { 0x09000000, 0x00001000 }, 108 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 109 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 110 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 111 /* 0x10000000 .. 0x40000000 reserved for PCI */ 112 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, 113 }; 114 115 static const int a15irqmap[] = { 116 [VIRT_UART] = 1, 117 [VIRT_RTC] = 2, 118 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 119 }; 120 121 static VirtBoardInfo machines[] = { 122 { 123 .cpu_model = "cortex-a15", 124 .memmap = a15memmap, 125 .irqmap = a15irqmap, 126 }, 127 { 128 .cpu_model = "cortex-a57", 129 .memmap = a15memmap, 130 .irqmap = a15irqmap, 131 }, 132 { 133 .cpu_model = "host", 134 .memmap = a15memmap, 135 .irqmap = a15irqmap, 136 }, 137 }; 138 139 static VirtBoardInfo *find_machine_info(const char *cpu) 140 { 141 int i; 142 143 for (i = 0; i < ARRAY_SIZE(machines); i++) { 144 if (strcmp(cpu, machines[i].cpu_model) == 0) { 145 return &machines[i]; 146 } 147 } 148 return NULL; 149 } 150 151 static void create_fdt(VirtBoardInfo *vbi) 152 { 153 void *fdt = create_device_tree(&vbi->fdt_size); 154 155 if (!fdt) { 156 error_report("create_device_tree() failed"); 157 exit(1); 158 } 159 160 vbi->fdt = fdt; 161 162 /* Header */ 163 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 164 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 165 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 166 167 /* 168 * /chosen and /memory nodes must exist for load_dtb 169 * to fill in necessary properties later 170 */ 171 qemu_fdt_add_subnode(fdt, "/chosen"); 172 qemu_fdt_add_subnode(fdt, "/memory"); 173 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 174 175 /* Clock node, for the benefit of the UART. The kernel device tree 176 * binding documentation claims the PL011 node clock properties are 177 * optional but in practice if you omit them the kernel refuses to 178 * probe for the device. 179 */ 180 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 181 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 182 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 183 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 184 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 185 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 186 "clk24mhz"); 187 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 188 189 } 190 191 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 192 { 193 void *fdt = vbi->fdt; 194 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 195 196 /* No PSCI for TCG yet */ 197 if (kvm_enabled()) { 198 uint32_t cpu_suspend_fn; 199 uint32_t cpu_off_fn; 200 uint32_t cpu_on_fn; 201 uint32_t migrate_fn; 202 203 qemu_fdt_add_subnode(fdt, "/psci"); 204 if (armcpu->psci_version == 2) { 205 const char comp[] = "arm,psci-0.2\0arm,psci"; 206 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 207 208 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 209 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 210 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 211 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 212 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 213 } else { 214 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 215 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 216 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 217 } 218 } else { 219 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 220 221 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 222 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 223 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 224 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 225 } 226 227 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 228 229 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 230 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 231 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 232 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 233 } 234 } 235 236 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi) 237 { 238 /* Note that on A15 h/w these interrupts are level-triggered, 239 * but for the GIC implementation provided by both QEMU and KVM 240 * they are edge-triggered. 241 */ 242 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 243 244 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 245 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1); 246 247 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 248 qemu_fdt_setprop_string(vbi->fdt, "/timer", 249 "compatible", "arm,armv7-timer"); 250 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 251 GIC_FDT_IRQ_TYPE_PPI, 13, irqflags, 252 GIC_FDT_IRQ_TYPE_PPI, 14, irqflags, 253 GIC_FDT_IRQ_TYPE_PPI, 11, irqflags, 254 GIC_FDT_IRQ_TYPE_PPI, 10, irqflags); 255 } 256 257 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 258 { 259 int cpu; 260 261 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 262 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1); 263 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 264 265 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 266 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 267 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 268 269 qemu_fdt_add_subnode(vbi->fdt, nodename); 270 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 271 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 272 armcpu->dtb_compatible); 273 274 if (vbi->smp_cpus > 1) { 275 qemu_fdt_setprop_string(vbi->fdt, nodename, 276 "enable-method", "psci"); 277 } 278 279 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu); 280 g_free(nodename); 281 } 282 } 283 284 static void fdt_add_gic_node(const VirtBoardInfo *vbi) 285 { 286 uint32_t gic_phandle; 287 288 gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 289 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle); 290 291 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 292 /* 'cortex-a15-gic' means 'GIC v2' */ 293 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 294 "arm,cortex-a15-gic"); 295 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 296 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 297 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 298 2, vbi->memmap[VIRT_GIC_DIST].base, 299 2, vbi->memmap[VIRT_GIC_DIST].size, 300 2, vbi->memmap[VIRT_GIC_CPU].base, 301 2, vbi->memmap[VIRT_GIC_CPU].size); 302 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle); 303 } 304 305 static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic) 306 { 307 /* We create a standalone GIC v2 */ 308 DeviceState *gicdev; 309 SysBusDevice *gicbusdev; 310 const char *gictype = "arm_gic"; 311 int i; 312 313 if (kvm_irqchip_in_kernel()) { 314 gictype = "kvm-arm-gic"; 315 } 316 317 gicdev = qdev_create(NULL, gictype); 318 qdev_prop_set_uint32(gicdev, "revision", 2); 319 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 320 /* Note that the num-irq property counts both internal and external 321 * interrupts; there are always 32 of the former (mandated by GIC spec). 322 */ 323 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 324 qdev_init_nofail(gicdev); 325 gicbusdev = SYS_BUS_DEVICE(gicdev); 326 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 327 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 328 329 /* Wire the outputs from each CPU's generic timer to the 330 * appropriate GIC PPI inputs, and the GIC's IRQ output to 331 * the CPU's IRQ input. 332 */ 333 for (i = 0; i < smp_cpus; i++) { 334 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 335 int ppibase = NUM_IRQS + i * 32; 336 /* physical timer; we wire it up to the non-secure timer's ID, 337 * since a real A15 always has TrustZone but QEMU doesn't. 338 */ 339 qdev_connect_gpio_out(cpudev, 0, 340 qdev_get_gpio_in(gicdev, ppibase + 30)); 341 /* virtual timer */ 342 qdev_connect_gpio_out(cpudev, 1, 343 qdev_get_gpio_in(gicdev, ppibase + 27)); 344 345 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 346 } 347 348 for (i = 0; i < NUM_IRQS; i++) { 349 pic[i] = qdev_get_gpio_in(gicdev, i); 350 } 351 352 fdt_add_gic_node(vbi); 353 } 354 355 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) 356 { 357 char *nodename; 358 hwaddr base = vbi->memmap[VIRT_UART].base; 359 hwaddr size = vbi->memmap[VIRT_UART].size; 360 int irq = vbi->irqmap[VIRT_UART]; 361 const char compat[] = "arm,pl011\0arm,primecell"; 362 const char clocknames[] = "uartclk\0apb_pclk"; 363 364 sysbus_create_simple("pl011", base, pic[irq]); 365 366 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 367 qemu_fdt_add_subnode(vbi->fdt, nodename); 368 /* Note that we can't use setprop_string because of the embedded NUL */ 369 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 370 compat, sizeof(compat)); 371 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 372 2, base, 2, size); 373 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 374 GIC_FDT_IRQ_TYPE_SPI, irq, 375 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 376 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 377 vbi->clock_phandle, vbi->clock_phandle); 378 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 379 clocknames, sizeof(clocknames)); 380 381 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "linux,stdout-path", nodename); 382 g_free(nodename); 383 } 384 385 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 386 { 387 char *nodename; 388 hwaddr base = vbi->memmap[VIRT_RTC].base; 389 hwaddr size = vbi->memmap[VIRT_RTC].size; 390 int irq = vbi->irqmap[VIRT_RTC]; 391 const char compat[] = "arm,pl031\0arm,primecell"; 392 393 sysbus_create_simple("pl031", base, pic[irq]); 394 395 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 396 qemu_fdt_add_subnode(vbi->fdt, nodename); 397 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 398 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 399 2, base, 2, size); 400 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 401 GIC_FDT_IRQ_TYPE_SPI, irq, 402 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 403 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 404 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 405 g_free(nodename); 406 } 407 408 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 409 { 410 int i; 411 hwaddr size = vbi->memmap[VIRT_MMIO].size; 412 413 /* Note that we have to create the transports in forwards order 414 * so that command line devices are inserted lowest address first, 415 * and then add dtb nodes in reverse order so that they appear in 416 * the finished device tree lowest address first. 417 */ 418 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 419 int irq = vbi->irqmap[VIRT_MMIO] + i; 420 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 421 422 sysbus_create_simple("virtio-mmio", base, pic[irq]); 423 } 424 425 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 426 char *nodename; 427 int irq = vbi->irqmap[VIRT_MMIO] + i; 428 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 429 430 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 431 qemu_fdt_add_subnode(vbi->fdt, nodename); 432 qemu_fdt_setprop_string(vbi->fdt, nodename, 433 "compatible", "virtio,mmio"); 434 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 435 2, base, 2, size); 436 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 437 GIC_FDT_IRQ_TYPE_SPI, irq, 438 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 439 g_free(nodename); 440 } 441 } 442 443 static void create_one_flash(const char *name, hwaddr flashbase, 444 hwaddr flashsize) 445 { 446 /* Create and map a single flash device. We use the same 447 * parameters as the flash devices on the Versatile Express board. 448 */ 449 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 450 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 451 const uint64_t sectorlength = 256 * 1024; 452 453 if (dinfo && qdev_prop_set_drive(dev, "drive", dinfo->bdrv)) { 454 abort(); 455 } 456 457 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 458 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 459 qdev_prop_set_uint8(dev, "width", 4); 460 qdev_prop_set_uint8(dev, "device-width", 2); 461 qdev_prop_set_uint8(dev, "big-endian", 0); 462 qdev_prop_set_uint16(dev, "id0", 0x89); 463 qdev_prop_set_uint16(dev, "id1", 0x18); 464 qdev_prop_set_uint16(dev, "id2", 0x00); 465 qdev_prop_set_uint16(dev, "id3", 0x00); 466 qdev_prop_set_string(dev, "name", name); 467 qdev_init_nofail(dev); 468 469 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase); 470 } 471 472 static void create_flash(const VirtBoardInfo *vbi) 473 { 474 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 475 * Any file passed via -bios goes in the first of these. 476 */ 477 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 478 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 479 char *nodename; 480 481 if (bios_name) { 482 const char *fn; 483 484 if (drive_get(IF_PFLASH, 0, 0)) { 485 error_report("The contents of the first flash device may be " 486 "specified with -bios or with -drive if=pflash... " 487 "but you cannot use both options at once"); 488 exit(1); 489 } 490 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 491 if (!fn || load_image_targphys(fn, flashbase, flashsize) < 0) { 492 error_report("Could not load ROM image '%s'", bios_name); 493 exit(1); 494 } 495 } 496 497 create_one_flash("virt.flash0", flashbase, flashsize); 498 create_one_flash("virt.flash1", flashbase + flashsize, flashsize); 499 500 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 501 qemu_fdt_add_subnode(vbi->fdt, nodename); 502 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 503 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 504 2, flashbase, 2, flashsize, 505 2, flashbase + flashsize, 2, flashsize); 506 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 507 g_free(nodename); 508 } 509 510 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 511 { 512 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 513 514 *fdt_size = board->fdt_size; 515 return board->fdt; 516 } 517 518 static void machvirt_init(MachineState *machine) 519 { 520 qemu_irq pic[NUM_IRQS]; 521 MemoryRegion *sysmem = get_system_memory(); 522 int n; 523 MemoryRegion *ram = g_new(MemoryRegion, 1); 524 const char *cpu_model = machine->cpu_model; 525 VirtBoardInfo *vbi; 526 527 if (!cpu_model) { 528 cpu_model = "cortex-a15"; 529 } 530 531 vbi = find_machine_info(cpu_model); 532 533 if (!vbi) { 534 error_report("mach-virt: CPU %s not supported", cpu_model); 535 exit(1); 536 } 537 538 vbi->smp_cpus = smp_cpus; 539 540 /* 541 * Only supported method of starting secondary CPUs is PSCI and 542 * PSCI is not yet supported with TCG, so limit smp_cpus to 1 543 * if we're not using KVM. 544 */ 545 if (!kvm_enabled() && smp_cpus > 1) { 546 error_report("mach-virt: must enable KVM to use multiple CPUs"); 547 exit(1); 548 } 549 550 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 551 error_report("mach-virt: cannot model more than 30GB RAM"); 552 exit(1); 553 } 554 555 create_fdt(vbi); 556 fdt_add_timer_nodes(vbi); 557 558 for (n = 0; n < smp_cpus; n++) { 559 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model); 560 Object *cpuobj; 561 562 if (!oc) { 563 fprintf(stderr, "Unable to find CPU definition\n"); 564 exit(1); 565 } 566 cpuobj = object_new(object_class_get_name(oc)); 567 568 /* Secondary CPUs start in PSCI powered-down state */ 569 if (n > 0) { 570 object_property_set_bool(cpuobj, true, "start-powered-off", NULL); 571 } 572 573 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 574 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 575 "reset-cbar", &error_abort); 576 } 577 578 object_property_set_bool(cpuobj, true, "realized", NULL); 579 } 580 fdt_add_cpu_nodes(vbi); 581 fdt_add_psci_node(vbi); 582 583 memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size, 584 &error_abort); 585 vmstate_register_ram_global(ram); 586 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 587 588 create_flash(vbi); 589 590 create_gic(vbi, pic); 591 592 create_uart(vbi, pic); 593 594 create_rtc(vbi, pic); 595 596 /* Create mmio transports, so the user can create virtio backends 597 * (which will be automatically plugged in to the transports). If 598 * no backend is created the transport will just sit harmlessly idle. 599 */ 600 create_virtio_devices(vbi, pic); 601 602 vbi->bootinfo.ram_size = machine->ram_size; 603 vbi->bootinfo.kernel_filename = machine->kernel_filename; 604 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 605 vbi->bootinfo.initrd_filename = machine->initrd_filename; 606 vbi->bootinfo.nb_cpus = smp_cpus; 607 vbi->bootinfo.board_id = -1; 608 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 609 vbi->bootinfo.get_dtb = machvirt_dtb; 610 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 611 } 612 613 static QEMUMachine machvirt_a15_machine = { 614 .name = "virt", 615 .desc = "ARM Virtual Machine", 616 .init = machvirt_init, 617 .max_cpus = 8, 618 }; 619 620 static void machvirt_machine_init(void) 621 { 622 qemu_register_machine(&machvirt_a15_machine); 623 } 624 625 machine_init(machvirt_machine_init); 626