1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qapi/error.h" 33 #include "hw/sysbus.h" 34 #include "hw/arm/arm.h" 35 #include "hw/arm/primecell.h" 36 #include "hw/arm/virt.h" 37 #include "hw/devices.h" 38 #include "net/net.h" 39 #include "sysemu/block-backend.h" 40 #include "sysemu/device_tree.h" 41 #include "sysemu/sysemu.h" 42 #include "sysemu/kvm.h" 43 #include "hw/boards.h" 44 #include "hw/loader.h" 45 #include "exec/address-spaces.h" 46 #include "qemu/bitops.h" 47 #include "qemu/error-report.h" 48 #include "hw/pci-host/gpex.h" 49 #include "hw/arm/virt-acpi-build.h" 50 #include "hw/arm/sysbus-fdt.h" 51 #include "hw/platform-bus.h" 52 #include "hw/arm/fdt.h" 53 #include "hw/intc/arm_gic_common.h" 54 #include "kvm_arm.h" 55 #include "hw/smbios/smbios.h" 56 #include "qapi/visitor.h" 57 #include "standard-headers/linux/input.h" 58 59 /* Number of external interrupt lines to configure the GIC with */ 60 #define NUM_IRQS 256 61 62 #define PLATFORM_BUS_NUM_IRQS 64 63 64 static ARMPlatformBusSystemParams platform_bus_params; 65 66 typedef struct VirtBoardInfo { 67 struct arm_boot_info bootinfo; 68 const char *cpu_model; 69 const MemMapEntry *memmap; 70 const int *irqmap; 71 int smp_cpus; 72 void *fdt; 73 int fdt_size; 74 uint32_t clock_phandle; 75 uint32_t gic_phandle; 76 uint32_t v2m_phandle; 77 bool using_psci; 78 } VirtBoardInfo; 79 80 typedef struct { 81 MachineClass parent; 82 VirtBoardInfo *daughterboard; 83 } VirtMachineClass; 84 85 typedef struct { 86 MachineState parent; 87 bool secure; 88 bool highmem; 89 int32_t gic_version; 90 } VirtMachineState; 91 92 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt") 93 #define VIRT_MACHINE(obj) \ 94 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE) 95 #define VIRT_MACHINE_GET_CLASS(obj) \ 96 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE) 97 #define VIRT_MACHINE_CLASS(klass) \ 98 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE) 99 100 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means 101 * RAM can go up to the 256GB mark, leaving 256GB of the physical 102 * address space unallocated and free for future use between 256G and 512G. 103 * If we need to provide more RAM to VMs in the future then we need to: 104 * * allocate a second bank of RAM starting at 2TB and working up 105 * * fix the DT and ACPI table generation code in QEMU to correctly 106 * report two split lumps of RAM to the guest 107 * * fix KVM in the host kernel to allow guests with >40 bit address spaces 108 * (We don't want to fill all the way up to 512GB with RAM because 109 * we might want it for non-RAM purposes later. Conversely it seems 110 * reasonable to assume that anybody configuring a VM with a quarter 111 * of a terabyte of RAM will be doing it on a host with more than a 112 * terabyte of physical address space.) 113 */ 114 #define RAMLIMIT_GB 255 115 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024) 116 117 /* Addresses and sizes of our components. 118 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 119 * 128MB..256MB is used for miscellaneous device I/O. 120 * 256MB..1GB is reserved for possible future PCI support (ie where the 121 * PCI memory window will go if we add a PCI host controller). 122 * 1GB and up is RAM (which may happily spill over into the 123 * high memory region beyond 4GB). 124 * This represents a compromise between how much RAM can be given to 125 * a 32 bit VM and leaving space for expansion and in particular for PCI. 126 * Note that devices should generally be placed at multiples of 0x10000, 127 * to accommodate guests using 64K pages. 128 */ 129 static const MemMapEntry a15memmap[] = { 130 /* Space up to 0x8000000 is reserved for a boot ROM */ 131 [VIRT_FLASH] = { 0, 0x08000000 }, 132 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 133 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 134 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 135 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 136 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 137 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 138 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 139 /* This redistributor space allows up to 2*64kB*123 CPUs */ 140 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 141 [VIRT_UART] = { 0x09000000, 0x00001000 }, 142 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 143 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 144 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 145 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 146 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 147 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 148 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 149 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 150 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 151 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 152 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 153 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES }, 154 /* Second PCIe window, 512GB wide at the 512GB boundary */ 155 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, 156 }; 157 158 static const int a15irqmap[] = { 159 [VIRT_UART] = 1, 160 [VIRT_RTC] = 2, 161 [VIRT_PCIE] = 3, /* ... to 6 */ 162 [VIRT_GPIO] = 7, 163 [VIRT_SECURE_UART] = 8, 164 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 165 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 166 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 167 }; 168 169 static VirtBoardInfo machines[] = { 170 { 171 .cpu_model = "cortex-a15", 172 .memmap = a15memmap, 173 .irqmap = a15irqmap, 174 }, 175 { 176 .cpu_model = "cortex-a53", 177 .memmap = a15memmap, 178 .irqmap = a15irqmap, 179 }, 180 { 181 .cpu_model = "cortex-a57", 182 .memmap = a15memmap, 183 .irqmap = a15irqmap, 184 }, 185 { 186 .cpu_model = "host", 187 .memmap = a15memmap, 188 .irqmap = a15irqmap, 189 }, 190 }; 191 192 static VirtBoardInfo *find_machine_info(const char *cpu) 193 { 194 int i; 195 196 for (i = 0; i < ARRAY_SIZE(machines); i++) { 197 if (strcmp(cpu, machines[i].cpu_model) == 0) { 198 return &machines[i]; 199 } 200 } 201 return NULL; 202 } 203 204 static void create_fdt(VirtBoardInfo *vbi) 205 { 206 void *fdt = create_device_tree(&vbi->fdt_size); 207 208 if (!fdt) { 209 error_report("create_device_tree() failed"); 210 exit(1); 211 } 212 213 vbi->fdt = fdt; 214 215 /* Header */ 216 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 217 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 218 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 219 220 /* 221 * /chosen and /memory nodes must exist for load_dtb 222 * to fill in necessary properties later 223 */ 224 qemu_fdt_add_subnode(fdt, "/chosen"); 225 qemu_fdt_add_subnode(fdt, "/memory"); 226 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); 227 228 /* Clock node, for the benefit of the UART. The kernel device tree 229 * binding documentation claims the PL011 node clock properties are 230 * optional but in practice if you omit them the kernel refuses to 231 * probe for the device. 232 */ 233 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); 234 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 235 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 236 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 237 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 238 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 239 "clk24mhz"); 240 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); 241 242 } 243 244 static void fdt_add_psci_node(const VirtBoardInfo *vbi) 245 { 246 uint32_t cpu_suspend_fn; 247 uint32_t cpu_off_fn; 248 uint32_t cpu_on_fn; 249 uint32_t migrate_fn; 250 void *fdt = vbi->fdt; 251 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); 252 253 if (!vbi->using_psci) { 254 return; 255 } 256 257 qemu_fdt_add_subnode(fdt, "/psci"); 258 if (armcpu->psci_version == 2) { 259 const char comp[] = "arm,psci-0.2\0arm,psci"; 260 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); 261 262 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; 263 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { 264 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; 265 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; 266 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; 267 } else { 268 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; 269 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; 270 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; 271 } 272 } else { 273 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); 274 275 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; 276 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; 277 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; 278 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; 279 } 280 281 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer 282 * to the instruction that should be used to invoke PSCI functions. 283 * However, the device tree binding uses 'method' instead, so that is 284 * what we should use here. 285 */ 286 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); 287 288 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); 289 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); 290 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); 291 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); 292 } 293 294 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype) 295 { 296 /* Note that on A15 h/w these interrupts are level-triggered, 297 * but for the GIC implementation provided by both QEMU and KVM 298 * they are edge-triggered. 299 */ 300 ARMCPU *armcpu; 301 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 302 303 if (gictype == 2) { 304 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 305 GIC_FDT_IRQ_PPI_CPU_WIDTH, 306 (1 << vbi->smp_cpus) - 1); 307 } 308 309 qemu_fdt_add_subnode(vbi->fdt, "/timer"); 310 311 armcpu = ARM_CPU(qemu_get_cpu(0)); 312 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 313 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 314 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible", 315 compat, sizeof(compat)); 316 } else { 317 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible", 318 "arm,armv7-timer"); 319 } 320 qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0); 321 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", 322 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 323 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 324 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 325 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 326 } 327 328 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) 329 { 330 int cpu; 331 int addr_cells = 1; 332 333 /* 334 * From Documentation/devicetree/bindings/arm/cpus.txt 335 * On ARM v8 64-bit systems value should be set to 2, 336 * that corresponds to the MPIDR_EL1 register size. 337 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 338 * in the system, #address-cells can be set to 1, since 339 * MPIDR_EL1[63:32] bits are not used for CPUs 340 * identification. 341 * 342 * Here we actually don't know whether our system is 32- or 64-bit one. 343 * The simplest way to go is to examine affinity IDs of all our CPUs. If 344 * at least one of them has Aff3 populated, we set #address-cells to 2. 345 */ 346 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) { 347 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 348 349 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 350 addr_cells = 2; 351 break; 352 } 353 } 354 355 qemu_fdt_add_subnode(vbi->fdt, "/cpus"); 356 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells); 357 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); 358 359 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { 360 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 361 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 362 363 qemu_fdt_add_subnode(vbi->fdt, nodename); 364 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); 365 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", 366 armcpu->dtb_compatible); 367 368 if (vbi->using_psci && vbi->smp_cpus > 1) { 369 qemu_fdt_setprop_string(vbi->fdt, nodename, 370 "enable-method", "psci"); 371 } 372 373 if (addr_cells == 2) { 374 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg", 375 armcpu->mp_affinity); 376 } else { 377 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", 378 armcpu->mp_affinity); 379 } 380 381 g_free(nodename); 382 } 383 } 384 385 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi) 386 { 387 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 388 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m"); 389 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible", 390 "arm,gic-v2m-frame"); 391 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0); 392 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg", 393 2, vbi->memmap[VIRT_GIC_V2M].base, 394 2, vbi->memmap[VIRT_GIC_V2M].size); 395 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle); 396 } 397 398 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type) 399 { 400 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); 401 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle); 402 403 qemu_fdt_add_subnode(vbi->fdt, "/intc"); 404 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); 405 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); 406 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2); 407 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2); 408 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0); 409 if (type == 3) { 410 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 411 "arm,gic-v3"); 412 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 413 2, vbi->memmap[VIRT_GIC_DIST].base, 414 2, vbi->memmap[VIRT_GIC_DIST].size, 415 2, vbi->memmap[VIRT_GIC_REDIST].base, 416 2, vbi->memmap[VIRT_GIC_REDIST].size); 417 } else { 418 /* 'cortex-a15-gic' means 'GIC v2' */ 419 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", 420 "arm,cortex-a15-gic"); 421 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", 422 2, vbi->memmap[VIRT_GIC_DIST].base, 423 2, vbi->memmap[VIRT_GIC_DIST].size, 424 2, vbi->memmap[VIRT_GIC_CPU].base, 425 2, vbi->memmap[VIRT_GIC_CPU].size); 426 } 427 428 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle); 429 } 430 431 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic) 432 { 433 int i; 434 int irq = vbi->irqmap[VIRT_GIC_V2M]; 435 DeviceState *dev; 436 437 dev = qdev_create(NULL, "arm-gicv2m"); 438 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base); 439 qdev_prop_set_uint32(dev, "base-spi", irq); 440 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 441 qdev_init_nofail(dev); 442 443 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 444 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 445 } 446 447 fdt_add_v2m_gic_node(vbi); 448 } 449 450 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure) 451 { 452 /* We create a standalone GIC */ 453 DeviceState *gicdev; 454 SysBusDevice *gicbusdev; 455 const char *gictype; 456 int i; 457 458 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 459 460 gicdev = qdev_create(NULL, gictype); 461 qdev_prop_set_uint32(gicdev, "revision", type); 462 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 463 /* Note that the num-irq property counts both internal and external 464 * interrupts; there are always 32 of the former (mandated by GIC spec). 465 */ 466 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 467 if (!kvm_irqchip_in_kernel()) { 468 qdev_prop_set_bit(gicdev, "has-security-extensions", secure); 469 } 470 qdev_init_nofail(gicdev); 471 gicbusdev = SYS_BUS_DEVICE(gicdev); 472 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base); 473 if (type == 3) { 474 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base); 475 } else { 476 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base); 477 } 478 479 /* Wire the outputs from each CPU's generic timer to the 480 * appropriate GIC PPI inputs, and the GIC's IRQ output to 481 * the CPU's IRQ input. 482 */ 483 for (i = 0; i < smp_cpus; i++) { 484 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 485 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 486 int irq; 487 /* Mapping from the output timer irq lines from the CPU to the 488 * GIC PPI inputs we use for the virt board. 489 */ 490 const int timer_irq[] = { 491 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 492 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 493 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 494 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 495 }; 496 497 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 498 qdev_connect_gpio_out(cpudev, irq, 499 qdev_get_gpio_in(gicdev, 500 ppibase + timer_irq[irq])); 501 } 502 503 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 504 sysbus_connect_irq(gicbusdev, i + smp_cpus, 505 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 506 } 507 508 for (i = 0; i < NUM_IRQS; i++) { 509 pic[i] = qdev_get_gpio_in(gicdev, i); 510 } 511 512 fdt_add_gic_node(vbi, type); 513 514 if (type == 2) { 515 create_v2m(vbi, pic); 516 } 517 } 518 519 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart, 520 MemoryRegion *mem) 521 { 522 char *nodename; 523 hwaddr base = vbi->memmap[uart].base; 524 hwaddr size = vbi->memmap[uart].size; 525 int irq = vbi->irqmap[uart]; 526 const char compat[] = "arm,pl011\0arm,primecell"; 527 const char clocknames[] = "uartclk\0apb_pclk"; 528 DeviceState *dev = qdev_create(NULL, "pl011"); 529 SysBusDevice *s = SYS_BUS_DEVICE(dev); 530 531 qdev_init_nofail(dev); 532 memory_region_add_subregion(mem, base, 533 sysbus_mmio_get_region(s, 0)); 534 sysbus_connect_irq(s, 0, pic[irq]); 535 536 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 537 qemu_fdt_add_subnode(vbi->fdt, nodename); 538 /* Note that we can't use setprop_string because of the embedded NUL */ 539 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", 540 compat, sizeof(compat)); 541 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 542 2, base, 2, size); 543 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 544 GIC_FDT_IRQ_TYPE_SPI, irq, 545 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 546 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", 547 vbi->clock_phandle, vbi->clock_phandle); 548 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", 549 clocknames, sizeof(clocknames)); 550 551 if (uart == VIRT_UART) { 552 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename); 553 } else { 554 /* Mark as not usable by the normal world */ 555 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 556 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 557 } 558 559 g_free(nodename); 560 } 561 562 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic) 563 { 564 char *nodename; 565 hwaddr base = vbi->memmap[VIRT_RTC].base; 566 hwaddr size = vbi->memmap[VIRT_RTC].size; 567 int irq = vbi->irqmap[VIRT_RTC]; 568 const char compat[] = "arm,pl031\0arm,primecell"; 569 570 sysbus_create_simple("pl031", base, pic[irq]); 571 572 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 573 qemu_fdt_add_subnode(vbi->fdt, nodename); 574 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 575 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 576 2, base, 2, size); 577 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 578 GIC_FDT_IRQ_TYPE_SPI, irq, 579 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 580 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 581 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 582 g_free(nodename); 583 } 584 585 static DeviceState *pl061_dev; 586 static void virt_powerdown_req(Notifier *n, void *opaque) 587 { 588 /* use gpio Pin 3 for power button event */ 589 qemu_set_irq(qdev_get_gpio_in(pl061_dev, 3), 1); 590 } 591 592 static Notifier virt_system_powerdown_notifier = { 593 .notify = virt_powerdown_req 594 }; 595 596 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic) 597 { 598 char *nodename; 599 hwaddr base = vbi->memmap[VIRT_GPIO].base; 600 hwaddr size = vbi->memmap[VIRT_GPIO].size; 601 int irq = vbi->irqmap[VIRT_GPIO]; 602 const char compat[] = "arm,pl061\0arm,primecell"; 603 604 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 605 606 uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt); 607 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 608 qemu_fdt_add_subnode(vbi->fdt, nodename); 609 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 610 2, base, 2, size); 611 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat)); 612 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2); 613 qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0); 614 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 615 GIC_FDT_IRQ_TYPE_SPI, irq, 616 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 617 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle); 618 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk"); 619 qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle); 620 621 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys"); 622 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys"); 623 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0); 624 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1); 625 626 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff"); 627 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff", 628 "label", "GPIO Key Poweroff"); 629 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code", 630 KEY_POWER); 631 qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff", 632 "gpios", phandle, 3, 0); 633 634 /* connect powerdown request */ 635 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); 636 637 g_free(nodename); 638 } 639 640 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) 641 { 642 int i; 643 hwaddr size = vbi->memmap[VIRT_MMIO].size; 644 645 /* We create the transports in forwards order. Since qbus_realize() 646 * prepends (not appends) new child buses, the incrementing loop below will 647 * create a list of virtio-mmio buses with decreasing base addresses. 648 * 649 * When a -device option is processed from the command line, 650 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 651 * order. The upshot is that -device options in increasing command line 652 * order are mapped to virtio-mmio buses with decreasing base addresses. 653 * 654 * When this code was originally written, that arrangement ensured that the 655 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 656 * the first -device on the command line. (The end-to-end order is a 657 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 658 * guest kernel's name-to-address assignment strategy.) 659 * 660 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 661 * the message, if not necessarily the code, of commit 70161ff336. 662 * Therefore the loop now establishes the inverse of the original intent. 663 * 664 * Unfortunately, we can't counteract the kernel change by reversing the 665 * loop; it would break existing command lines. 666 * 667 * In any case, the kernel makes no guarantee about the stability of 668 * enumeration order of virtio devices (as demonstrated by it changing 669 * between kernel versions). For reliable and stable identification 670 * of disks users must use UUIDs or similar mechanisms. 671 */ 672 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 673 int irq = vbi->irqmap[VIRT_MMIO] + i; 674 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 675 676 sysbus_create_simple("virtio-mmio", base, pic[irq]); 677 } 678 679 /* We add dtb nodes in reverse order so that they appear in the finished 680 * device tree lowest address first. 681 * 682 * Note that this mapping is independent of the loop above. The previous 683 * loop influences virtio device to virtio transport assignment, whereas 684 * this loop controls how virtio transports are laid out in the dtb. 685 */ 686 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 687 char *nodename; 688 int irq = vbi->irqmap[VIRT_MMIO] + i; 689 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; 690 691 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 692 qemu_fdt_add_subnode(vbi->fdt, nodename); 693 qemu_fdt_setprop_string(vbi->fdt, nodename, 694 "compatible", "virtio,mmio"); 695 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 696 2, base, 2, size); 697 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", 698 GIC_FDT_IRQ_TYPE_SPI, irq, 699 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 700 g_free(nodename); 701 } 702 } 703 704 static void create_one_flash(const char *name, hwaddr flashbase, 705 hwaddr flashsize, const char *file, 706 MemoryRegion *sysmem) 707 { 708 /* Create and map a single flash device. We use the same 709 * parameters as the flash devices on the Versatile Express board. 710 */ 711 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 712 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 713 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 714 const uint64_t sectorlength = 256 * 1024; 715 716 if (dinfo) { 717 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 718 &error_abort); 719 } 720 721 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 722 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 723 qdev_prop_set_uint8(dev, "width", 4); 724 qdev_prop_set_uint8(dev, "device-width", 2); 725 qdev_prop_set_bit(dev, "big-endian", false); 726 qdev_prop_set_uint16(dev, "id0", 0x89); 727 qdev_prop_set_uint16(dev, "id1", 0x18); 728 qdev_prop_set_uint16(dev, "id2", 0x00); 729 qdev_prop_set_uint16(dev, "id3", 0x00); 730 qdev_prop_set_string(dev, "name", name); 731 qdev_init_nofail(dev); 732 733 memory_region_add_subregion(sysmem, flashbase, 734 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0)); 735 736 if (file) { 737 char *fn; 738 int image_size; 739 740 if (drive_get(IF_PFLASH, 0, 0)) { 741 error_report("The contents of the first flash device may be " 742 "specified with -bios or with -drive if=pflash... " 743 "but you cannot use both options at once"); 744 exit(1); 745 } 746 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file); 747 if (!fn) { 748 error_report("Could not find ROM image '%s'", file); 749 exit(1); 750 } 751 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0)); 752 g_free(fn); 753 if (image_size < 0) { 754 error_report("Could not load ROM image '%s'", file); 755 exit(1); 756 } 757 } 758 } 759 760 static void create_flash(const VirtBoardInfo *vbi, 761 MemoryRegion *sysmem, 762 MemoryRegion *secure_sysmem) 763 { 764 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 765 * Any file passed via -bios goes in the first of these. 766 * sysmem is the system memory space. secure_sysmem is the secure view 767 * of the system, and the first flash device should be made visible only 768 * there. The second flash device is visible to both secure and nonsecure. 769 * If sysmem == secure_sysmem this means there is no separate Secure 770 * address space and both flash devices are generally visible. 771 */ 772 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2; 773 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base; 774 char *nodename; 775 776 create_one_flash("virt.flash0", flashbase, flashsize, 777 bios_name, secure_sysmem); 778 create_one_flash("virt.flash1", flashbase + flashsize, flashsize, 779 NULL, sysmem); 780 781 if (sysmem == secure_sysmem) { 782 /* Report both flash devices as a single node in the DT */ 783 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 784 qemu_fdt_add_subnode(vbi->fdt, nodename); 785 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 786 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 787 2, flashbase, 2, flashsize, 788 2, flashbase + flashsize, 2, flashsize); 789 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 790 g_free(nodename); 791 } else { 792 /* Report the devices as separate nodes so we can mark one as 793 * only visible to the secure world. 794 */ 795 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 796 qemu_fdt_add_subnode(vbi->fdt, nodename); 797 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 798 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 799 2, flashbase, 2, flashsize); 800 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 801 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 802 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 803 g_free(nodename); 804 805 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 806 qemu_fdt_add_subnode(vbi->fdt, nodename); 807 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash"); 808 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 809 2, flashbase + flashsize, 2, flashsize); 810 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4); 811 g_free(nodename); 812 } 813 } 814 815 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as) 816 { 817 hwaddr base = vbi->memmap[VIRT_FW_CFG].base; 818 hwaddr size = vbi->memmap[VIRT_FW_CFG].size; 819 char *nodename; 820 821 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 822 823 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 824 qemu_fdt_add_subnode(vbi->fdt, nodename); 825 qemu_fdt_setprop_string(vbi->fdt, nodename, 826 "compatible", "qemu,fw-cfg-mmio"); 827 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 828 2, base, 2, size); 829 g_free(nodename); 830 } 831 832 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle, 833 int first_irq, const char *nodename) 834 { 835 int devfn, pin; 836 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 837 uint32_t *irq_map = full_irq_map; 838 839 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 840 for (pin = 0; pin < 4; pin++) { 841 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 842 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 843 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 844 int i; 845 846 uint32_t map[] = { 847 devfn << 8, 0, 0, /* devfn */ 848 pin + 1, /* PCI pin */ 849 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 850 851 /* Convert map to big endian */ 852 for (i = 0; i < 10; i++) { 853 irq_map[i] = cpu_to_be32(map[i]); 854 } 855 irq_map += 10; 856 } 857 } 858 859 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map", 860 full_irq_map, sizeof(full_irq_map)); 861 862 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask", 863 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 864 0x7 /* PCI irq */); 865 } 866 867 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic, 868 bool use_highmem) 869 { 870 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base; 871 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size; 872 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base; 873 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size; 874 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base; 875 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size; 876 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base; 877 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size; 878 hwaddr base = base_mmio; 879 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 880 int irq = vbi->irqmap[VIRT_PCIE]; 881 MemoryRegion *mmio_alias; 882 MemoryRegion *mmio_reg; 883 MemoryRegion *ecam_alias; 884 MemoryRegion *ecam_reg; 885 DeviceState *dev; 886 char *nodename; 887 int i; 888 PCIHostState *pci; 889 890 dev = qdev_create(NULL, TYPE_GPEX_HOST); 891 qdev_init_nofail(dev); 892 893 /* Map only the first size_ecam bytes of ECAM space */ 894 ecam_alias = g_new0(MemoryRegion, 1); 895 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 896 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 897 ecam_reg, 0, size_ecam); 898 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 899 900 /* Map the MMIO window into system address space so as to expose 901 * the section of PCI MMIO space which starts at the same base address 902 * (ie 1:1 mapping for that part of PCI MMIO space visible through 903 * the window). 904 */ 905 mmio_alias = g_new0(MemoryRegion, 1); 906 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 907 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 908 mmio_reg, base_mmio, size_mmio); 909 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 910 911 if (use_highmem) { 912 /* Map high MMIO space */ 913 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 914 915 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 916 mmio_reg, base_mmio_high, size_mmio_high); 917 memory_region_add_subregion(get_system_memory(), base_mmio_high, 918 high_mmio_alias); 919 } 920 921 /* Map IO port space */ 922 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 923 924 for (i = 0; i < GPEX_NUM_IRQS; i++) { 925 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 926 } 927 928 pci = PCI_HOST_BRIDGE(dev); 929 if (pci->bus) { 930 for (i = 0; i < nb_nics; i++) { 931 NICInfo *nd = &nd_table[i]; 932 933 if (!nd->model) { 934 nd->model = g_strdup("virtio"); 935 } 936 937 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 938 } 939 } 940 941 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 942 qemu_fdt_add_subnode(vbi->fdt, nodename); 943 qemu_fdt_setprop_string(vbi->fdt, nodename, 944 "compatible", "pci-host-ecam-generic"); 945 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci"); 946 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3); 947 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2); 948 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0, 949 nr_pcie_buses - 1); 950 951 if (vbi->v2m_phandle) { 952 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", 953 vbi->v2m_phandle); 954 } 955 956 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 957 2, base_ecam, 2, size_ecam); 958 959 if (use_highmem) { 960 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 961 1, FDT_PCI_RANGE_IOPORT, 2, 0, 962 2, base_pio, 2, size_pio, 963 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 964 2, base_mmio, 2, size_mmio, 965 1, FDT_PCI_RANGE_MMIO_64BIT, 966 2, base_mmio_high, 967 2, base_mmio_high, 2, size_mmio_high); 968 } else { 969 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges", 970 1, FDT_PCI_RANGE_IOPORT, 2, 0, 971 2, base_pio, 2, size_pio, 972 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 973 2, base_mmio, 2, size_mmio); 974 } 975 976 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1); 977 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename); 978 979 g_free(nodename); 980 } 981 982 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic) 983 { 984 DeviceState *dev; 985 SysBusDevice *s; 986 int i; 987 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); 988 MemoryRegion *sysmem = get_system_memory(); 989 990 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base; 991 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size; 992 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS]; 993 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; 994 995 fdt_params->system_params = &platform_bus_params; 996 fdt_params->binfo = &vbi->bootinfo; 997 fdt_params->intc = "/intc"; 998 /* 999 * register a machine init done notifier that creates the device tree 1000 * nodes of the platform bus and its children dynamic sysbus devices 1001 */ 1002 arm_register_platform_bus_fdt_creator(fdt_params); 1003 1004 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 1005 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1006 qdev_prop_set_uint32(dev, "num_irqs", 1007 platform_bus_params.platform_bus_num_irqs); 1008 qdev_prop_set_uint32(dev, "mmio_size", 1009 platform_bus_params.platform_bus_size); 1010 qdev_init_nofail(dev); 1011 s = SYS_BUS_DEVICE(dev); 1012 1013 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { 1014 int irqn = platform_bus_params.platform_bus_first_irq + i; 1015 sysbus_connect_irq(s, i, pic[irqn]); 1016 } 1017 1018 memory_region_add_subregion(sysmem, 1019 platform_bus_params.platform_bus_base, 1020 sysbus_mmio_get_region(s, 0)); 1021 } 1022 1023 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem) 1024 { 1025 MemoryRegion *secram = g_new(MemoryRegion, 1); 1026 char *nodename; 1027 hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base; 1028 hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size; 1029 1030 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal); 1031 vmstate_register_ram_global(secram); 1032 memory_region_add_subregion(secure_sysmem, base, secram); 1033 1034 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1035 qemu_fdt_add_subnode(vbi->fdt, nodename); 1036 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory"); 1037 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size); 1038 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled"); 1039 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay"); 1040 1041 g_free(nodename); 1042 } 1043 1044 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1045 { 1046 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; 1047 1048 *fdt_size = board->fdt_size; 1049 return board->fdt; 1050 } 1051 1052 static void virt_build_smbios(VirtGuestInfo *guest_info) 1053 { 1054 FWCfgState *fw_cfg = guest_info->fw_cfg; 1055 uint8_t *smbios_tables, *smbios_anchor; 1056 size_t smbios_tables_len, smbios_anchor_len; 1057 const char *product = "QEMU Virtual Machine"; 1058 1059 if (!fw_cfg) { 1060 return; 1061 } 1062 1063 if (kvm_enabled()) { 1064 product = "KVM Virtual Machine"; 1065 } 1066 1067 smbios_set_defaults("QEMU", product, 1068 "1.0", false, true, SMBIOS_ENTRY_POINT_30); 1069 1070 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, 1071 &smbios_anchor, &smbios_anchor_len); 1072 1073 if (smbios_anchor) { 1074 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 1075 smbios_tables, smbios_tables_len); 1076 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 1077 smbios_anchor, smbios_anchor_len); 1078 } 1079 } 1080 1081 static 1082 void virt_guest_info_machine_done(Notifier *notifier, void *data) 1083 { 1084 VirtGuestInfoState *guest_info_state = container_of(notifier, 1085 VirtGuestInfoState, machine_done); 1086 virt_acpi_setup(&guest_info_state->info); 1087 virt_build_smbios(&guest_info_state->info); 1088 } 1089 1090 static void machvirt_init(MachineState *machine) 1091 { 1092 VirtMachineState *vms = VIRT_MACHINE(machine); 1093 qemu_irq pic[NUM_IRQS]; 1094 MemoryRegion *sysmem = get_system_memory(); 1095 MemoryRegion *secure_sysmem = NULL; 1096 int gic_version = vms->gic_version; 1097 int n, virt_max_cpus; 1098 MemoryRegion *ram = g_new(MemoryRegion, 1); 1099 const char *cpu_model = machine->cpu_model; 1100 VirtBoardInfo *vbi; 1101 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state); 1102 VirtGuestInfo *guest_info = &guest_info_state->info; 1103 char **cpustr; 1104 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 1105 1106 if (!cpu_model) { 1107 cpu_model = "cortex-a15"; 1108 } 1109 1110 /* We can probe only here because during property set 1111 * KVM is not available yet 1112 */ 1113 if (!gic_version) { 1114 gic_version = kvm_arm_vgic_probe(); 1115 if (!gic_version) { 1116 error_report("Unable to determine GIC version supported by host"); 1117 error_printf("KVM acceleration is probably not supported\n"); 1118 exit(1); 1119 } 1120 } 1121 1122 /* Separate the actual CPU model name from any appended features */ 1123 cpustr = g_strsplit(cpu_model, ",", 2); 1124 1125 vbi = find_machine_info(cpustr[0]); 1126 1127 if (!vbi) { 1128 error_report("mach-virt: CPU %s not supported", cpustr[0]); 1129 exit(1); 1130 } 1131 1132 /* If we have an EL3 boot ROM then the assumption is that it will 1133 * implement PSCI itself, so disable QEMU's internal implementation 1134 * so it doesn't get in the way. Instead of starting secondary 1135 * CPUs in PSCI powerdown state we will start them all running and 1136 * let the boot ROM sort them out. 1137 * The usual case is that we do use QEMU's PSCI implementation. 1138 */ 1139 vbi->using_psci = !(vms->secure && firmware_loaded); 1140 1141 /* The maximum number of CPUs depends on the GIC version, or on how 1142 * many redistributors we can fit into the memory map. 1143 */ 1144 if (gic_version == 3) { 1145 virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000; 1146 } else { 1147 virt_max_cpus = GIC_NCPU; 1148 } 1149 1150 if (max_cpus > virt_max_cpus) { 1151 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1152 "supported by machine 'mach-virt' (%d)", 1153 max_cpus, virt_max_cpus); 1154 exit(1); 1155 } 1156 1157 vbi->smp_cpus = smp_cpus; 1158 1159 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) { 1160 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB); 1161 exit(1); 1162 } 1163 1164 if (vms->secure) { 1165 if (kvm_enabled()) { 1166 error_report("mach-virt: KVM does not support Security extensions"); 1167 exit(1); 1168 } 1169 1170 /* The Secure view of the world is the same as the NonSecure, 1171 * but with a few extra devices. Create it as a container region 1172 * containing the system memory at low priority; any secure-only 1173 * devices go in at higher priority and take precedence. 1174 */ 1175 secure_sysmem = g_new(MemoryRegion, 1); 1176 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1177 UINT64_MAX); 1178 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1179 } 1180 1181 create_fdt(vbi); 1182 1183 for (n = 0; n < smp_cpus; n++) { 1184 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]); 1185 CPUClass *cc = CPU_CLASS(oc); 1186 Object *cpuobj; 1187 Error *err = NULL; 1188 char *cpuopts = g_strdup(cpustr[1]); 1189 1190 if (!oc) { 1191 error_report("Unable to find CPU definition"); 1192 exit(1); 1193 } 1194 cpuobj = object_new(object_class_get_name(oc)); 1195 1196 /* Handle any CPU options specified by the user */ 1197 cc->parse_features(CPU(cpuobj), cpuopts, &err); 1198 g_free(cpuopts); 1199 if (err) { 1200 error_report_err(err); 1201 exit(1); 1202 } 1203 1204 if (!vms->secure) { 1205 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1206 } 1207 1208 if (vbi->using_psci) { 1209 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, 1210 "psci-conduit", NULL); 1211 1212 /* Secondary CPUs start in PSCI powered-down state */ 1213 if (n > 0) { 1214 object_property_set_bool(cpuobj, true, 1215 "start-powered-off", NULL); 1216 } 1217 } 1218 1219 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1220 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base, 1221 "reset-cbar", &error_abort); 1222 } 1223 1224 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1225 &error_abort); 1226 if (vms->secure) { 1227 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1228 "secure-memory", &error_abort); 1229 } 1230 1231 object_property_set_bool(cpuobj, true, "realized", NULL); 1232 } 1233 g_strfreev(cpustr); 1234 fdt_add_timer_nodes(vbi, gic_version); 1235 fdt_add_cpu_nodes(vbi); 1236 fdt_add_psci_node(vbi); 1237 1238 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1239 machine->ram_size); 1240 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); 1241 1242 create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem); 1243 1244 create_gic(vbi, pic, gic_version, vms->secure); 1245 1246 create_uart(vbi, pic, VIRT_UART, sysmem); 1247 1248 if (vms->secure) { 1249 create_secure_ram(vbi, secure_sysmem); 1250 create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem); 1251 } 1252 1253 create_rtc(vbi, pic); 1254 1255 create_pcie(vbi, pic, vms->highmem); 1256 1257 create_gpio(vbi, pic); 1258 1259 /* Create mmio transports, so the user can create virtio backends 1260 * (which will be automatically plugged in to the transports). If 1261 * no backend is created the transport will just sit harmlessly idle. 1262 */ 1263 create_virtio_devices(vbi, pic); 1264 1265 create_fw_cfg(vbi, &address_space_memory); 1266 rom_set_fw(fw_cfg_find()); 1267 1268 guest_info->smp_cpus = smp_cpus; 1269 guest_info->fw_cfg = fw_cfg_find(); 1270 guest_info->memmap = vbi->memmap; 1271 guest_info->irqmap = vbi->irqmap; 1272 guest_info->use_highmem = vms->highmem; 1273 guest_info->gic_version = gic_version; 1274 guest_info_state->machine_done.notify = virt_guest_info_machine_done; 1275 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done); 1276 1277 vbi->bootinfo.ram_size = machine->ram_size; 1278 vbi->bootinfo.kernel_filename = machine->kernel_filename; 1279 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1280 vbi->bootinfo.initrd_filename = machine->initrd_filename; 1281 vbi->bootinfo.nb_cpus = smp_cpus; 1282 vbi->bootinfo.board_id = -1; 1283 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; 1284 vbi->bootinfo.get_dtb = machvirt_dtb; 1285 vbi->bootinfo.firmware_loaded = firmware_loaded; 1286 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); 1287 1288 /* 1289 * arm_load_kernel machine init done notifier registration must 1290 * happen before the platform_bus_create call. In this latter, 1291 * another notifier is registered which adds platform bus nodes. 1292 * Notifiers are executed in registration reverse order. 1293 */ 1294 create_platform_bus(vbi, pic); 1295 } 1296 1297 static bool virt_get_secure(Object *obj, Error **errp) 1298 { 1299 VirtMachineState *vms = VIRT_MACHINE(obj); 1300 1301 return vms->secure; 1302 } 1303 1304 static void virt_set_secure(Object *obj, bool value, Error **errp) 1305 { 1306 VirtMachineState *vms = VIRT_MACHINE(obj); 1307 1308 vms->secure = value; 1309 } 1310 1311 static bool virt_get_highmem(Object *obj, Error **errp) 1312 { 1313 VirtMachineState *vms = VIRT_MACHINE(obj); 1314 1315 return vms->highmem; 1316 } 1317 1318 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1319 { 1320 VirtMachineState *vms = VIRT_MACHINE(obj); 1321 1322 vms->highmem = value; 1323 } 1324 1325 static char *virt_get_gic_version(Object *obj, Error **errp) 1326 { 1327 VirtMachineState *vms = VIRT_MACHINE(obj); 1328 const char *val = vms->gic_version == 3 ? "3" : "2"; 1329 1330 return g_strdup(val); 1331 } 1332 1333 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1334 { 1335 VirtMachineState *vms = VIRT_MACHINE(obj); 1336 1337 if (!strcmp(value, "3")) { 1338 vms->gic_version = 3; 1339 } else if (!strcmp(value, "2")) { 1340 vms->gic_version = 2; 1341 } else if (!strcmp(value, "host")) { 1342 vms->gic_version = 0; /* Will probe later */ 1343 } else { 1344 error_setg(errp, "Invalid gic-version value"); 1345 error_append_hint(errp, "Valid values are 3, 2, host.\n"); 1346 } 1347 } 1348 1349 static void virt_machine_class_init(ObjectClass *oc, void *data) 1350 { 1351 MachineClass *mc = MACHINE_CLASS(oc); 1352 1353 mc->init = machvirt_init; 1354 /* Start max_cpus at the maximum QEMU supports. We'll further restrict 1355 * it later in machvirt_init, where we have more information about the 1356 * configuration of the particular instance. 1357 */ 1358 mc->max_cpus = MAX_CPUMASK_BITS; 1359 mc->has_dynamic_sysbus = true; 1360 mc->block_default_type = IF_VIRTIO; 1361 mc->no_cdrom = 1; 1362 mc->pci_allow_0_address = true; 1363 } 1364 1365 static const TypeInfo virt_machine_info = { 1366 .name = TYPE_VIRT_MACHINE, 1367 .parent = TYPE_MACHINE, 1368 .abstract = true, 1369 .instance_size = sizeof(VirtMachineState), 1370 .class_size = sizeof(VirtMachineClass), 1371 .class_init = virt_machine_class_init, 1372 }; 1373 1374 static void virt_2_6_instance_init(Object *obj) 1375 { 1376 VirtMachineState *vms = VIRT_MACHINE(obj); 1377 1378 /* EL3 is disabled by default on virt: this makes us consistent 1379 * between KVM and TCG for this board, and it also allows us to 1380 * boot UEFI blobs which assume no TrustZone support. 1381 */ 1382 vms->secure = false; 1383 object_property_add_bool(obj, "secure", virt_get_secure, 1384 virt_set_secure, NULL); 1385 object_property_set_description(obj, "secure", 1386 "Set on/off to enable/disable the ARM " 1387 "Security Extensions (TrustZone)", 1388 NULL); 1389 1390 /* High memory is enabled by default */ 1391 vms->highmem = true; 1392 object_property_add_bool(obj, "highmem", virt_get_highmem, 1393 virt_set_highmem, NULL); 1394 object_property_set_description(obj, "highmem", 1395 "Set on/off to enable/disable using " 1396 "physical address space above 32 bits", 1397 NULL); 1398 /* Default GIC type is v2 */ 1399 vms->gic_version = 2; 1400 object_property_add_str(obj, "gic-version", virt_get_gic_version, 1401 virt_set_gic_version, NULL); 1402 object_property_set_description(obj, "gic-version", 1403 "Set GIC version. " 1404 "Valid values are 2, 3 and host", NULL); 1405 } 1406 1407 static void virt_2_6_class_init(ObjectClass *oc, void *data) 1408 { 1409 MachineClass *mc = MACHINE_CLASS(oc); 1410 static GlobalProperty compat_props[] = { 1411 { /* end of list */ } 1412 }; 1413 1414 mc->desc = "QEMU 2.6 ARM Virtual Machine"; 1415 mc->alias = "virt"; 1416 mc->compat_props = compat_props; 1417 } 1418 1419 static const TypeInfo machvirt_info = { 1420 .name = MACHINE_TYPE_NAME("virt-2.6"), 1421 .parent = TYPE_VIRT_MACHINE, 1422 .instance_init = virt_2_6_instance_init, 1423 .class_init = virt_2_6_class_init, 1424 }; 1425 1426 static void machvirt_machine_init(void) 1427 { 1428 type_register_static(&virt_machine_info); 1429 type_register_static(&machvirt_info); 1430 } 1431 1432 type_init(machvirt_machine_init); 1433