1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qapi/error.h" 33 #include "hw/sysbus.h" 34 #include "hw/arm/arm.h" 35 #include "hw/arm/primecell.h" 36 #include "hw/arm/virt.h" 37 #include "hw/devices.h" 38 #include "net/net.h" 39 #include "sysemu/block-backend.h" 40 #include "sysemu/device_tree.h" 41 #include "sysemu/numa.h" 42 #include "sysemu/sysemu.h" 43 #include "sysemu/kvm.h" 44 #include "hw/boards.h" 45 #include "hw/compat.h" 46 #include "hw/loader.h" 47 #include "exec/address-spaces.h" 48 #include "qemu/bitops.h" 49 #include "qemu/error-report.h" 50 #include "hw/pci-host/gpex.h" 51 #include "hw/arm/virt-acpi-build.h" 52 #include "hw/arm/sysbus-fdt.h" 53 #include "hw/platform-bus.h" 54 #include "hw/arm/fdt.h" 55 #include "hw/intc/arm_gic.h" 56 #include "hw/intc/arm_gicv3_common.h" 57 #include "kvm_arm.h" 58 #include "hw/smbios/smbios.h" 59 #include "qapi/visitor.h" 60 #include "standard-headers/linux/input.h" 61 62 /* Number of external interrupt lines to configure the GIC with */ 63 #define NUM_IRQS 256 64 65 #define PLATFORM_BUS_NUM_IRQS 64 66 67 static ARMPlatformBusSystemParams platform_bus_params; 68 69 typedef struct VirtBoardInfo { 70 struct arm_boot_info bootinfo; 71 const char *cpu_model; 72 const MemMapEntry *memmap; 73 const int *irqmap; 74 int smp_cpus; 75 void *fdt; 76 int fdt_size; 77 uint32_t clock_phandle; 78 uint32_t gic_phandle; 79 uint32_t msi_phandle; 80 bool using_psci; 81 } VirtBoardInfo; 82 83 typedef struct { 84 MachineClass parent; 85 VirtBoardInfo *daughterboard; 86 bool disallow_affinity_adjustment; 87 } VirtMachineClass; 88 89 typedef struct { 90 MachineState parent; 91 bool secure; 92 bool highmem; 93 int32_t gic_version; 94 } VirtMachineState; 95 96 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt") 97 #define VIRT_MACHINE(obj) \ 98 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 99 #define VIRT_MACHINE_GET_CLASS(obj) \ 100 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 101 #define VIRT_MACHINE_CLASS(klass) \ 102 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 103 104 105 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 106 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 107 void *data) \ 108 { \ 109 MachineClass *mc = MACHINE_CLASS(oc); \ 110 virt_machine_##major##_##minor##_options(mc); \ 111 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 112 if (latest) { \ 113 mc->alias = "virt"; \ 114 } \ 115 } \ 116 static const TypeInfo machvirt_##major##_##minor##_info = { \ 117 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 118 .parent = TYPE_VIRT_MACHINE, \ 119 .instance_init = virt_##major##_##minor##_instance_init, \ 120 .class_init = virt_##major##_##minor##_class_init, \ 121 }; \ 122 static void machvirt_machine_##major##_##minor##_init(void) \ 123 { \ 124 type_register_static(&machvirt_##major##_##minor##_info); \ 125 } \ 126 type_init(machvirt_machine_##major##_##minor##_init); 127 128 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 129 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 130 #define DEFINE_VIRT_MACHINE(major, minor) \ 131 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 132 133 134 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means 135 * RAM can go up to the 256GB mark, leaving 256GB of the physical 136 * address space unallocated and free for future use between 256G and 512G. 137 * If we need to provide more RAM to VMs in the future then we need to: 138 * * allocate a second bank of RAM starting at 2TB and working up 139 * * fix the DT and ACPI table generation code in QEMU to correctly 140 * report two split lumps of RAM to the guest 141 * * fix KVM in the host kernel to allow guests with >40 bit address spaces 142 * (We don't want to fill all the way up to 512GB with RAM because 143 * we might want it for non-RAM purposes later. Conversely it seems 144 * reasonable to assume that anybody configuring a VM with a quarter 145 * of a terabyte of RAM will be doing it on a host with more than a 146 * terabyte of physical address space.) 147 */ 148 #define RAMLIMIT_GB 255 149 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024) 150 151 /* Addresses and sizes of our components. 152 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 153 * 128MB..256MB is used for miscellaneous device I/O. 154 * 256MB..1GB is reserved for possible future PCI support (ie where the 155 * PCI memory window will go if we add a PCI host controller). 156 * 1GB and up is RAM (which may happily spill over into the 157 * high memory region beyond 4GB). 158 * This represents a compromise between how much RAM can be given to 159 * a 32 bit VM and leaving space for expansion and in particular for PCI. 160 * Note that devices should generally be placed at multiples of 0x10000, 161 * to accommodate guests using 64K pages. 162 */ 163 static const MemMapEntry a15memmap[] = { 164 /* Space up to 0x8000000 is reserved for a boot ROM */ 165 [VIRT_FLASH] = { 0, 0x08000000 }, 166 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 167 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 168 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 169 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 170 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 171 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 172 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 173 /* This redistributor space allows up to 2*64kB*123 CPUs */ 174 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 175 [VIRT_UART] = { 0x09000000, 0x00001000 }, 176 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 177 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 178 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 179 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 180 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 181 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 182 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 183 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 184 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 185 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 186 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 187 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES }, 188 /* Second PCIe window, 512GB wide at the 512GB boundary */ 189 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, 190 }; 191 192 static const int a15irqmap[] = { 193 [VIRT_UART] = 1, 194 [VIRT_RTC] = 2, 195 [VIRT_PCIE] = 3, /* ... to 6 */ 196 [VIRT_GPIO] = 7, 197 [VIRT_SECURE_UART] = 8, 198 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 199 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 200 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 201 }; 202 203 static VirtBoardInfo machines[] = { 204 { 205 .cpu_model = "cortex-a15", 206 .memmap = a15memmap, 207 .irqmap = a15irqmap, 208 }, 209 { 210 .cpu_model = "cortex-a53", 211 .memmap = a15memmap, 212 .irqmap = a15irqmap, 213 }, 214 { 215 .cpu_model = "cortex-a57", 216 .memmap = a15memmap, 217 .irqmap = a15irqmap, 218 }, 219 { 220 .cpu_model = "host", 221 .memmap = a15memmap, 222 .irqmap = a15irqmap, 223 }, 224 }; 225 226 static VirtBoardInfo *find_machine_info(const char *cpu) 227 { 228 int i; 229 230 for (i = 0; i < ARRAY_SIZE(machines); i++) { 231 if (strcmp(cpu, machines[i].cpu_model) == 0) { 232 return &machines[i]; 233 } 234 } 235 return NULL; 236 } 237 238 static void create_fdt(VirtBoardInfo *vbi) 239 { 240 void *fdt = create_device_tree(&vbi->fdt_size); 241 242 if (!fdt) { 243 error_report("create_device_tree() failed"); 244 exit(1); 245 } 246 247 vbi->fdt = fdt; 248 249 /* Header */ 250 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 251 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 252 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 253 254 /* 255 * /chosen and /memory nodes must exist for load_dtb 256 * to fill in necessary properties later 257 */ 258 qemu_fdt_add_subnode(fdt, "/chosen"); 259 qemu_fdt_add_subnode(fdt, "/memory"); 260 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 261 262 /* Clock node, for the benefit of the UART. The kernel device tree 263 * binding documentation claims the PL011 node clock properties are 264 * optional but in practice if you omit them the kernel refuses to 265 * probe for the device. 266 */ 267 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 268 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 269 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 270 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 271 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 272 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 273 "clk24mhz"); 274 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 275 276 } 277 278 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 279 { 280 uint32_t cpu_suspend_fn; 281 uint32_t cpu_off_fn; 282 uint32_t cpu_on_fn; 283 uint32_t migrate_fn; 284 void *fdt = vbi->fdt; 285 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 286 287 if (!vbi->using_psci) { 288 return; 289 } 290 291 qemu_fdt_add_subnode(fdt, "/psci"); 292 if (armcpu->psci_version == 2) { 293 const char comp[] = "arm,psci-0.2\0arm,psci"; 294 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 295 296 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 297 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 298 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 299 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 300 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 301 } else { 302 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 303 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 304 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 305 } 306 } else { 307 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 308 309 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 310 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 311 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 312 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 313 } 314 315 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 316 * to the instruction that should be used to invoke PSCI functions. 317 * However, the device tree binding uses 'method' instead, so that is 318 * what we should use here. 319 */ 320 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 321 322 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 323 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 324 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 325 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 326 } 327 328 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype) 329 { 330 /* Note that on A15 h/w these interrupts are level-triggered, 331 * but for the GIC implementation provided by both QEMU and KVM 332 * they are edge-triggered. 333 */ 334 ARMCPU *armcpu; 335 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 336 337 if (gictype == 2) { 338 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 339 GIC_FDT_IRQ_PPI_CPU_WIDTH, 340 (1 << vbi->smp_cpus) - 1); 341 } 342 343 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 344 345 armcpu = ARM_CPU(qemu_get_cpu(0)); 346 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 347 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 348 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 349 compat, sizeof(compat)); 350 } else { 351 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 352 "arm,armv7-timer"); 353 } 354 qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0); 355 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 356 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 357 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 358 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 359 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 360 } 361 362 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 363 { 364 int cpu; 365 int addr_cells = 1; 366 unsigned int i; 367 368 /* 369 * From Documentation/devicetree/bindings/arm/cpus.txt 370 * On ARM v8 64-bit systems value should be set to 2, 371 * that corresponds to the MPIDR_EL1 register size. 372 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 373 * in the system, #address-cells can be set to 1, since 374 * MPIDR_EL1[63:32] bits are not used for CPUs 375 * identification. 376 * 377 * Here we actually don't know whether our system is 32- or 64-bit one. 378 * The simplest way to go is to examine affinity IDs of all our CPUs. If 379 * at least one of them has Aff3 populated, we set #address-cells to 2. 380 */ 381 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) { 382 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 383 384 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 385 addr_cells = 2; 386 break; 387 } 388 } 389 390 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 391 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells); 392 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 393 394 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 395 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 396 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 397 398 qemu_fdt_add_subnode(vbi->fdt, nodename); 399 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 400 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 401 armcpu->dtb_compatible); 402 403 if (vbi->using_psci && vbi->smp_cpus > 1) { 404 qemu_fdt_setprop_string(vbi->fdt, nodename, 405 "enable-method", "psci"); 406 } 407 408 if (addr_cells == 2) { 409 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg", 410 armcpu->mp_affinity); 411 } else { 412 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", 413 armcpu->mp_affinity); 414 } 415 416 for (i = 0; i < nb_numa_nodes; i++) { 417 if (test_bit(cpu, numa_info[i].node_cpu)) { 418 qemu_fdt_setprop_cell(vbi->fdt, nodename, "numa-node-id", i); 419 } 420 } 421 422 g_free(nodename); 423 } 424 } 425 426 static void fdt_add_its_gic_node(VirtBoardInfo *vbi) 427 { 428 vbi->msi_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 429 qemu_fdt_add_subnode(vbi->fdt, "/intc/its"); 430 qemu_fdt_setprop_string(vbi->fdt, "/intc/its", "compatible", 431 "arm,gic-v3-its"); 432 qemu_fdt_setprop(vbi->fdt, "/intc/its", "msi-controller", NULL, 0); 433 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/its", "reg", 434 2, vbi->memmap[VIRT_GIC_ITS].base, 435 2, vbi->memmap[VIRT_GIC_ITS].size); 436 qemu_fdt_setprop_cell(vbi->fdt, "/intc/its", "phandle", vbi->msi_phandle); 437 } 438 439 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi) 440 { 441 vbi->msi_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 442 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m"); 443 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible", 444 "arm,gic-v2m-frame"); 445 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0); 446 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg", 447 2, vbi->memmap[VIRT_GIC_V2M].base, 448 2, vbi->memmap[VIRT_GIC_V2M].size); 449 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->msi_phandle); 450 } 451 452 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type) 453 { 454 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 455 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle); 456 457 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 458 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 459 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 460 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2); 461 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2); 462 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0); 463 if (type == 3) { 464 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 465 "arm,gic-v3"); 466 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 467 2, vbi->memmap[VIRT_GIC_DIST].base, 468 2, vbi->memmap[VIRT_GIC_DIST].size, 469 2, vbi->memmap[VIRT_GIC_REDIST].base, 470 2, vbi->memmap[VIRT_GIC_REDIST].size); 471 } else { 472 /* 'cortex-a15-gic' means 'GIC v2' */ 473 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 474 "arm,cortex-a15-gic"); 475 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 476 2, vbi->memmap[VIRT_GIC_DIST].base, 477 2, vbi->memmap[VIRT_GIC_DIST].size, 478 2, vbi->memmap[VIRT_GIC_CPU].base, 479 2, vbi->memmap[VIRT_GIC_CPU].size); 480 } 481 482 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle); 483 } 484 485 static void fdt_add_pmu_nodes(const VirtBoardInfo *vbi, int gictype) 486 { 487 CPUState *cpu; 488 ARMCPU *armcpu; 489 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 490 491 CPU_FOREACH(cpu) { 492 armcpu = ARM_CPU(cpu); 493 if (!armcpu->has_pmu || 494 !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) { 495 return; 496 } 497 } 498 499 if (gictype == 2) { 500 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 501 GIC_FDT_IRQ_PPI_CPU_WIDTH, 502 (1 << vbi->smp_cpus) - 1); 503 } 504 505 armcpu = ARM_CPU(qemu_get_cpu(0)); 506 qemu_fdt_add_subnode(vbi->fdt, "/pmu"); 507 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 508 const char compat[] = "arm,armv8-pmuv3"; 509 qemu_fdt_setprop(vbi->fdt, "/pmu", "compatible", 510 compat, sizeof(compat)); 511 qemu_fdt_setprop_cells(vbi->fdt, "/pmu", "interrupts", 512 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 513 } 514 } 515 516 static void create_its(VirtBoardInfo *vbi, DeviceState *gicdev) 517 { 518 const char *itsclass = its_class_name(); 519 DeviceState *dev; 520 521 if (!itsclass) { 522 /* Do nothing if not supported */ 523 return; 524 } 525 526 dev = qdev_create(NULL, itsclass); 527 528 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3", 529 &error_abort); 530 qdev_init_nofail(dev); 531 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_ITS].base); 532 533 fdt_add_its_gic_node(vbi); 534 } 535 536 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic) 537 { 538 int i; 539 int irq = vbi->irqmap[VIRT_GIC_V2M]; 540 DeviceState *dev; 541 542 dev = qdev_create(NULL, "arm-gicv2m"); 543 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base); 544 qdev_prop_set_uint32(dev, "base-spi", irq); 545 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 546 qdev_init_nofail(dev); 547 548 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 549 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 550 } 551 552 fdt_add_v2m_gic_node(vbi); 553 } 554 555 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure) 556 { 557 /* We create a standalone GIC */ 558 DeviceState *gicdev; 559 SysBusDevice *gicbusdev; 560 const char *gictype; 561 int i; 562 563 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 564 565 gicdev = qdev_create(NULL, gictype); 566 qdev_prop_set_uint32(gicdev, "revision", type); 567 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 568 /* Note that the num-irq property counts both internal and external 569 * interrupts; there are always 32 of the former (mandated by GIC spec). 570 */ 571 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 572 if (!kvm_irqchip_in_kernel()) { 573 qdev_prop_set_bit(gicdev, "has-security-extensions", secure); 574 } 575 qdev_init_nofail(gicdev); 576 gicbusdev = SYS_BUS_DEVICE(gicdev); 577 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 578 if (type == 3) { 579 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base); 580 } else { 581 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 582 } 583 584 /* Wire the outputs from each CPU's generic timer to the 585 * appropriate GIC PPI inputs, and the GIC's IRQ output to 586 * the CPU's IRQ input. 587 */ 588 for (i = 0; i < smp_cpus; i++) { 589 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 590 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 591 int irq; 592 /* Mapping from the output timer irq lines from the CPU to the 593 * GIC PPI inputs we use for the virt board. 594 */ 595 const int timer_irq[] = { 596 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 597 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 598 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 599 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 600 }; 601 602 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 603 qdev_connect_gpio_out(cpudev, irq, 604 qdev_get_gpio_in(gicdev, 605 ppibase + timer_irq[irq])); 606 } 607 608 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 609 sysbus_connect_irq(gicbusdev, i + smp_cpus, 610 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 611 } 612 613 for (i = 0; i < NUM_IRQS; i++) { 614 pic[i] = qdev_get_gpio_in(gicdev, i); 615 } 616 617 fdt_add_gic_node(vbi, type); 618 619 if (type == 3) { 620 create_its(vbi, gicdev); 621 } else { 622 create_v2m(vbi, pic); 623 } 624 } 625 626 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart, 627 MemoryRegion *mem, CharDriverState *chr) 628 { 629 char *nodename; 630 hwaddr base = vbi->memmap[uart].base; 631 hwaddr size = vbi->memmap[uart].size; 632 int irq = vbi->irqmap[uart]; 633 const char compat[] = "arm,pl011\0arm,primecell"; 634 const char clocknames[] = "uartclk\0apb_pclk"; 635 DeviceState *dev = qdev_create(NULL, "pl011"); 636 SysBusDevice *s = SYS_BUS_DEVICE(dev); 637 638 qdev_prop_set_chr(dev, "chardev", chr); 639 qdev_init_nofail(dev); 640 memory_region_add_subregion(mem, base, 641 sysbus_mmio_get_region(s, 0)); 642 sysbus_connect_irq(s, 0, pic[irq]); 643 644 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 645 qemu_fdt_add_subnode(vbi->fdt, nodename); 646 /* Note that we can't use setprop_string because of the embedded NUL */ 647 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 648 compat, sizeof(compat)); 649 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 650 2, base, 2, size); 651 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 652 GIC_FDT_IRQ_TYPE_SPI, irq, 653 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 654 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 655 vbi->clock_phandle, vbi->clock_phandle); 656 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 657 clocknames, sizeof(clocknames)); 658 659 if (uart == VIRT_UART) { 660 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 661 } else { 662 /* Mark as not usable by the normal world */ 663 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 664 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 665 } 666 667 g_free(nodename); 668 } 669 670 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 671 { 672 char *nodename; 673 hwaddr base = vbi->memmap[VIRT_RTC].base; 674 hwaddr size = vbi->memmap[VIRT_RTC].size; 675 int irq = vbi->irqmap[VIRT_RTC]; 676 const char compat[] = "arm,pl031\0arm,primecell"; 677 678 sysbus_create_simple("pl031", base, pic[irq]); 679 680 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 681 qemu_fdt_add_subnode(vbi->fdt, nodename); 682 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 683 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 684 2, base, 2, size); 685 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 686 GIC_FDT_IRQ_TYPE_SPI, irq, 687 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 688 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 689 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 690 g_free(nodename); 691 } 692 693 static DeviceState *gpio_key_dev; 694 static void virt_powerdown_req(Notifier *n, void *opaque) 695 { 696 /* use gpio Pin 3 for power button event */ 697 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 698 } 699 700 static Notifier virt_system_powerdown_notifier = { 701 .notify = virt_powerdown_req 702 }; 703 704 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic) 705 { 706 char *nodename; 707 DeviceState *pl061_dev; 708 hwaddr base = vbi->memmap[VIRT_GPIO].base; 709 hwaddr size = vbi->memmap[VIRT_GPIO].size; 710 int irq = vbi->irqmap[VIRT_GPIO]; 711 const char compat[] = "arm,pl061\0arm,primecell"; 712 713 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 714 715 uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt); 716 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 717 qemu_fdt_add_subnode(vbi->fdt, nodename); 718 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 719 2, base, 2, size); 720 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 721 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2); 722 qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0); 723 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 724 GIC_FDT_IRQ_TYPE_SPI, irq, 725 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 726 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 727 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 728 qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle); 729 730 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 731 qdev_get_gpio_in(pl061_dev, 3)); 732 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys"); 733 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys"); 734 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0); 735 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1); 736 737 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff"); 738 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff", 739 "label", "GPIO Key Poweroff"); 740 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code", 741 KEY_POWER); 742 qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff", 743 "gpios", phandle, 3, 0); 744 745 /* connect powerdown request */ 746 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); 747 748 g_free(nodename); 749 } 750 751 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 752 { 753 int i; 754 hwaddr size = vbi->memmap[VIRT_MMIO].size; 755 756 /* We create the transports in forwards order. Since qbus_realize() 757 * prepends (not appends) new child buses, the incrementing loop below will 758 * create a list of virtio-mmio buses with decreasing base addresses. 759 * 760 * When a -device option is processed from the command line, 761 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 762 * order. The upshot is that -device options in increasing command line 763 * order are mapped to virtio-mmio buses with decreasing base addresses. 764 * 765 * When this code was originally written, that arrangement ensured that the 766 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 767 * the first -device on the command line. (The end-to-end order is a 768 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 769 * guest kernel's name-to-address assignment strategy.) 770 * 771 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 772 * the message, if not necessarily the code, of commit 70161ff336. 773 * Therefore the loop now establishes the inverse of the original intent. 774 * 775 * Unfortunately, we can't counteract the kernel change by reversing the 776 * loop; it would break existing command lines. 777 * 778 * In any case, the kernel makes no guarantee about the stability of 779 * enumeration order of virtio devices (as demonstrated by it changing 780 * between kernel versions). For reliable and stable identification 781 * of disks users must use UUIDs or similar mechanisms. 782 */ 783 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 784 int irq = vbi->irqmap[VIRT_MMIO] + i; 785 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 786 787 sysbus_create_simple("virtio-mmio", base, pic[irq]); 788 } 789 790 /* We add dtb nodes in reverse order so that they appear in the finished 791 * device tree lowest address first. 792 * 793 * Note that this mapping is independent of the loop above. The previous 794 * loop influences virtio device to virtio transport assignment, whereas 795 * this loop controls how virtio transports are laid out in the dtb. 796 */ 797 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 798 char *nodename; 799 int irq = vbi->irqmap[VIRT_MMIO] + i; 800 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 801 802 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 803 qemu_fdt_add_subnode(vbi->fdt, nodename); 804 qemu_fdt_setprop_string(vbi->fdt, nodename, 805 "compatible", "virtio,mmio"); 806 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 807 2, base, 2, size); 808 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 809 GIC_FDT_IRQ_TYPE_SPI, irq, 810 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 811 g_free(nodename); 812 } 813 } 814 815 static void create_one_flash(const char *name, hwaddr flashbase, 816 hwaddr flashsize, const char *file, 817 MemoryRegion *sysmem) 818 { 819 /* Create and map a single flash device. We use the same 820 * parameters as the flash devices on the Versatile Express board. 821 */ 822 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 823 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 824 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 825 const uint64_t sectorlength = 256 * 1024; 826 827 if (dinfo) { 828 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 829 &error_abort); 830 } 831 832 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 833 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 834 qdev_prop_set_uint8(dev, "width", 4); 835 qdev_prop_set_uint8(dev, "device-width", 2); 836 qdev_prop_set_bit(dev, "big-endian", false); 837 qdev_prop_set_uint16(dev, "id0", 0x89); 838 qdev_prop_set_uint16(dev, "id1", 0x18); 839 qdev_prop_set_uint16(dev, "id2", 0x00); 840 qdev_prop_set_uint16(dev, "id3", 0x00); 841 qdev_prop_set_string(dev, "name", name); 842 qdev_init_nofail(dev); 843 844 memory_region_add_subregion(sysmem, flashbase, 845 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0)); 846 847 if (file) { 848 char *fn; 849 int image_size; 850 851 if (drive_get(IF_PFLASH, 0, 0)) { 852 error_report("The contents of the first flash device may be " 853 "specified with -bios or with -drive if=pflash... " 854 "but you cannot use both options at once"); 855 exit(1); 856 } 857 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file); 858 if (!fn) { 859 error_report("Could not find ROM image '%s'", file); 860 exit(1); 861 } 862 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0)); 863 g_free(fn); 864 if (image_size < 0) { 865 error_report("Could not load ROM image '%s'", file); 866 exit(1); 867 } 868 } 869 } 870 871 static void create_flash(const VirtBoardInfo *vbi, 872 MemoryRegion *sysmem, 873 MemoryRegion *secure_sysmem) 874 { 875 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 876 * Any file passed via -bios goes in the first of these. 877 * sysmem is the system memory space. secure_sysmem is the secure view 878 * of the system, and the first flash device should be made visible only 879 * there. The second flash device is visible to both secure and nonsecure. 880 * If sysmem == secure_sysmem this means there is no separate Secure 881 * address space and both flash devices are generally visible. 882 */ 883 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 884 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 885 char *nodename; 886 887 create_one_flash("virt.flash0", flashbase, flashsize, 888 bios_name, secure_sysmem); 889 create_one_flash("virt.flash1", flashbase + flashsize, flashsize, 890 NULL, sysmem); 891 892 if (sysmem == secure_sysmem) { 893 /* Report both flash devices as a single node in the DT */ 894 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 895 qemu_fdt_add_subnode(vbi->fdt, nodename); 896 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 897 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 898 2, flashbase, 2, flashsize, 899 2, flashbase + flashsize, 2, flashsize); 900 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 901 g_free(nodename); 902 } else { 903 /* Report the devices as separate nodes so we can mark one as 904 * only visible to the secure world. 905 */ 906 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 907 qemu_fdt_add_subnode(vbi->fdt, nodename); 908 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 909 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 910 2, flashbase, 2, flashsize); 911 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 912 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 913 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 914 g_free(nodename); 915 916 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 917 qemu_fdt_add_subnode(vbi->fdt, nodename); 918 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 919 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 920 2, flashbase + flashsize, 2, flashsize); 921 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 922 g_free(nodename); 923 } 924 } 925 926 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as) 927 { 928 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 929 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 930 char *nodename; 931 932 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 933 934 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 935 qemu_fdt_add_subnode(vbi->fdt, nodename); 936 qemu_fdt_setprop_string(vbi->fdt, nodename, 937 "compatible", "qemu,fw-cfg-mmio"); 938 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 939 2, base, 2, size); 940 g_free(nodename); 941 } 942 943 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 944 int first_irq, const char *nodename) 945 { 946 int devfn, pin; 947 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 948 uint32_t *irq_map = full_irq_map; 949 950 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 951 for (pin = 0; pin < 4; pin++) { 952 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 953 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 954 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 955 int i; 956 957 uint32_t map[] = { 958 devfn << 8, 0, 0, /* devfn */ 959 pin + 1, /* PCI pin */ 960 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 961 962 /* Convert map to big endian */ 963 for (i = 0; i < 10; i++) { 964 irq_map[i] = cpu_to_be32(map[i]); 965 } 966 irq_map += 10; 967 } 968 } 969 970 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 971 full_irq_map, sizeof(full_irq_map)); 972 973 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 974 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 975 0x7 /* PCI irq */); 976 } 977 978 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic, 979 bool use_highmem) 980 { 981 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base; 982 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size; 983 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base; 984 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size; 985 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base; 986 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size; 987 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base; 988 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size; 989 hwaddr base = base_mmio; 990 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 991 int irq = vbi->irqmap[VIRT_PCIE]; 992 MemoryRegion *mmio_alias; 993 MemoryRegion *mmio_reg; 994 MemoryRegion *ecam_alias; 995 MemoryRegion *ecam_reg; 996 DeviceState *dev; 997 char *nodename; 998 int i; 999 PCIHostState *pci; 1000 1001 dev = qdev_create(NULL, TYPE_GPEX_HOST); 1002 qdev_init_nofail(dev); 1003 1004 /* Map only the first size_ecam bytes of ECAM space */ 1005 ecam_alias = g_new0(MemoryRegion, 1); 1006 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1007 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1008 ecam_reg, 0, size_ecam); 1009 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1010 1011 /* Map the MMIO window into system address space so as to expose 1012 * the section of PCI MMIO space which starts at the same base address 1013 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1014 * the window). 1015 */ 1016 mmio_alias = g_new0(MemoryRegion, 1); 1017 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1018 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1019 mmio_reg, base_mmio, size_mmio); 1020 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1021 1022 if (use_highmem) { 1023 /* Map high MMIO space */ 1024 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1025 1026 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1027 mmio_reg, base_mmio_high, size_mmio_high); 1028 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1029 high_mmio_alias); 1030 } 1031 1032 /* Map IO port space */ 1033 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1034 1035 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1036 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1037 } 1038 1039 pci = PCI_HOST_BRIDGE(dev); 1040 if (pci->bus) { 1041 for (i = 0; i < nb_nics; i++) { 1042 NICInfo *nd = &nd_table[i]; 1043 1044 if (!nd->model) { 1045 nd->model = g_strdup("virtio"); 1046 } 1047 1048 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1049 } 1050 } 1051 1052 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1053 qemu_fdt_add_subnode(vbi->fdt, nodename); 1054 qemu_fdt_setprop_string(vbi->fdt, nodename, 1055 "compatible", "pci-host-ecam-generic"); 1056 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 1057 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 1058 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 1059 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 1060 nr_pcie_buses - 1); 1061 qemu_fdt_setprop(vbi->fdt, nodename, "dma-coherent", NULL, 0); 1062 1063 if (vbi->msi_phandle) { 1064 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", 1065 vbi->msi_phandle); 1066 } 1067 1068 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 1069 2, base_ecam, 2, size_ecam); 1070 1071 if (use_highmem) { 1072 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 1073 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1074 2, base_pio, 2, size_pio, 1075 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1076 2, base_mmio, 2, size_mmio, 1077 1, FDT_PCI_RANGE_MMIO_64BIT, 1078 2, base_mmio_high, 1079 2, base_mmio_high, 2, size_mmio_high); 1080 } else { 1081 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 1082 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1083 2, base_pio, 2, size_pio, 1084 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1085 2, base_mmio, 2, size_mmio); 1086 } 1087 1088 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 1089 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename); 1090 1091 g_free(nodename); 1092 } 1093 1094 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic) 1095 { 1096 DeviceState *dev; 1097 SysBusDevice *s; 1098 int i; 1099 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 1100 MemoryRegion *sysmem = get_system_memory(); 1101 1102 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base; 1103 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size; 1104 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS]; 1105 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 1106 1107 fdt_params->system_params = &platform_bus_params; 1108 fdt_params->binfo = &vbi->bootinfo; 1109 fdt_params->intc = "/intc"; 1110 /* 1111 * register a machine init done notifier that creates the device tree 1112 * nodes of the platform bus and its children dynamic sysbus devices 1113 */ 1114 arm_register_platform_bus_fdt_creator(fdt_params); 1115 1116 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 1117 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1118 qdev_prop_set_uint32(dev, "num_irqs", 1119 platform_bus_params.platform_bus_num_irqs); 1120 qdev_prop_set_uint32(dev, "mmio_size", 1121 platform_bus_params.platform_bus_size); 1122 qdev_init_nofail(dev); 1123 s = SYS_BUS_DEVICE(dev); 1124 1125 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 1126 int irqn = platform_bus_params.platform_bus_first_irq + i; 1127 sysbus_connect_irq(s, i, pic[irqn]); 1128 } 1129 1130 memory_region_add_subregion(sysmem, 1131 platform_bus_params.platform_bus_base, 1132 sysbus_mmio_get_region(s, 0)); 1133 } 1134 1135 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem) 1136 { 1137 MemoryRegion *secram = g_new(MemoryRegion, 1); 1138 char *nodename; 1139 hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base; 1140 hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size; 1141 1142 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal); 1143 vmstate_register_ram_global(secram); 1144 memory_region_add_subregion(secure_sysmem, base, secram); 1145 1146 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1147 qemu_fdt_add_subnode(vbi->fdt, nodename); 1148 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory"); 1149 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size); 1150 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 1151 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 1152 1153 g_free(nodename); 1154 } 1155 1156 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1157 { 1158 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 1159 1160 *fdt_size = board->fdt_size; 1161 return board->fdt; 1162 } 1163 1164 static void virt_build_smbios(VirtGuestInfo *guest_info) 1165 { 1166 FWCfgState *fw_cfg = guest_info->fw_cfg; 1167 uint8_t *smbios_tables, *smbios_anchor; 1168 size_t smbios_tables_len, smbios_anchor_len; 1169 const char *product = "QEMU Virtual Machine"; 1170 1171 if (!fw_cfg) { 1172 return; 1173 } 1174 1175 if (kvm_enabled()) { 1176 product = "KVM Virtual Machine"; 1177 } 1178 1179 smbios_set_defaults("QEMU", product, 1180 "1.0", false, true, SMBIOS_ENTRY_POINT_30); 1181 1182 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, 1183 &smbios_anchor, &smbios_anchor_len); 1184 1185 if (smbios_anchor) { 1186 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 1187 smbios_tables, smbios_tables_len); 1188 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 1189 smbios_anchor, smbios_anchor_len); 1190 } 1191 } 1192 1193 static 1194 void virt_guest_info_machine_done(Notifier *notifier, void *data) 1195 { 1196 VirtGuestInfoState *guest_info_state = container_of(notifier, 1197 VirtGuestInfoState, machine_done); 1198 virt_acpi_setup(&guest_info_state->info); 1199 virt_build_smbios(&guest_info_state->info); 1200 } 1201 1202 static void machvirt_init(MachineState *machine) 1203 { 1204 VirtMachineState *vms = VIRT_MACHINE(machine); 1205 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1206 qemu_irq pic[NUM_IRQS]; 1207 MemoryRegion *sysmem = get_system_memory(); 1208 MemoryRegion *secure_sysmem = NULL; 1209 int gic_version = vms->gic_version; 1210 int n, virt_max_cpus; 1211 MemoryRegion *ram = g_new(MemoryRegion, 1); 1212 const char *cpu_model = machine->cpu_model; 1213 VirtBoardInfo *vbi; 1214 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 1215 VirtGuestInfo *guest_info = &guest_info_state->info; 1216 char **cpustr; 1217 ObjectClass *oc; 1218 const char *typename; 1219 CPUClass *cc; 1220 Error *err = NULL; 1221 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 1222 uint8_t clustersz; 1223 1224 if (!cpu_model) { 1225 cpu_model = "cortex-a15"; 1226 } 1227 1228 /* We can probe only here because during property set 1229 * KVM is not available yet 1230 */ 1231 if (!gic_version) { 1232 if (!kvm_enabled()) { 1233 error_report("gic-version=host requires KVM"); 1234 exit(1); 1235 } 1236 1237 gic_version = kvm_arm_vgic_probe(); 1238 if (!gic_version) { 1239 error_report("Unable to determine GIC version supported by host"); 1240 exit(1); 1241 } 1242 } 1243 1244 /* Separate the actual CPU model name from any appended features */ 1245 cpustr = g_strsplit(cpu_model, ",", 2); 1246 1247 vbi = find_machine_info(cpustr[0]); 1248 1249 if (!vbi) { 1250 error_report("mach-virt: CPU %s not supported", cpustr[0]); 1251 exit(1); 1252 } 1253 1254 /* If we have an EL3 boot ROM then the assumption is that it will 1255 * implement PSCI itself, so disable QEMU's internal implementation 1256 * so it doesn't get in the way. Instead of starting secondary 1257 * CPUs in PSCI powerdown state we will start them all running and 1258 * let the boot ROM sort them out. 1259 * The usual case is that we do use QEMU's PSCI implementation. 1260 */ 1261 vbi->using_psci = !(vms->secure && firmware_loaded); 1262 1263 /* The maximum number of CPUs depends on the GIC version, or on how 1264 * many redistributors we can fit into the memory map. 1265 */ 1266 if (gic_version == 3) { 1267 virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000; 1268 clustersz = GICV3_TARGETLIST_BITS; 1269 } else { 1270 virt_max_cpus = GIC_NCPU; 1271 clustersz = GIC_TARGETLIST_BITS; 1272 } 1273 1274 if (max_cpus > virt_max_cpus) { 1275 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1276 "supported by machine 'mach-virt' (%d)", 1277 max_cpus, virt_max_cpus); 1278 exit(1); 1279 } 1280 1281 vbi->smp_cpus = smp_cpus; 1282 1283 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 1284 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB); 1285 exit(1); 1286 } 1287 1288 if (vms->secure) { 1289 if (kvm_enabled()) { 1290 error_report("mach-virt: KVM does not support Security extensions"); 1291 exit(1); 1292 } 1293 1294 /* The Secure view of the world is the same as the NonSecure, 1295 * but with a few extra devices. Create it as a container region 1296 * containing the system memory at low priority; any secure-only 1297 * devices go in at higher priority and take precedence. 1298 */ 1299 secure_sysmem = g_new(MemoryRegion, 1); 1300 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1301 UINT64_MAX); 1302 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1303 } 1304 1305 create_fdt(vbi); 1306 1307 oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 1308 if (!oc) { 1309 error_report("Unable to find CPU definition"); 1310 exit(1); 1311 } 1312 typename = object_class_get_name(oc); 1313 1314 /* convert -smp CPU options specified by the user into global props */ 1315 cc = CPU_CLASS(oc); 1316 cc->parse_features(typename, cpustr[1], &err); 1317 g_strfreev(cpustr); 1318 if (err) { 1319 error_report_err(err); 1320 exit(1); 1321 } 1322 1323 for (n = 0; n < smp_cpus; n++) { 1324 Object *cpuobj = object_new(typename); 1325 if (!vmc->disallow_affinity_adjustment) { 1326 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1327 * GIC's target-list limitations. 32-bit KVM hosts currently 1328 * always create clusters of 4 CPUs, but that is expected to 1329 * change when they gain support for gicv3. When KVM is enabled 1330 * it will override the changes we make here, therefore our 1331 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1332 * and to improve SGI efficiency. 1333 */ 1334 uint8_t aff1 = n / clustersz; 1335 uint8_t aff0 = n % clustersz; 1336 object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0, 1337 "mp-affinity", NULL); 1338 } 1339 1340 if (!vms->secure) { 1341 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1342 } 1343 1344 if (vbi->using_psci) { 1345 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, 1346 "psci-conduit", NULL); 1347 1348 /* Secondary CPUs start in PSCI powered-down state */ 1349 if (n > 0) { 1350 object_property_set_bool(cpuobj, true, 1351 "start-powered-off", NULL); 1352 } 1353 } 1354 1355 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1356 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 1357 "reset-cbar", &error_abort); 1358 } 1359 1360 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1361 &error_abort); 1362 if (vms->secure) { 1363 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1364 "secure-memory", &error_abort); 1365 } 1366 1367 object_property_set_bool(cpuobj, true, "realized", NULL); 1368 } 1369 fdt_add_timer_nodes(vbi, gic_version); 1370 fdt_add_cpu_nodes(vbi); 1371 fdt_add_psci_node(vbi); 1372 1373 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1374 machine->ram_size); 1375 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 1376 1377 create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem); 1378 1379 create_gic(vbi, pic, gic_version, vms->secure); 1380 1381 fdt_add_pmu_nodes(vbi, gic_version); 1382 1383 create_uart(vbi, pic, VIRT_UART, sysmem, serial_hds[0]); 1384 1385 if (vms->secure) { 1386 create_secure_ram(vbi, secure_sysmem); 1387 create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]); 1388 } 1389 1390 create_rtc(vbi, pic); 1391 1392 create_pcie(vbi, pic, vms->highmem); 1393 1394 create_gpio(vbi, pic); 1395 1396 /* Create mmio transports, so the user can create virtio backends 1397 * (which will be automatically plugged in to the transports). If 1398 * no backend is created the transport will just sit harmlessly idle. 1399 */ 1400 create_virtio_devices(vbi, pic); 1401 1402 create_fw_cfg(vbi, &address_space_memory); 1403 rom_set_fw(fw_cfg_find()); 1404 1405 guest_info->smp_cpus = smp_cpus; 1406 guest_info->fw_cfg = fw_cfg_find(); 1407 guest_info->memmap = vbi->memmap; 1408 guest_info->irqmap = vbi->irqmap; 1409 guest_info->use_highmem = vms->highmem; 1410 guest_info->gic_version = gic_version; 1411 guest_info_state->machine_done.notify = virt_guest_info_machine_done; 1412 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 1413 1414 vbi->bootinfo.ram_size = machine->ram_size; 1415 vbi->bootinfo.kernel_filename = machine->kernel_filename; 1416 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1417 vbi->bootinfo.initrd_filename = machine->initrd_filename; 1418 vbi->bootinfo.nb_cpus = smp_cpus; 1419 vbi->bootinfo.board_id = -1; 1420 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 1421 vbi->bootinfo.get_dtb = machvirt_dtb; 1422 vbi->bootinfo.firmware_loaded = firmware_loaded; 1423 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 1424 1425 /* 1426 * arm_load_kernel machine init done notifier registration must 1427 * happen before the platform_bus_create call. In this latter, 1428 * another notifier is registered which adds platform bus nodes. 1429 * Notifiers are executed in registration reverse order. 1430 */ 1431 create_platform_bus(vbi, pic); 1432 } 1433 1434 static bool virt_get_secure(Object *obj, Error **errp) 1435 { 1436 VirtMachineState *vms = VIRT_MACHINE(obj); 1437 1438 return vms->secure; 1439 } 1440 1441 static void virt_set_secure(Object *obj, bool value, Error **errp) 1442 { 1443 VirtMachineState *vms = VIRT_MACHINE(obj); 1444 1445 vms->secure = value; 1446 } 1447 1448 static bool virt_get_highmem(Object *obj, Error **errp) 1449 { 1450 VirtMachineState *vms = VIRT_MACHINE(obj); 1451 1452 return vms->highmem; 1453 } 1454 1455 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1456 { 1457 VirtMachineState *vms = VIRT_MACHINE(obj); 1458 1459 vms->highmem = value; 1460 } 1461 1462 static char *virt_get_gic_version(Object *obj, Error **errp) 1463 { 1464 VirtMachineState *vms = VIRT_MACHINE(obj); 1465 const char *val = vms->gic_version == 3 ? "3" : "2"; 1466 1467 return g_strdup(val); 1468 } 1469 1470 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1471 { 1472 VirtMachineState *vms = VIRT_MACHINE(obj); 1473 1474 if (!strcmp(value, "3")) { 1475 vms->gic_version = 3; 1476 } else if (!strcmp(value, "2")) { 1477 vms->gic_version = 2; 1478 } else if (!strcmp(value, "host")) { 1479 vms->gic_version = 0; /* Will probe later */ 1480 } else { 1481 error_setg(errp, "Invalid gic-version value"); 1482 error_append_hint(errp, "Valid values are 3, 2, host.\n"); 1483 } 1484 } 1485 1486 static void virt_machine_class_init(ObjectClass *oc, void *data) 1487 { 1488 MachineClass *mc = MACHINE_CLASS(oc); 1489 1490 mc->init = machvirt_init; 1491 /* Start max_cpus at the maximum QEMU supports. We'll further restrict 1492 * it later in machvirt_init, where we have more information about the 1493 * configuration of the particular instance. 1494 */ 1495 mc->max_cpus = MAX_CPUMASK_BITS; 1496 mc->has_dynamic_sysbus = true; 1497 mc->block_default_type = IF_VIRTIO; 1498 mc->no_cdrom = 1; 1499 mc->pci_allow_0_address = true; 1500 } 1501 1502 static const TypeInfo virt_machine_info = { 1503 .name = TYPE_VIRT_MACHINE, 1504 .parent = TYPE_MACHINE, 1505 .abstract = true, 1506 .instance_size = sizeof(VirtMachineState), 1507 .class_size = sizeof(VirtMachineClass), 1508 .class_init = virt_machine_class_init, 1509 }; 1510 1511 static void machvirt_machine_init(void) 1512 { 1513 type_register_static(&virt_machine_info); 1514 } 1515 type_init(machvirt_machine_init); 1516 1517 static void virt_2_8_instance_init(Object *obj) 1518 { 1519 VirtMachineState *vms = VIRT_MACHINE(obj); 1520 1521 /* EL3 is disabled by default on virt: this makes us consistent 1522 * between KVM and TCG for this board, and it also allows us to 1523 * boot UEFI blobs which assume no TrustZone support. 1524 */ 1525 vms->secure = false; 1526 object_property_add_bool(obj, "secure", virt_get_secure, 1527 virt_set_secure, NULL); 1528 object_property_set_description(obj, "secure", 1529 "Set on/off to enable/disable the ARM " 1530 "Security Extensions (TrustZone)", 1531 NULL); 1532 1533 /* High memory is enabled by default */ 1534 vms->highmem = true; 1535 object_property_add_bool(obj, "highmem", virt_get_highmem, 1536 virt_set_highmem, NULL); 1537 object_property_set_description(obj, "highmem", 1538 "Set on/off to enable/disable using " 1539 "physical address space above 32 bits", 1540 NULL); 1541 /* Default GIC type is v2 */ 1542 vms->gic_version = 2; 1543 object_property_add_str(obj, "gic-version", virt_get_gic_version, 1544 virt_set_gic_version, NULL); 1545 object_property_set_description(obj, "gic-version", 1546 "Set GIC version. " 1547 "Valid values are 2, 3 and host", NULL); 1548 } 1549 1550 static void virt_machine_2_8_options(MachineClass *mc) 1551 { 1552 } 1553 DEFINE_VIRT_MACHINE_AS_LATEST(2, 8) 1554 1555 #define VIRT_COMPAT_2_7 \ 1556 HW_COMPAT_2_7 1557 1558 static void virt_2_7_instance_init(Object *obj) 1559 { 1560 virt_2_8_instance_init(obj); 1561 } 1562 1563 static void virt_machine_2_7_options(MachineClass *mc) 1564 { 1565 virt_machine_2_8_options(mc); 1566 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7); 1567 } 1568 DEFINE_VIRT_MACHINE(2, 7) 1569 1570 #define VIRT_COMPAT_2_6 \ 1571 HW_COMPAT_2_6 1572 1573 static void virt_2_6_instance_init(Object *obj) 1574 { 1575 virt_2_7_instance_init(obj); 1576 } 1577 1578 static void virt_machine_2_6_options(MachineClass *mc) 1579 { 1580 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 1581 1582 virt_machine_2_7_options(mc); 1583 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6); 1584 vmc->disallow_affinity_adjustment = true; 1585 } 1586 DEFINE_VIRT_MACHINE(2, 6) 1587