xref: /openbmc/qemu/hw/arm/virt.c (revision 10df8ff1)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/vfio/vfio-calxeda-xgmac.h"
38 #include "hw/vfio/vfio-amd-xgbe.h"
39 #include "hw/display/ramfb.h"
40 #include "hw/devices.h"
41 #include "net/net.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/sysbus-fdt.h"
52 #include "hw/platform-bus.h"
53 #include "hw/arm/fdt.h"
54 #include "hw/intc/arm_gic.h"
55 #include "hw/intc/arm_gicv3_common.h"
56 #include "kvm_arm.h"
57 #include "hw/firmware/smbios.h"
58 #include "qapi/visitor.h"
59 #include "standard-headers/linux/input.h"
60 #include "hw/arm/smmuv3.h"
61 
62 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
63     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
64                                                     void *data) \
65     { \
66         MachineClass *mc = MACHINE_CLASS(oc); \
67         virt_machine_##major##_##minor##_options(mc); \
68         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
69         if (latest) { \
70             mc->alias = "virt"; \
71         } \
72     } \
73     static const TypeInfo machvirt_##major##_##minor##_info = { \
74         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
75         .parent = TYPE_VIRT_MACHINE, \
76         .class_init = virt_##major##_##minor##_class_init, \
77     }; \
78     static void machvirt_machine_##major##_##minor##_init(void) \
79     { \
80         type_register_static(&machvirt_##major##_##minor##_info); \
81     } \
82     type_init(machvirt_machine_##major##_##minor##_init);
83 
84 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
85     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
86 #define DEFINE_VIRT_MACHINE(major, minor) \
87     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
88 
89 
90 /* Number of external interrupt lines to configure the GIC with */
91 #define NUM_IRQS 256
92 
93 #define PLATFORM_BUS_NUM_IRQS 64
94 
95 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
96  * RAM can go up to the 256GB mark, leaving 256GB of the physical
97  * address space unallocated and free for future use between 256G and 512G.
98  * If we need to provide more RAM to VMs in the future then we need to:
99  *  * allocate a second bank of RAM starting at 2TB and working up
100  *  * fix the DT and ACPI table generation code in QEMU to correctly
101  *    report two split lumps of RAM to the guest
102  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
103  * (We don't want to fill all the way up to 512GB with RAM because
104  * we might want it for non-RAM purposes later. Conversely it seems
105  * reasonable to assume that anybody configuring a VM with a quarter
106  * of a terabyte of RAM will be doing it on a host with more than a
107  * terabyte of physical address space.)
108  */
109 #define RAMLIMIT_GB 255
110 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
111 
112 /* Addresses and sizes of our components.
113  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
114  * 128MB..256MB is used for miscellaneous device I/O.
115  * 256MB..1GB is reserved for possible future PCI support (ie where the
116  * PCI memory window will go if we add a PCI host controller).
117  * 1GB and up is RAM (which may happily spill over into the
118  * high memory region beyond 4GB).
119  * This represents a compromise between how much RAM can be given to
120  * a 32 bit VM and leaving space for expansion and in particular for PCI.
121  * Note that devices should generally be placed at multiples of 0x10000,
122  * to accommodate guests using 64K pages.
123  */
124 static const MemMapEntry a15memmap[] = {
125     /* Space up to 0x8000000 is reserved for a boot ROM */
126     [VIRT_FLASH] =              {          0, 0x08000000 },
127     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
128     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
129     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
130     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
131     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
132     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
133     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
134     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
135     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
136     /* This redistributor space allows up to 2*64kB*123 CPUs */
137     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
138     [VIRT_UART] =               { 0x09000000, 0x00001000 },
139     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
140     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
141     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
142     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
143     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
144     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
145     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
146     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
147     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
148     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
149     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
150     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
151     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
152     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
153     [VIRT_GIC_REDIST2] =        { 0x4000000000ULL, 0x4000000 },
154     [VIRT_PCIE_ECAM_HIGH] =     { 0x4010000000ULL, 0x10000000 },
155     /* Second PCIe window, 512GB wide at the 512GB boundary */
156     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
157 };
158 
159 static const int a15irqmap[] = {
160     [VIRT_UART] = 1,
161     [VIRT_RTC] = 2,
162     [VIRT_PCIE] = 3, /* ... to 6 */
163     [VIRT_GPIO] = 7,
164     [VIRT_SECURE_UART] = 8,
165     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
166     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
167     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
168     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
169 };
170 
171 static const char *valid_cpus[] = {
172     ARM_CPU_TYPE_NAME("cortex-a15"),
173     ARM_CPU_TYPE_NAME("cortex-a53"),
174     ARM_CPU_TYPE_NAME("cortex-a57"),
175     ARM_CPU_TYPE_NAME("cortex-a72"),
176     ARM_CPU_TYPE_NAME("host"),
177     ARM_CPU_TYPE_NAME("max"),
178 };
179 
180 static bool cpu_type_valid(const char *cpu)
181 {
182     int i;
183 
184     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
185         if (strcmp(cpu, valid_cpus[i]) == 0) {
186             return true;
187         }
188     }
189     return false;
190 }
191 
192 static void create_fdt(VirtMachineState *vms)
193 {
194     void *fdt = create_device_tree(&vms->fdt_size);
195 
196     if (!fdt) {
197         error_report("create_device_tree() failed");
198         exit(1);
199     }
200 
201     vms->fdt = fdt;
202 
203     /* Header */
204     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
205     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
206     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
207 
208     /* /chosen must exist for load_dtb to fill in necessary properties later */
209     qemu_fdt_add_subnode(fdt, "/chosen");
210 
211     /* Clock node, for the benefit of the UART. The kernel device tree
212      * binding documentation claims the PL011 node clock properties are
213      * optional but in practice if you omit them the kernel refuses to
214      * probe for the device.
215      */
216     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
217     qemu_fdt_add_subnode(fdt, "/apb-pclk");
218     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
219     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
220     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
221     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
222                                 "clk24mhz");
223     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
224 
225     if (have_numa_distance) {
226         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
227         uint32_t *matrix = g_malloc0(size);
228         int idx, i, j;
229 
230         for (i = 0; i < nb_numa_nodes; i++) {
231             for (j = 0; j < nb_numa_nodes; j++) {
232                 idx = (i * nb_numa_nodes + j) * 3;
233                 matrix[idx + 0] = cpu_to_be32(i);
234                 matrix[idx + 1] = cpu_to_be32(j);
235                 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
236             }
237         }
238 
239         qemu_fdt_add_subnode(fdt, "/distance-map");
240         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
241                                 "numa-distance-map-v1");
242         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
243                          matrix, size);
244         g_free(matrix);
245     }
246 }
247 
248 static void fdt_add_timer_nodes(const VirtMachineState *vms)
249 {
250     /* On real hardware these interrupts are level-triggered.
251      * On KVM they were edge-triggered before host kernel version 4.4,
252      * and level-triggered afterwards.
253      * On emulated QEMU they are level-triggered.
254      *
255      * Getting the DTB info about them wrong is awkward for some
256      * guest kernels:
257      *  pre-4.8 ignore the DT and leave the interrupt configured
258      *   with whatever the GIC reset value (or the bootloader) left it at
259      *  4.8 before rc6 honour the incorrect data by programming it back
260      *   into the GIC, causing problems
261      *  4.8rc6 and later ignore the DT and always write "level triggered"
262      *   into the GIC
263      *
264      * For backwards-compatibility, virt-2.8 and earlier will continue
265      * to say these are edge-triggered, but later machines will report
266      * the correct information.
267      */
268     ARMCPU *armcpu;
269     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
270     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
271 
272     if (vmc->claim_edge_triggered_timers) {
273         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
274     }
275 
276     if (vms->gic_version == 2) {
277         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
278                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
279                              (1 << vms->smp_cpus) - 1);
280     }
281 
282     qemu_fdt_add_subnode(vms->fdt, "/timer");
283 
284     armcpu = ARM_CPU(qemu_get_cpu(0));
285     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
286         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
287         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
288                          compat, sizeof(compat));
289     } else {
290         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
291                                 "arm,armv7-timer");
292     }
293     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
294     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
295                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
296                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
297                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
298                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
299 }
300 
301 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
302 {
303     int cpu;
304     int addr_cells = 1;
305     const MachineState *ms = MACHINE(vms);
306 
307     /*
308      * From Documentation/devicetree/bindings/arm/cpus.txt
309      *  On ARM v8 64-bit systems value should be set to 2,
310      *  that corresponds to the MPIDR_EL1 register size.
311      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
312      *  in the system, #address-cells can be set to 1, since
313      *  MPIDR_EL1[63:32] bits are not used for CPUs
314      *  identification.
315      *
316      *  Here we actually don't know whether our system is 32- or 64-bit one.
317      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
318      *  at least one of them has Aff3 populated, we set #address-cells to 2.
319      */
320     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
321         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
322 
323         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
324             addr_cells = 2;
325             break;
326         }
327     }
328 
329     qemu_fdt_add_subnode(vms->fdt, "/cpus");
330     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
331     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
332 
333     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
334         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
335         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
336         CPUState *cs = CPU(armcpu);
337 
338         qemu_fdt_add_subnode(vms->fdt, nodename);
339         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
340         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
341                                     armcpu->dtb_compatible);
342 
343         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
344             && vms->smp_cpus > 1) {
345             qemu_fdt_setprop_string(vms->fdt, nodename,
346                                         "enable-method", "psci");
347         }
348 
349         if (addr_cells == 2) {
350             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
351                                  armcpu->mp_affinity);
352         } else {
353             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
354                                   armcpu->mp_affinity);
355         }
356 
357         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
358             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
359                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
360         }
361 
362         g_free(nodename);
363     }
364 }
365 
366 static void fdt_add_its_gic_node(VirtMachineState *vms)
367 {
368     char *nodename;
369 
370     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
371     nodename = g_strdup_printf("/intc/its@%" PRIx64,
372                                vms->memmap[VIRT_GIC_ITS].base);
373     qemu_fdt_add_subnode(vms->fdt, nodename);
374     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
375                             "arm,gic-v3-its");
376     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
377     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
378                                  2, vms->memmap[VIRT_GIC_ITS].base,
379                                  2, vms->memmap[VIRT_GIC_ITS].size);
380     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
381     g_free(nodename);
382 }
383 
384 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
385 {
386     char *nodename;
387 
388     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
389                                vms->memmap[VIRT_GIC_V2M].base);
390     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
391     qemu_fdt_add_subnode(vms->fdt, nodename);
392     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
393                             "arm,gic-v2m-frame");
394     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
395     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
396                                  2, vms->memmap[VIRT_GIC_V2M].base,
397                                  2, vms->memmap[VIRT_GIC_V2M].size);
398     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
399     g_free(nodename);
400 }
401 
402 static void fdt_add_gic_node(VirtMachineState *vms)
403 {
404     char *nodename;
405 
406     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
407     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
408 
409     nodename = g_strdup_printf("/intc@%" PRIx64,
410                                vms->memmap[VIRT_GIC_DIST].base);
411     qemu_fdt_add_subnode(vms->fdt, nodename);
412     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
413     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
414     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
415     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
416     qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
417     if (vms->gic_version == 3) {
418         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
419 
420         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
421                                 "arm,gic-v3");
422 
423         qemu_fdt_setprop_cell(vms->fdt, nodename,
424                               "#redistributor-regions", nb_redist_regions);
425 
426         if (nb_redist_regions == 1) {
427             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
428                                          2, vms->memmap[VIRT_GIC_DIST].base,
429                                          2, vms->memmap[VIRT_GIC_DIST].size,
430                                          2, vms->memmap[VIRT_GIC_REDIST].base,
431                                          2, vms->memmap[VIRT_GIC_REDIST].size);
432         } else {
433             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
434                                          2, vms->memmap[VIRT_GIC_DIST].base,
435                                          2, vms->memmap[VIRT_GIC_DIST].size,
436                                          2, vms->memmap[VIRT_GIC_REDIST].base,
437                                          2, vms->memmap[VIRT_GIC_REDIST].size,
438                                          2, vms->memmap[VIRT_GIC_REDIST2].base,
439                                          2, vms->memmap[VIRT_GIC_REDIST2].size);
440         }
441 
442         if (vms->virt) {
443             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
444                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
445                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
446         }
447     } else {
448         /* 'cortex-a15-gic' means 'GIC v2' */
449         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
450                                 "arm,cortex-a15-gic");
451         if (!vms->virt) {
452             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
453                                          2, vms->memmap[VIRT_GIC_DIST].base,
454                                          2, vms->memmap[VIRT_GIC_DIST].size,
455                                          2, vms->memmap[VIRT_GIC_CPU].base,
456                                          2, vms->memmap[VIRT_GIC_CPU].size);
457         } else {
458             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
459                                          2, vms->memmap[VIRT_GIC_DIST].base,
460                                          2, vms->memmap[VIRT_GIC_DIST].size,
461                                          2, vms->memmap[VIRT_GIC_CPU].base,
462                                          2, vms->memmap[VIRT_GIC_CPU].size,
463                                          2, vms->memmap[VIRT_GIC_HYP].base,
464                                          2, vms->memmap[VIRT_GIC_HYP].size,
465                                          2, vms->memmap[VIRT_GIC_VCPU].base,
466                                          2, vms->memmap[VIRT_GIC_VCPU].size);
467             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
468                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
469                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
470         }
471     }
472 
473     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
474     g_free(nodename);
475 }
476 
477 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
478 {
479     CPUState *cpu;
480     ARMCPU *armcpu;
481     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
482 
483     CPU_FOREACH(cpu) {
484         armcpu = ARM_CPU(cpu);
485         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
486             return;
487         }
488         if (kvm_enabled()) {
489             if (kvm_irqchip_in_kernel()) {
490                 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
491             }
492             kvm_arm_pmu_init(cpu);
493         }
494     }
495 
496     if (vms->gic_version == 2) {
497         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
498                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
499                              (1 << vms->smp_cpus) - 1);
500     }
501 
502     armcpu = ARM_CPU(qemu_get_cpu(0));
503     qemu_fdt_add_subnode(vms->fdt, "/pmu");
504     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
505         const char compat[] = "arm,armv8-pmuv3";
506         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
507                          compat, sizeof(compat));
508         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
509                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
510     }
511 }
512 
513 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
514 {
515     const char *itsclass = its_class_name();
516     DeviceState *dev;
517 
518     if (!itsclass) {
519         /* Do nothing if not supported */
520         return;
521     }
522 
523     dev = qdev_create(NULL, itsclass);
524 
525     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
526                              &error_abort);
527     qdev_init_nofail(dev);
528     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
529 
530     fdt_add_its_gic_node(vms);
531 }
532 
533 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
534 {
535     int i;
536     int irq = vms->irqmap[VIRT_GIC_V2M];
537     DeviceState *dev;
538 
539     dev = qdev_create(NULL, "arm-gicv2m");
540     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
541     qdev_prop_set_uint32(dev, "base-spi", irq);
542     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
543     qdev_init_nofail(dev);
544 
545     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
546         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
547     }
548 
549     fdt_add_v2m_gic_node(vms);
550 }
551 
552 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
553 {
554     /* We create a standalone GIC */
555     DeviceState *gicdev;
556     SysBusDevice *gicbusdev;
557     const char *gictype;
558     int type = vms->gic_version, i;
559     uint32_t nb_redist_regions = 0;
560 
561     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
562 
563     gicdev = qdev_create(NULL, gictype);
564     qdev_prop_set_uint32(gicdev, "revision", type);
565     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
566     /* Note that the num-irq property counts both internal and external
567      * interrupts; there are always 32 of the former (mandated by GIC spec).
568      */
569     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
570     if (!kvm_irqchip_in_kernel()) {
571         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
572     }
573 
574     if (type == 3) {
575         uint32_t redist0_capacity =
576                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
577         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
578 
579         nb_redist_regions = virt_gicv3_redist_region_count(vms);
580 
581         qdev_prop_set_uint32(gicdev, "len-redist-region-count",
582                              nb_redist_regions);
583         qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
584 
585         if (nb_redist_regions == 2) {
586             uint32_t redist1_capacity =
587                         vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
588 
589             qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
590                 MIN(smp_cpus - redist0_count, redist1_capacity));
591         }
592     } else {
593         if (!kvm_irqchip_in_kernel()) {
594             qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
595                               vms->virt);
596         }
597     }
598     qdev_init_nofail(gicdev);
599     gicbusdev = SYS_BUS_DEVICE(gicdev);
600     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
601     if (type == 3) {
602         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
603         if (nb_redist_regions == 2) {
604             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_REDIST2].base);
605         }
606     } else {
607         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
608         if (vms->virt) {
609             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
610             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
611         }
612     }
613 
614     /* Wire the outputs from each CPU's generic timer and the GICv3
615      * maintenance interrupt signal to the appropriate GIC PPI inputs,
616      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
617      */
618     for (i = 0; i < smp_cpus; i++) {
619         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
620         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
621         int irq;
622         /* Mapping from the output timer irq lines from the CPU to the
623          * GIC PPI inputs we use for the virt board.
624          */
625         const int timer_irq[] = {
626             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
627             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
628             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
629             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
630         };
631 
632         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
633             qdev_connect_gpio_out(cpudev, irq,
634                                   qdev_get_gpio_in(gicdev,
635                                                    ppibase + timer_irq[irq]));
636         }
637 
638         if (type == 3) {
639             qemu_irq irq = qdev_get_gpio_in(gicdev,
640                                             ppibase + ARCH_GIC_MAINT_IRQ);
641             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
642                                         0, irq);
643         } else if (vms->virt) {
644             qemu_irq irq = qdev_get_gpio_in(gicdev,
645                                             ppibase + ARCH_GIC_MAINT_IRQ);
646             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
647         }
648 
649         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
650                                     qdev_get_gpio_in(gicdev, ppibase
651                                                      + VIRTUAL_PMU_IRQ));
652 
653         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
654         sysbus_connect_irq(gicbusdev, i + smp_cpus,
655                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
656         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
657                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
658         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
659                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
660     }
661 
662     for (i = 0; i < NUM_IRQS; i++) {
663         pic[i] = qdev_get_gpio_in(gicdev, i);
664     }
665 
666     fdt_add_gic_node(vms);
667 
668     if (type == 3 && vms->its) {
669         create_its(vms, gicdev);
670     } else if (type == 2) {
671         create_v2m(vms, pic);
672     }
673 }
674 
675 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
676                         MemoryRegion *mem, Chardev *chr)
677 {
678     char *nodename;
679     hwaddr base = vms->memmap[uart].base;
680     hwaddr size = vms->memmap[uart].size;
681     int irq = vms->irqmap[uart];
682     const char compat[] = "arm,pl011\0arm,primecell";
683     const char clocknames[] = "uartclk\0apb_pclk";
684     DeviceState *dev = qdev_create(NULL, "pl011");
685     SysBusDevice *s = SYS_BUS_DEVICE(dev);
686 
687     qdev_prop_set_chr(dev, "chardev", chr);
688     qdev_init_nofail(dev);
689     memory_region_add_subregion(mem, base,
690                                 sysbus_mmio_get_region(s, 0));
691     sysbus_connect_irq(s, 0, pic[irq]);
692 
693     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
694     qemu_fdt_add_subnode(vms->fdt, nodename);
695     /* Note that we can't use setprop_string because of the embedded NUL */
696     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
697                          compat, sizeof(compat));
698     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
699                                      2, base, 2, size);
700     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
701                                GIC_FDT_IRQ_TYPE_SPI, irq,
702                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
703     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
704                                vms->clock_phandle, vms->clock_phandle);
705     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
706                          clocknames, sizeof(clocknames));
707 
708     if (uart == VIRT_UART) {
709         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
710     } else {
711         /* Mark as not usable by the normal world */
712         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
713         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
714 
715         qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
716         qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
717                                 nodename);
718     }
719 
720     g_free(nodename);
721 }
722 
723 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
724 {
725     char *nodename;
726     hwaddr base = vms->memmap[VIRT_RTC].base;
727     hwaddr size = vms->memmap[VIRT_RTC].size;
728     int irq = vms->irqmap[VIRT_RTC];
729     const char compat[] = "arm,pl031\0arm,primecell";
730 
731     sysbus_create_simple("pl031", base, pic[irq]);
732 
733     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
734     qemu_fdt_add_subnode(vms->fdt, nodename);
735     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
736     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
737                                  2, base, 2, size);
738     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
739                            GIC_FDT_IRQ_TYPE_SPI, irq,
740                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
741     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
742     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
743     g_free(nodename);
744 }
745 
746 static DeviceState *gpio_key_dev;
747 static void virt_powerdown_req(Notifier *n, void *opaque)
748 {
749     /* use gpio Pin 3 for power button event */
750     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
751 }
752 
753 static Notifier virt_system_powerdown_notifier = {
754     .notify = virt_powerdown_req
755 };
756 
757 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
758 {
759     char *nodename;
760     DeviceState *pl061_dev;
761     hwaddr base = vms->memmap[VIRT_GPIO].base;
762     hwaddr size = vms->memmap[VIRT_GPIO].size;
763     int irq = vms->irqmap[VIRT_GPIO];
764     const char compat[] = "arm,pl061\0arm,primecell";
765 
766     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
767 
768     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
769     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
770     qemu_fdt_add_subnode(vms->fdt, nodename);
771     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
772                                  2, base, 2, size);
773     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
774     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
775     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
776     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
777                            GIC_FDT_IRQ_TYPE_SPI, irq,
778                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
779     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
780     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
781     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
782 
783     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
784                                         qdev_get_gpio_in(pl061_dev, 3));
785     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
786     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
787     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
788     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
789 
790     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
791     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
792                             "label", "GPIO Key Poweroff");
793     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
794                           KEY_POWER);
795     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
796                            "gpios", phandle, 3, 0);
797 
798     /* connect powerdown request */
799     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
800 
801     g_free(nodename);
802 }
803 
804 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
805 {
806     int i;
807     hwaddr size = vms->memmap[VIRT_MMIO].size;
808 
809     /* We create the transports in forwards order. Since qbus_realize()
810      * prepends (not appends) new child buses, the incrementing loop below will
811      * create a list of virtio-mmio buses with decreasing base addresses.
812      *
813      * When a -device option is processed from the command line,
814      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
815      * order. The upshot is that -device options in increasing command line
816      * order are mapped to virtio-mmio buses with decreasing base addresses.
817      *
818      * When this code was originally written, that arrangement ensured that the
819      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
820      * the first -device on the command line. (The end-to-end order is a
821      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
822      * guest kernel's name-to-address assignment strategy.)
823      *
824      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
825      * the message, if not necessarily the code, of commit 70161ff336.
826      * Therefore the loop now establishes the inverse of the original intent.
827      *
828      * Unfortunately, we can't counteract the kernel change by reversing the
829      * loop; it would break existing command lines.
830      *
831      * In any case, the kernel makes no guarantee about the stability of
832      * enumeration order of virtio devices (as demonstrated by it changing
833      * between kernel versions). For reliable and stable identification
834      * of disks users must use UUIDs or similar mechanisms.
835      */
836     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
837         int irq = vms->irqmap[VIRT_MMIO] + i;
838         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
839 
840         sysbus_create_simple("virtio-mmio", base, pic[irq]);
841     }
842 
843     /* We add dtb nodes in reverse order so that they appear in the finished
844      * device tree lowest address first.
845      *
846      * Note that this mapping is independent of the loop above. The previous
847      * loop influences virtio device to virtio transport assignment, whereas
848      * this loop controls how virtio transports are laid out in the dtb.
849      */
850     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
851         char *nodename;
852         int irq = vms->irqmap[VIRT_MMIO] + i;
853         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
854 
855         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
856         qemu_fdt_add_subnode(vms->fdt, nodename);
857         qemu_fdt_setprop_string(vms->fdt, nodename,
858                                 "compatible", "virtio,mmio");
859         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
860                                      2, base, 2, size);
861         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
862                                GIC_FDT_IRQ_TYPE_SPI, irq,
863                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
864         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
865         g_free(nodename);
866     }
867 }
868 
869 static void create_one_flash(const char *name, hwaddr flashbase,
870                              hwaddr flashsize, const char *file,
871                              MemoryRegion *sysmem)
872 {
873     /* Create and map a single flash device. We use the same
874      * parameters as the flash devices on the Versatile Express board.
875      */
876     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
877     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
878     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
879     const uint64_t sectorlength = 256 * 1024;
880 
881     if (dinfo) {
882         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
883                             &error_abort);
884     }
885 
886     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
887     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
888     qdev_prop_set_uint8(dev, "width", 4);
889     qdev_prop_set_uint8(dev, "device-width", 2);
890     qdev_prop_set_bit(dev, "big-endian", false);
891     qdev_prop_set_uint16(dev, "id0", 0x89);
892     qdev_prop_set_uint16(dev, "id1", 0x18);
893     qdev_prop_set_uint16(dev, "id2", 0x00);
894     qdev_prop_set_uint16(dev, "id3", 0x00);
895     qdev_prop_set_string(dev, "name", name);
896     qdev_init_nofail(dev);
897 
898     memory_region_add_subregion(sysmem, flashbase,
899                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
900 
901     if (file) {
902         char *fn;
903         int image_size;
904 
905         if (drive_get(IF_PFLASH, 0, 0)) {
906             error_report("The contents of the first flash device may be "
907                          "specified with -bios or with -drive if=pflash... "
908                          "but you cannot use both options at once");
909             exit(1);
910         }
911         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
912         if (!fn) {
913             error_report("Could not find ROM image '%s'", file);
914             exit(1);
915         }
916         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
917         g_free(fn);
918         if (image_size < 0) {
919             error_report("Could not load ROM image '%s'", file);
920             exit(1);
921         }
922     }
923 }
924 
925 static void create_flash(const VirtMachineState *vms,
926                          MemoryRegion *sysmem,
927                          MemoryRegion *secure_sysmem)
928 {
929     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
930      * Any file passed via -bios goes in the first of these.
931      * sysmem is the system memory space. secure_sysmem is the secure view
932      * of the system, and the first flash device should be made visible only
933      * there. The second flash device is visible to both secure and nonsecure.
934      * If sysmem == secure_sysmem this means there is no separate Secure
935      * address space and both flash devices are generally visible.
936      */
937     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
938     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
939     char *nodename;
940 
941     create_one_flash("virt.flash0", flashbase, flashsize,
942                      bios_name, secure_sysmem);
943     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
944                      NULL, sysmem);
945 
946     if (sysmem == secure_sysmem) {
947         /* Report both flash devices as a single node in the DT */
948         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
949         qemu_fdt_add_subnode(vms->fdt, nodename);
950         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
951         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
952                                      2, flashbase, 2, flashsize,
953                                      2, flashbase + flashsize, 2, flashsize);
954         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
955         g_free(nodename);
956     } else {
957         /* Report the devices as separate nodes so we can mark one as
958          * only visible to the secure world.
959          */
960         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
961         qemu_fdt_add_subnode(vms->fdt, nodename);
962         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
963         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
964                                      2, flashbase, 2, flashsize);
965         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
966         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
967         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
968         g_free(nodename);
969 
970         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
971         qemu_fdt_add_subnode(vms->fdt, nodename);
972         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
973         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
974                                      2, flashbase + flashsize, 2, flashsize);
975         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
976         g_free(nodename);
977     }
978 }
979 
980 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
981 {
982     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
983     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
984     FWCfgState *fw_cfg;
985     char *nodename;
986 
987     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
988     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
989 
990     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
991     qemu_fdt_add_subnode(vms->fdt, nodename);
992     qemu_fdt_setprop_string(vms->fdt, nodename,
993                             "compatible", "qemu,fw-cfg-mmio");
994     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
995                                  2, base, 2, size);
996     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
997     g_free(nodename);
998     return fw_cfg;
999 }
1000 
1001 static void create_pcie_irq_map(const VirtMachineState *vms,
1002                                 uint32_t gic_phandle,
1003                                 int first_irq, const char *nodename)
1004 {
1005     int devfn, pin;
1006     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1007     uint32_t *irq_map = full_irq_map;
1008 
1009     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1010         for (pin = 0; pin < 4; pin++) {
1011             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1012             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1013             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1014             int i;
1015 
1016             uint32_t map[] = {
1017                 devfn << 8, 0, 0,                           /* devfn */
1018                 pin + 1,                                    /* PCI pin */
1019                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1020 
1021             /* Convert map to big endian */
1022             for (i = 0; i < 10; i++) {
1023                 irq_map[i] = cpu_to_be32(map[i]);
1024             }
1025             irq_map += 10;
1026         }
1027     }
1028 
1029     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1030                      full_irq_map, sizeof(full_irq_map));
1031 
1032     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1033                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1034                            0x7           /* PCI irq */);
1035 }
1036 
1037 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1038                         PCIBus *bus)
1039 {
1040     char *node;
1041     const char compat[] = "arm,smmu-v3";
1042     int irq =  vms->irqmap[VIRT_SMMU];
1043     int i;
1044     hwaddr base = vms->memmap[VIRT_SMMU].base;
1045     hwaddr size = vms->memmap[VIRT_SMMU].size;
1046     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1047     DeviceState *dev;
1048 
1049     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1050         return;
1051     }
1052 
1053     dev = qdev_create(NULL, "arm-smmuv3");
1054 
1055     object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1056                              &error_abort);
1057     qdev_init_nofail(dev);
1058     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1059     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1060         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1061     }
1062 
1063     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1064     qemu_fdt_add_subnode(vms->fdt, node);
1065     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1066     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1067 
1068     qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1069             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1070             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1071             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1072             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1073 
1074     qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1075                      sizeof(irq_names));
1076 
1077     qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1078     qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1079     qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1080 
1081     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1082 
1083     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1084     g_free(node);
1085 }
1086 
1087 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1088 {
1089     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1090     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1091     hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1092     hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1093     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1094     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1095     hwaddr base_ecam, size_ecam;
1096     hwaddr base = base_mmio;
1097     int nr_pcie_buses;
1098     int irq = vms->irqmap[VIRT_PCIE];
1099     MemoryRegion *mmio_alias;
1100     MemoryRegion *mmio_reg;
1101     MemoryRegion *ecam_alias;
1102     MemoryRegion *ecam_reg;
1103     DeviceState *dev;
1104     char *nodename;
1105     int i, ecam_id;
1106     PCIHostState *pci;
1107 
1108     dev = qdev_create(NULL, TYPE_GPEX_HOST);
1109     qdev_init_nofail(dev);
1110 
1111     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1112     base_ecam = vms->memmap[ecam_id].base;
1113     size_ecam = vms->memmap[ecam_id].size;
1114     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1115     /* Map only the first size_ecam bytes of ECAM space */
1116     ecam_alias = g_new0(MemoryRegion, 1);
1117     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1118     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1119                              ecam_reg, 0, size_ecam);
1120     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1121 
1122     /* Map the MMIO window into system address space so as to expose
1123      * the section of PCI MMIO space which starts at the same base address
1124      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1125      * the window).
1126      */
1127     mmio_alias = g_new0(MemoryRegion, 1);
1128     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1129     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1130                              mmio_reg, base_mmio, size_mmio);
1131     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1132 
1133     if (vms->highmem) {
1134         /* Map high MMIO space */
1135         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1136 
1137         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1138                                  mmio_reg, base_mmio_high, size_mmio_high);
1139         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1140                                     high_mmio_alias);
1141     }
1142 
1143     /* Map IO port space */
1144     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1145 
1146     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1147         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1148         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1149     }
1150 
1151     pci = PCI_HOST_BRIDGE(dev);
1152     if (pci->bus) {
1153         for (i = 0; i < nb_nics; i++) {
1154             NICInfo *nd = &nd_table[i];
1155 
1156             if (!nd->model) {
1157                 nd->model = g_strdup("virtio");
1158             }
1159 
1160             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1161         }
1162     }
1163 
1164     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1165     qemu_fdt_add_subnode(vms->fdt, nodename);
1166     qemu_fdt_setprop_string(vms->fdt, nodename,
1167                             "compatible", "pci-host-ecam-generic");
1168     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1169     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1170     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1171     qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1172     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1173                            nr_pcie_buses - 1);
1174     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1175 
1176     if (vms->msi_phandle) {
1177         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1178                                vms->msi_phandle);
1179     }
1180 
1181     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1182                                  2, base_ecam, 2, size_ecam);
1183 
1184     if (vms->highmem) {
1185         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1186                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1187                                      2, base_pio, 2, size_pio,
1188                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1189                                      2, base_mmio, 2, size_mmio,
1190                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1191                                      2, base_mmio_high,
1192                                      2, base_mmio_high, 2, size_mmio_high);
1193     } else {
1194         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1195                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1196                                      2, base_pio, 2, size_pio,
1197                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1198                                      2, base_mmio, 2, size_mmio);
1199     }
1200 
1201     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1202     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1203 
1204     if (vms->iommu) {
1205         vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1206 
1207         create_smmu(vms, pic, pci->bus);
1208 
1209         qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1210                                0x0, vms->iommu_phandle, 0x0, 0x10000);
1211     }
1212 
1213     g_free(nodename);
1214 }
1215 
1216 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1217 {
1218     DeviceState *dev;
1219     SysBusDevice *s;
1220     int i;
1221     MemoryRegion *sysmem = get_system_memory();
1222 
1223     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1224     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1225     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1226     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1227     qdev_init_nofail(dev);
1228     vms->platform_bus_dev = dev;
1229 
1230     s = SYS_BUS_DEVICE(dev);
1231     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1232         int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1233         sysbus_connect_irq(s, i, pic[irqn]);
1234     }
1235 
1236     memory_region_add_subregion(sysmem,
1237                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1238                                 sysbus_mmio_get_region(s, 0));
1239 }
1240 
1241 static void create_secure_ram(VirtMachineState *vms,
1242                               MemoryRegion *secure_sysmem)
1243 {
1244     MemoryRegion *secram = g_new(MemoryRegion, 1);
1245     char *nodename;
1246     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1247     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1248 
1249     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1250                            &error_fatal);
1251     memory_region_add_subregion(secure_sysmem, base, secram);
1252 
1253     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1254     qemu_fdt_add_subnode(vms->fdt, nodename);
1255     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1256     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1257     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1258     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1259 
1260     g_free(nodename);
1261 }
1262 
1263 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1264 {
1265     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1266                                                  bootinfo);
1267 
1268     *fdt_size = board->fdt_size;
1269     return board->fdt;
1270 }
1271 
1272 static void virt_build_smbios(VirtMachineState *vms)
1273 {
1274     MachineClass *mc = MACHINE_GET_CLASS(vms);
1275     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1276     uint8_t *smbios_tables, *smbios_anchor;
1277     size_t smbios_tables_len, smbios_anchor_len;
1278     const char *product = "QEMU Virtual Machine";
1279 
1280     if (!vms->fw_cfg) {
1281         return;
1282     }
1283 
1284     if (kvm_enabled()) {
1285         product = "KVM Virtual Machine";
1286     }
1287 
1288     smbios_set_defaults("QEMU", product,
1289                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1290                         true, SMBIOS_ENTRY_POINT_30);
1291 
1292     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1293                       &smbios_anchor, &smbios_anchor_len);
1294 
1295     if (smbios_anchor) {
1296         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1297                         smbios_tables, smbios_tables_len);
1298         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1299                         smbios_anchor, smbios_anchor_len);
1300     }
1301 }
1302 
1303 static
1304 void virt_machine_done(Notifier *notifier, void *data)
1305 {
1306     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1307                                          machine_done);
1308     ARMCPU *cpu = ARM_CPU(first_cpu);
1309     struct arm_boot_info *info = &vms->bootinfo;
1310     AddressSpace *as = arm_boot_address_space(cpu, info);
1311 
1312     /*
1313      * If the user provided a dtb, we assume the dynamic sysbus nodes
1314      * already are integrated there. This corresponds to a use case where
1315      * the dynamic sysbus nodes are complex and their generation is not yet
1316      * supported. In that case the user can take charge of the guest dt
1317      * while qemu takes charge of the qom stuff.
1318      */
1319     if (info->dtb_filename == NULL) {
1320         platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1321                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1322                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1323                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1324     }
1325     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1326         exit(1);
1327     }
1328 
1329     virt_acpi_setup(vms);
1330     virt_build_smbios(vms);
1331 }
1332 
1333 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1334 {
1335     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1336     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1337 
1338     if (!vmc->disallow_affinity_adjustment) {
1339         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1340          * GIC's target-list limitations. 32-bit KVM hosts currently
1341          * always create clusters of 4 CPUs, but that is expected to
1342          * change when they gain support for gicv3. When KVM is enabled
1343          * it will override the changes we make here, therefore our
1344          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1345          * and to improve SGI efficiency.
1346          */
1347         if (vms->gic_version == 3) {
1348             clustersz = GICV3_TARGETLIST_BITS;
1349         } else {
1350             clustersz = GIC_TARGETLIST_BITS;
1351         }
1352     }
1353     return arm_cpu_mp_affinity(idx, clustersz);
1354 }
1355 
1356 static void machvirt_init(MachineState *machine)
1357 {
1358     VirtMachineState *vms = VIRT_MACHINE(machine);
1359     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1360     MachineClass *mc = MACHINE_GET_CLASS(machine);
1361     const CPUArchIdList *possible_cpus;
1362     qemu_irq pic[NUM_IRQS];
1363     MemoryRegion *sysmem = get_system_memory();
1364     MemoryRegion *secure_sysmem = NULL;
1365     int n, virt_max_cpus;
1366     MemoryRegion *ram = g_new(MemoryRegion, 1);
1367     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1368     bool aarch64 = true;
1369 
1370     /* We can probe only here because during property set
1371      * KVM is not available yet
1372      */
1373     if (vms->gic_version <= 0) {
1374         /* "host" or "max" */
1375         if (!kvm_enabled()) {
1376             if (vms->gic_version == 0) {
1377                 error_report("gic-version=host requires KVM");
1378                 exit(1);
1379             } else {
1380                 /* "max": currently means 3 for TCG */
1381                 vms->gic_version = 3;
1382             }
1383         } else {
1384             vms->gic_version = kvm_arm_vgic_probe();
1385             if (!vms->gic_version) {
1386                 error_report(
1387                     "Unable to determine GIC version supported by host");
1388                 exit(1);
1389             }
1390         }
1391     }
1392 
1393     if (!cpu_type_valid(machine->cpu_type)) {
1394         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1395         exit(1);
1396     }
1397 
1398     /* If we have an EL3 boot ROM then the assumption is that it will
1399      * implement PSCI itself, so disable QEMU's internal implementation
1400      * so it doesn't get in the way. Instead of starting secondary
1401      * CPUs in PSCI powerdown state we will start them all running and
1402      * let the boot ROM sort them out.
1403      * The usual case is that we do use QEMU's PSCI implementation;
1404      * if the guest has EL2 then we will use SMC as the conduit,
1405      * and otherwise we will use HVC (for backwards compatibility and
1406      * because if we're using KVM then we must use HVC).
1407      */
1408     if (vms->secure && firmware_loaded) {
1409         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1410     } else if (vms->virt) {
1411         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1412     } else {
1413         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1414     }
1415 
1416     /* The maximum number of CPUs depends on the GIC version, or on how
1417      * many redistributors we can fit into the memory map.
1418      */
1419     if (vms->gic_version == 3) {
1420         virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1421         virt_max_cpus += vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1422     } else {
1423         virt_max_cpus = GIC_NCPU;
1424     }
1425 
1426     if (max_cpus > virt_max_cpus) {
1427         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1428                      "supported by machine 'mach-virt' (%d)",
1429                      max_cpus, virt_max_cpus);
1430         exit(1);
1431     }
1432 
1433     vms->smp_cpus = smp_cpus;
1434 
1435     if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1436         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1437         exit(1);
1438     }
1439 
1440     if (vms->virt && kvm_enabled()) {
1441         error_report("mach-virt: KVM does not support providing "
1442                      "Virtualization extensions to the guest CPU");
1443         exit(1);
1444     }
1445 
1446     if (vms->secure) {
1447         if (kvm_enabled()) {
1448             error_report("mach-virt: KVM does not support Security extensions");
1449             exit(1);
1450         }
1451 
1452         /* The Secure view of the world is the same as the NonSecure,
1453          * but with a few extra devices. Create it as a container region
1454          * containing the system memory at low priority; any secure-only
1455          * devices go in at higher priority and take precedence.
1456          */
1457         secure_sysmem = g_new(MemoryRegion, 1);
1458         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1459                            UINT64_MAX);
1460         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1461     }
1462 
1463     create_fdt(vms);
1464 
1465     possible_cpus = mc->possible_cpu_arch_ids(machine);
1466     for (n = 0; n < possible_cpus->len; n++) {
1467         Object *cpuobj;
1468         CPUState *cs;
1469 
1470         if (n >= smp_cpus) {
1471             break;
1472         }
1473 
1474         cpuobj = object_new(possible_cpus->cpus[n].type);
1475         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1476                                 "mp-affinity", NULL);
1477 
1478         cs = CPU(cpuobj);
1479         cs->cpu_index = n;
1480 
1481         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1482                           &error_fatal);
1483 
1484         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1485 
1486         if (!vms->secure) {
1487             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1488         }
1489 
1490         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1491             object_property_set_bool(cpuobj, false, "has_el2", NULL);
1492         }
1493 
1494         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1495             object_property_set_int(cpuobj, vms->psci_conduit,
1496                                     "psci-conduit", NULL);
1497 
1498             /* Secondary CPUs start in PSCI powered-down state */
1499             if (n > 0) {
1500                 object_property_set_bool(cpuobj, true,
1501                                          "start-powered-off", NULL);
1502             }
1503         }
1504 
1505         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1506             object_property_set_bool(cpuobj, false, "pmu", NULL);
1507         }
1508 
1509         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1510             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1511                                     "reset-cbar", &error_abort);
1512         }
1513 
1514         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1515                                  &error_abort);
1516         if (vms->secure) {
1517             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1518                                      "secure-memory", &error_abort);
1519         }
1520 
1521         object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1522         object_unref(cpuobj);
1523     }
1524     fdt_add_timer_nodes(vms);
1525     fdt_add_cpu_nodes(vms);
1526 
1527     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1528                                          machine->ram_size);
1529     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1530 
1531     create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1532 
1533     create_gic(vms, pic);
1534 
1535     fdt_add_pmu_nodes(vms);
1536 
1537     create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1538 
1539     if (vms->secure) {
1540         create_secure_ram(vms, secure_sysmem);
1541         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1542     }
1543 
1544     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1545 
1546     create_rtc(vms, pic);
1547 
1548     create_pcie(vms, pic);
1549 
1550     create_gpio(vms, pic);
1551 
1552     /* Create mmio transports, so the user can create virtio backends
1553      * (which will be automatically plugged in to the transports). If
1554      * no backend is created the transport will just sit harmlessly idle.
1555      */
1556     create_virtio_devices(vms, pic);
1557 
1558     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1559     rom_set_fw(vms->fw_cfg);
1560 
1561     create_platform_bus(vms, pic);
1562 
1563     vms->bootinfo.ram_size = machine->ram_size;
1564     vms->bootinfo.kernel_filename = machine->kernel_filename;
1565     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1566     vms->bootinfo.initrd_filename = machine->initrd_filename;
1567     vms->bootinfo.nb_cpus = smp_cpus;
1568     vms->bootinfo.board_id = -1;
1569     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1570     vms->bootinfo.get_dtb = machvirt_dtb;
1571     vms->bootinfo.skip_dtb_autoload = true;
1572     vms->bootinfo.firmware_loaded = firmware_loaded;
1573     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1574 
1575     vms->machine_done.notify = virt_machine_done;
1576     qemu_add_machine_init_done_notifier(&vms->machine_done);
1577 }
1578 
1579 static bool virt_get_secure(Object *obj, Error **errp)
1580 {
1581     VirtMachineState *vms = VIRT_MACHINE(obj);
1582 
1583     return vms->secure;
1584 }
1585 
1586 static void virt_set_secure(Object *obj, bool value, Error **errp)
1587 {
1588     VirtMachineState *vms = VIRT_MACHINE(obj);
1589 
1590     vms->secure = value;
1591 }
1592 
1593 static bool virt_get_virt(Object *obj, Error **errp)
1594 {
1595     VirtMachineState *vms = VIRT_MACHINE(obj);
1596 
1597     return vms->virt;
1598 }
1599 
1600 static void virt_set_virt(Object *obj, bool value, Error **errp)
1601 {
1602     VirtMachineState *vms = VIRT_MACHINE(obj);
1603 
1604     vms->virt = value;
1605 }
1606 
1607 static bool virt_get_highmem(Object *obj, Error **errp)
1608 {
1609     VirtMachineState *vms = VIRT_MACHINE(obj);
1610 
1611     return vms->highmem;
1612 }
1613 
1614 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1615 {
1616     VirtMachineState *vms = VIRT_MACHINE(obj);
1617 
1618     vms->highmem = value;
1619 }
1620 
1621 static bool virt_get_its(Object *obj, Error **errp)
1622 {
1623     VirtMachineState *vms = VIRT_MACHINE(obj);
1624 
1625     return vms->its;
1626 }
1627 
1628 static void virt_set_its(Object *obj, bool value, Error **errp)
1629 {
1630     VirtMachineState *vms = VIRT_MACHINE(obj);
1631 
1632     vms->its = value;
1633 }
1634 
1635 static char *virt_get_gic_version(Object *obj, Error **errp)
1636 {
1637     VirtMachineState *vms = VIRT_MACHINE(obj);
1638     const char *val = vms->gic_version == 3 ? "3" : "2";
1639 
1640     return g_strdup(val);
1641 }
1642 
1643 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1644 {
1645     VirtMachineState *vms = VIRT_MACHINE(obj);
1646 
1647     if (!strcmp(value, "3")) {
1648         vms->gic_version = 3;
1649     } else if (!strcmp(value, "2")) {
1650         vms->gic_version = 2;
1651     } else if (!strcmp(value, "host")) {
1652         vms->gic_version = 0; /* Will probe later */
1653     } else if (!strcmp(value, "max")) {
1654         vms->gic_version = -1; /* Will probe later */
1655     } else {
1656         error_setg(errp, "Invalid gic-version value");
1657         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1658     }
1659 }
1660 
1661 static char *virt_get_iommu(Object *obj, Error **errp)
1662 {
1663     VirtMachineState *vms = VIRT_MACHINE(obj);
1664 
1665     switch (vms->iommu) {
1666     case VIRT_IOMMU_NONE:
1667         return g_strdup("none");
1668     case VIRT_IOMMU_SMMUV3:
1669         return g_strdup("smmuv3");
1670     default:
1671         g_assert_not_reached();
1672     }
1673 }
1674 
1675 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1676 {
1677     VirtMachineState *vms = VIRT_MACHINE(obj);
1678 
1679     if (!strcmp(value, "smmuv3")) {
1680         vms->iommu = VIRT_IOMMU_SMMUV3;
1681     } else if (!strcmp(value, "none")) {
1682         vms->iommu = VIRT_IOMMU_NONE;
1683     } else {
1684         error_setg(errp, "Invalid iommu value");
1685         error_append_hint(errp, "Valid values are none, smmuv3.\n");
1686     }
1687 }
1688 
1689 static CpuInstanceProperties
1690 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1691 {
1692     MachineClass *mc = MACHINE_GET_CLASS(ms);
1693     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1694 
1695     assert(cpu_index < possible_cpus->len);
1696     return possible_cpus->cpus[cpu_index].props;
1697 }
1698 
1699 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1700 {
1701     return idx % nb_numa_nodes;
1702 }
1703 
1704 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1705 {
1706     int n;
1707     VirtMachineState *vms = VIRT_MACHINE(ms);
1708 
1709     if (ms->possible_cpus) {
1710         assert(ms->possible_cpus->len == max_cpus);
1711         return ms->possible_cpus;
1712     }
1713 
1714     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1715                                   sizeof(CPUArchId) * max_cpus);
1716     ms->possible_cpus->len = max_cpus;
1717     for (n = 0; n < ms->possible_cpus->len; n++) {
1718         ms->possible_cpus->cpus[n].type = ms->cpu_type;
1719         ms->possible_cpus->cpus[n].arch_id =
1720             virt_cpu_mp_affinity(vms, n);
1721         ms->possible_cpus->cpus[n].props.has_thread_id = true;
1722         ms->possible_cpus->cpus[n].props.thread_id = n;
1723     }
1724     return ms->possible_cpus;
1725 }
1726 
1727 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1728                                         DeviceState *dev, Error **errp)
1729 {
1730     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1731 
1732     if (vms->platform_bus_dev) {
1733         if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1734             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1735                                      SYS_BUS_DEVICE(dev));
1736         }
1737     }
1738 }
1739 
1740 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1741                                                         DeviceState *dev)
1742 {
1743     if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1744         return HOTPLUG_HANDLER(machine);
1745     }
1746 
1747     return NULL;
1748 }
1749 
1750 static void virt_machine_class_init(ObjectClass *oc, void *data)
1751 {
1752     MachineClass *mc = MACHINE_CLASS(oc);
1753     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1754 
1755     mc->init = machvirt_init;
1756     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1757      * The value may be reduced later when we have more information about the
1758      * configuration of the particular instance.
1759      */
1760     mc->max_cpus = 512;
1761     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1762     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1763     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1764     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1765     mc->block_default_type = IF_VIRTIO;
1766     mc->no_cdrom = 1;
1767     mc->pci_allow_0_address = true;
1768     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1769     mc->minimum_page_bits = 12;
1770     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1771     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1772     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1773     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1774     assert(!mc->get_hotplug_handler);
1775     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1776     hc->plug = virt_machine_device_plug_cb;
1777 }
1778 
1779 static void virt_instance_init(Object *obj)
1780 {
1781     VirtMachineState *vms = VIRT_MACHINE(obj);
1782     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1783 
1784     /* EL3 is disabled by default on virt: this makes us consistent
1785      * between KVM and TCG for this board, and it also allows us to
1786      * boot UEFI blobs which assume no TrustZone support.
1787      */
1788     vms->secure = false;
1789     object_property_add_bool(obj, "secure", virt_get_secure,
1790                              virt_set_secure, NULL);
1791     object_property_set_description(obj, "secure",
1792                                     "Set on/off to enable/disable the ARM "
1793                                     "Security Extensions (TrustZone)",
1794                                     NULL);
1795 
1796     /* EL2 is also disabled by default, for similar reasons */
1797     vms->virt = false;
1798     object_property_add_bool(obj, "virtualization", virt_get_virt,
1799                              virt_set_virt, NULL);
1800     object_property_set_description(obj, "virtualization",
1801                                     "Set on/off to enable/disable emulating a "
1802                                     "guest CPU which implements the ARM "
1803                                     "Virtualization Extensions",
1804                                     NULL);
1805 
1806     /* High memory is enabled by default */
1807     vms->highmem = true;
1808     object_property_add_bool(obj, "highmem", virt_get_highmem,
1809                              virt_set_highmem, NULL);
1810     object_property_set_description(obj, "highmem",
1811                                     "Set on/off to enable/disable using "
1812                                     "physical address space above 32 bits",
1813                                     NULL);
1814     /* Default GIC type is v2 */
1815     vms->gic_version = 2;
1816     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1817                         virt_set_gic_version, NULL);
1818     object_property_set_description(obj, "gic-version",
1819                                     "Set GIC version. "
1820                                     "Valid values are 2, 3 and host", NULL);
1821 
1822     vms->highmem_ecam = !vmc->no_highmem_ecam;
1823 
1824     if (vmc->no_its) {
1825         vms->its = false;
1826     } else {
1827         /* Default allows ITS instantiation */
1828         vms->its = true;
1829         object_property_add_bool(obj, "its", virt_get_its,
1830                                  virt_set_its, NULL);
1831         object_property_set_description(obj, "its",
1832                                         "Set on/off to enable/disable "
1833                                         "ITS instantiation",
1834                                         NULL);
1835     }
1836 
1837     /* Default disallows iommu instantiation */
1838     vms->iommu = VIRT_IOMMU_NONE;
1839     object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
1840     object_property_set_description(obj, "iommu",
1841                                     "Set the IOMMU type. "
1842                                     "Valid values are none and smmuv3",
1843                                     NULL);
1844 
1845     vms->memmap = a15memmap;
1846     vms->irqmap = a15irqmap;
1847 }
1848 
1849 static const TypeInfo virt_machine_info = {
1850     .name          = TYPE_VIRT_MACHINE,
1851     .parent        = TYPE_MACHINE,
1852     .abstract      = true,
1853     .instance_size = sizeof(VirtMachineState),
1854     .class_size    = sizeof(VirtMachineClass),
1855     .class_init    = virt_machine_class_init,
1856     .instance_init = virt_instance_init,
1857     .interfaces = (InterfaceInfo[]) {
1858          { TYPE_HOTPLUG_HANDLER },
1859          { }
1860     },
1861 };
1862 
1863 static void machvirt_machine_init(void)
1864 {
1865     type_register_static(&virt_machine_info);
1866 }
1867 type_init(machvirt_machine_init);
1868 
1869 static void virt_machine_4_0_options(MachineClass *mc)
1870 {
1871 }
1872 DEFINE_VIRT_MACHINE_AS_LATEST(4, 0)
1873 
1874 static void virt_machine_3_1_options(MachineClass *mc)
1875 {
1876     virt_machine_4_0_options(mc);
1877     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
1878 }
1879 DEFINE_VIRT_MACHINE(3, 1)
1880 
1881 static void virt_machine_3_0_options(MachineClass *mc)
1882 {
1883     virt_machine_3_1_options(mc);
1884     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
1885 }
1886 DEFINE_VIRT_MACHINE(3, 0)
1887 
1888 static void virt_machine_2_12_options(MachineClass *mc)
1889 {
1890     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1891 
1892     virt_machine_3_0_options(mc);
1893     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
1894     vmc->no_highmem_ecam = true;
1895     mc->max_cpus = 255;
1896 }
1897 DEFINE_VIRT_MACHINE(2, 12)
1898 
1899 static void virt_machine_2_11_options(MachineClass *mc)
1900 {
1901     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1902 
1903     virt_machine_2_12_options(mc);
1904     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
1905     vmc->smbios_old_sys_ver = true;
1906 }
1907 DEFINE_VIRT_MACHINE(2, 11)
1908 
1909 static void virt_machine_2_10_options(MachineClass *mc)
1910 {
1911     virt_machine_2_11_options(mc);
1912     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
1913     /* before 2.11 we never faulted accesses to bad addresses */
1914     mc->ignore_memory_transaction_failures = true;
1915 }
1916 DEFINE_VIRT_MACHINE(2, 10)
1917 
1918 static void virt_machine_2_9_options(MachineClass *mc)
1919 {
1920     virt_machine_2_10_options(mc);
1921     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
1922 }
1923 DEFINE_VIRT_MACHINE(2, 9)
1924 
1925 static void virt_machine_2_8_options(MachineClass *mc)
1926 {
1927     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1928 
1929     virt_machine_2_9_options(mc);
1930     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
1931     /* For 2.8 and earlier we falsely claimed in the DT that
1932      * our timers were edge-triggered, not level-triggered.
1933      */
1934     vmc->claim_edge_triggered_timers = true;
1935 }
1936 DEFINE_VIRT_MACHINE(2, 8)
1937 
1938 static void virt_machine_2_7_options(MachineClass *mc)
1939 {
1940     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1941 
1942     virt_machine_2_8_options(mc);
1943     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
1944     /* ITS was introduced with 2.8 */
1945     vmc->no_its = true;
1946     /* Stick with 1K pages for migration compatibility */
1947     mc->minimum_page_bits = 0;
1948 }
1949 DEFINE_VIRT_MACHINE(2, 7)
1950 
1951 static void virt_machine_2_6_options(MachineClass *mc)
1952 {
1953     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1954 
1955     virt_machine_2_7_options(mc);
1956     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
1957     vmc->disallow_affinity_adjustment = true;
1958     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1959     vmc->no_pmu = true;
1960 }
1961 DEFINE_VIRT_MACHINE(2, 6)
1962