xref: /openbmc/qemu/hw/arm/virt.c (revision 10500ce2)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
36 #include "net/net.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
47 #include "hw/arm/virt-acpi-build.h"
48 #include "hw/arm/sysbus-fdt.h"
49 #include "hw/platform-bus.h"
50 
51 /* Number of external interrupt lines to configure the GIC with */
52 #define NUM_IRQS 256
53 
54 #define GIC_FDT_IRQ_TYPE_SPI 0
55 #define GIC_FDT_IRQ_TYPE_PPI 1
56 
57 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
58 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
59 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
60 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
61 
62 #define GIC_FDT_IRQ_PPI_CPU_START 8
63 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
64 
65 #define PLATFORM_BUS_NUM_IRQS 64
66 
67 static ARMPlatformBusSystemParams platform_bus_params;
68 
69 typedef struct VirtBoardInfo {
70     struct arm_boot_info bootinfo;
71     const char *cpu_model;
72     const MemMapEntry *memmap;
73     const int *irqmap;
74     int smp_cpus;
75     void *fdt;
76     int fdt_size;
77     uint32_t clock_phandle;
78     uint32_t gic_phandle;
79     uint32_t v2m_phandle;
80 } VirtBoardInfo;
81 
82 typedef struct {
83     MachineClass parent;
84     VirtBoardInfo *daughterboard;
85 } VirtMachineClass;
86 
87 typedef struct {
88     MachineState parent;
89     bool secure;
90 } VirtMachineState;
91 
92 #define TYPE_VIRT_MACHINE   "virt"
93 #define VIRT_MACHINE(obj) \
94     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
95 #define VIRT_MACHINE_GET_CLASS(obj) \
96     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
97 #define VIRT_MACHINE_CLASS(klass) \
98     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
99 
100 /* Addresses and sizes of our components.
101  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
102  * 128MB..256MB is used for miscellaneous device I/O.
103  * 256MB..1GB is reserved for possible future PCI support (ie where the
104  * PCI memory window will go if we add a PCI host controller).
105  * 1GB and up is RAM (which may happily spill over into the
106  * high memory region beyond 4GB).
107  * This represents a compromise between how much RAM can be given to
108  * a 32 bit VM and leaving space for expansion and in particular for PCI.
109  * Note that devices should generally be placed at multiples of 0x10000,
110  * to accommodate guests using 64K pages.
111  */
112 static const MemMapEntry a15memmap[] = {
113     /* Space up to 0x8000000 is reserved for a boot ROM */
114     [VIRT_FLASH] =              {          0, 0x08000000 },
115     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
116     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
117     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
118     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
119     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
120     [VIRT_UART] =               { 0x09000000, 0x00001000 },
121     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
122     [VIRT_FW_CFG] =             { 0x09020000, 0x0000000a },
123     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
124     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
125     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
126     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
127     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
128     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
129     [VIRT_MEM] =                { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
130 };
131 
132 static const int a15irqmap[] = {
133     [VIRT_UART] = 1,
134     [VIRT_RTC] = 2,
135     [VIRT_PCIE] = 3, /* ... to 6 */
136     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
137     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
138     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
139 };
140 
141 static VirtBoardInfo machines[] = {
142     {
143         .cpu_model = "cortex-a15",
144         .memmap = a15memmap,
145         .irqmap = a15irqmap,
146     },
147     {
148         .cpu_model = "cortex-a53",
149         .memmap = a15memmap,
150         .irqmap = a15irqmap,
151     },
152     {
153         .cpu_model = "cortex-a57",
154         .memmap = a15memmap,
155         .irqmap = a15irqmap,
156     },
157     {
158         .cpu_model = "host",
159         .memmap = a15memmap,
160         .irqmap = a15irqmap,
161     },
162 };
163 
164 static VirtBoardInfo *find_machine_info(const char *cpu)
165 {
166     int i;
167 
168     for (i = 0; i < ARRAY_SIZE(machines); i++) {
169         if (strcmp(cpu, machines[i].cpu_model) == 0) {
170             return &machines[i];
171         }
172     }
173     return NULL;
174 }
175 
176 static void create_fdt(VirtBoardInfo *vbi)
177 {
178     void *fdt = create_device_tree(&vbi->fdt_size);
179 
180     if (!fdt) {
181         error_report("create_device_tree() failed");
182         exit(1);
183     }
184 
185     vbi->fdt = fdt;
186 
187     /* Header */
188     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
189     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
190     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
191 
192     /*
193      * /chosen and /memory nodes must exist for load_dtb
194      * to fill in necessary properties later
195      */
196     qemu_fdt_add_subnode(fdt, "/chosen");
197     qemu_fdt_add_subnode(fdt, "/memory");
198     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
199 
200     /* Clock node, for the benefit of the UART. The kernel device tree
201      * binding documentation claims the PL011 node clock properties are
202      * optional but in practice if you omit them the kernel refuses to
203      * probe for the device.
204      */
205     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
206     qemu_fdt_add_subnode(fdt, "/apb-pclk");
207     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
208     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
209     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
210     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
211                                 "clk24mhz");
212     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
213 
214 }
215 
216 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
217 {
218     uint32_t cpu_suspend_fn;
219     uint32_t cpu_off_fn;
220     uint32_t cpu_on_fn;
221     uint32_t migrate_fn;
222     void *fdt = vbi->fdt;
223     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
224 
225     qemu_fdt_add_subnode(fdt, "/psci");
226     if (armcpu->psci_version == 2) {
227         const char comp[] = "arm,psci-0.2\0arm,psci";
228         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
229 
230         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
231         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
232             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
233             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
234             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
235         } else {
236             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
237             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
238             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
239         }
240     } else {
241         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
242 
243         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
244         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
245         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
246         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
247     }
248 
249     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
250      * to the instruction that should be used to invoke PSCI functions.
251      * However, the device tree binding uses 'method' instead, so that is
252      * what we should use here.
253      */
254     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
255 
256     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
257     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
258     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
259     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
260 }
261 
262 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
263 {
264     /* Note that on A15 h/w these interrupts are level-triggered,
265      * but for the GIC implementation provided by both QEMU and KVM
266      * they are edge-triggered.
267      */
268     ARMCPU *armcpu;
269     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
270 
271     irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
272                          GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
273 
274     qemu_fdt_add_subnode(vbi->fdt, "/timer");
275 
276     armcpu = ARM_CPU(qemu_get_cpu(0));
277     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
278         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
279         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
280                          compat, sizeof(compat));
281     } else {
282         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
283                                 "arm,armv7-timer");
284     }
285     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
286                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
287                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
288                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
289                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
290 }
291 
292 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
293 {
294     int cpu;
295 
296     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
297     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
298     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
299 
300     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
301         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
302         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
303 
304         qemu_fdt_add_subnode(vbi->fdt, nodename);
305         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
306         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
307                                     armcpu->dtb_compatible);
308 
309         if (vbi->smp_cpus > 1) {
310             qemu_fdt_setprop_string(vbi->fdt, nodename,
311                                         "enable-method", "psci");
312         }
313 
314         qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", armcpu->mp_affinity);
315         g_free(nodename);
316     }
317 }
318 
319 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
320 {
321     vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
322     qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
323     qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
324                             "arm,gic-v2m-frame");
325     qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
326     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
327                                  2, vbi->memmap[VIRT_GIC_V2M].base,
328                                  2, vbi->memmap[VIRT_GIC_V2M].size);
329     qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
330 }
331 
332 static void fdt_add_gic_node(VirtBoardInfo *vbi)
333 {
334     vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
335     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
336 
337     qemu_fdt_add_subnode(vbi->fdt, "/intc");
338     /* 'cortex-a15-gic' means 'GIC v2' */
339     qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
340                             "arm,cortex-a15-gic");
341     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
342     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
343     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
344                                      2, vbi->memmap[VIRT_GIC_DIST].base,
345                                      2, vbi->memmap[VIRT_GIC_DIST].size,
346                                      2, vbi->memmap[VIRT_GIC_CPU].base,
347                                      2, vbi->memmap[VIRT_GIC_CPU].size);
348     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
349     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
350     qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
351     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
352 }
353 
354 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
355 {
356     int i;
357     int irq = vbi->irqmap[VIRT_GIC_V2M];
358     DeviceState *dev;
359 
360     dev = qdev_create(NULL, "arm-gicv2m");
361     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
362     qdev_prop_set_uint32(dev, "base-spi", irq);
363     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
364     qdev_init_nofail(dev);
365 
366     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
367         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
368     }
369 
370     fdt_add_v2m_gic_node(vbi);
371 }
372 
373 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic)
374 {
375     /* We create a standalone GIC v2 */
376     DeviceState *gicdev;
377     SysBusDevice *gicbusdev;
378     const char *gictype = "arm_gic";
379     int i;
380 
381     if (kvm_irqchip_in_kernel()) {
382         gictype = "kvm-arm-gic";
383     }
384 
385     gicdev = qdev_create(NULL, gictype);
386     qdev_prop_set_uint32(gicdev, "revision", 2);
387     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
388     /* Note that the num-irq property counts both internal and external
389      * interrupts; there are always 32 of the former (mandated by GIC spec).
390      */
391     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
392     qdev_init_nofail(gicdev);
393     gicbusdev = SYS_BUS_DEVICE(gicdev);
394     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
395     sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
396 
397     /* Wire the outputs from each CPU's generic timer to the
398      * appropriate GIC PPI inputs, and the GIC's IRQ output to
399      * the CPU's IRQ input.
400      */
401     for (i = 0; i < smp_cpus; i++) {
402         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
403         int ppibase = NUM_IRQS + i * 32;
404         /* physical timer; we wire it up to the non-secure timer's ID,
405          * since a real A15 always has TrustZone but QEMU doesn't.
406          */
407         qdev_connect_gpio_out(cpudev, 0,
408                               qdev_get_gpio_in(gicdev, ppibase + 30));
409         /* virtual timer */
410         qdev_connect_gpio_out(cpudev, 1,
411                               qdev_get_gpio_in(gicdev, ppibase + 27));
412 
413         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
414         sysbus_connect_irq(gicbusdev, i + smp_cpus,
415                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
416     }
417 
418     for (i = 0; i < NUM_IRQS; i++) {
419         pic[i] = qdev_get_gpio_in(gicdev, i);
420     }
421 
422     fdt_add_gic_node(vbi);
423 
424     create_v2m(vbi, pic);
425 }
426 
427 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
428 {
429     char *nodename;
430     hwaddr base = vbi->memmap[VIRT_UART].base;
431     hwaddr size = vbi->memmap[VIRT_UART].size;
432     int irq = vbi->irqmap[VIRT_UART];
433     const char compat[] = "arm,pl011\0arm,primecell";
434     const char clocknames[] = "uartclk\0apb_pclk";
435 
436     sysbus_create_simple("pl011", base, pic[irq]);
437 
438     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
439     qemu_fdt_add_subnode(vbi->fdt, nodename);
440     /* Note that we can't use setprop_string because of the embedded NUL */
441     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
442                          compat, sizeof(compat));
443     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
444                                      2, base, 2, size);
445     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
446                                GIC_FDT_IRQ_TYPE_SPI, irq,
447                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
448     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
449                                vbi->clock_phandle, vbi->clock_phandle);
450     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
451                          clocknames, sizeof(clocknames));
452 
453     qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
454     g_free(nodename);
455 }
456 
457 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
458 {
459     char *nodename;
460     hwaddr base = vbi->memmap[VIRT_RTC].base;
461     hwaddr size = vbi->memmap[VIRT_RTC].size;
462     int irq = vbi->irqmap[VIRT_RTC];
463     const char compat[] = "arm,pl031\0arm,primecell";
464 
465     sysbus_create_simple("pl031", base, pic[irq]);
466 
467     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
468     qemu_fdt_add_subnode(vbi->fdt, nodename);
469     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
470     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
471                                  2, base, 2, size);
472     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
473                            GIC_FDT_IRQ_TYPE_SPI, irq,
474                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
475     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
476     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
477     g_free(nodename);
478 }
479 
480 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
481 {
482     int i;
483     hwaddr size = vbi->memmap[VIRT_MMIO].size;
484 
485     /* We create the transports in forwards order. Since qbus_realize()
486      * prepends (not appends) new child buses, the incrementing loop below will
487      * create a list of virtio-mmio buses with decreasing base addresses.
488      *
489      * When a -device option is processed from the command line,
490      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
491      * order. The upshot is that -device options in increasing command line
492      * order are mapped to virtio-mmio buses with decreasing base addresses.
493      *
494      * When this code was originally written, that arrangement ensured that the
495      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
496      * the first -device on the command line. (The end-to-end order is a
497      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
498      * guest kernel's name-to-address assignment strategy.)
499      *
500      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
501      * the message, if not necessarily the code, of commit 70161ff336.
502      * Therefore the loop now establishes the inverse of the original intent.
503      *
504      * Unfortunately, we can't counteract the kernel change by reversing the
505      * loop; it would break existing command lines.
506      *
507      * In any case, the kernel makes no guarantee about the stability of
508      * enumeration order of virtio devices (as demonstrated by it changing
509      * between kernel versions). For reliable and stable identification
510      * of disks users must use UUIDs or similar mechanisms.
511      */
512     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
513         int irq = vbi->irqmap[VIRT_MMIO] + i;
514         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
515 
516         sysbus_create_simple("virtio-mmio", base, pic[irq]);
517     }
518 
519     /* We add dtb nodes in reverse order so that they appear in the finished
520      * device tree lowest address first.
521      *
522      * Note that this mapping is independent of the loop above. The previous
523      * loop influences virtio device to virtio transport assignment, whereas
524      * this loop controls how virtio transports are laid out in the dtb.
525      */
526     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
527         char *nodename;
528         int irq = vbi->irqmap[VIRT_MMIO] + i;
529         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
530 
531         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
532         qemu_fdt_add_subnode(vbi->fdt, nodename);
533         qemu_fdt_setprop_string(vbi->fdt, nodename,
534                                 "compatible", "virtio,mmio");
535         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
536                                      2, base, 2, size);
537         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
538                                GIC_FDT_IRQ_TYPE_SPI, irq,
539                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
540         g_free(nodename);
541     }
542 }
543 
544 static void create_one_flash(const char *name, hwaddr flashbase,
545                              hwaddr flashsize)
546 {
547     /* Create and map a single flash device. We use the same
548      * parameters as the flash devices on the Versatile Express board.
549      */
550     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
551     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
552     const uint64_t sectorlength = 256 * 1024;
553 
554     if (dinfo) {
555         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
556                             &error_abort);
557     }
558 
559     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
560     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
561     qdev_prop_set_uint8(dev, "width", 4);
562     qdev_prop_set_uint8(dev, "device-width", 2);
563     qdev_prop_set_bit(dev, "big-endian", false);
564     qdev_prop_set_uint16(dev, "id0", 0x89);
565     qdev_prop_set_uint16(dev, "id1", 0x18);
566     qdev_prop_set_uint16(dev, "id2", 0x00);
567     qdev_prop_set_uint16(dev, "id3", 0x00);
568     qdev_prop_set_string(dev, "name", name);
569     qdev_init_nofail(dev);
570 
571     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
572 }
573 
574 static void create_flash(const VirtBoardInfo *vbi)
575 {
576     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
577      * Any file passed via -bios goes in the first of these.
578      */
579     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
580     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
581     char *nodename;
582 
583     if (bios_name) {
584         char *fn;
585         int image_size;
586 
587         if (drive_get(IF_PFLASH, 0, 0)) {
588             error_report("The contents of the first flash device may be "
589                          "specified with -bios or with -drive if=pflash... "
590                          "but you cannot use both options at once");
591             exit(1);
592         }
593         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
594         if (!fn) {
595             error_report("Could not find ROM image '%s'", bios_name);
596             exit(1);
597         }
598         image_size = load_image_targphys(fn, flashbase, flashsize);
599         g_free(fn);
600         if (image_size < 0) {
601             error_report("Could not load ROM image '%s'", bios_name);
602             exit(1);
603         }
604     }
605 
606     create_one_flash("virt.flash0", flashbase, flashsize);
607     create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
608 
609     nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
610     qemu_fdt_add_subnode(vbi->fdt, nodename);
611     qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
612     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
613                                  2, flashbase, 2, flashsize,
614                                  2, flashbase + flashsize, 2, flashsize);
615     qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
616     g_free(nodename);
617 }
618 
619 static void create_fw_cfg(const VirtBoardInfo *vbi)
620 {
621     hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
622     hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
623     char *nodename;
624 
625     fw_cfg_init_mem_wide(base + 8, base, 8);
626 
627     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
628     qemu_fdt_add_subnode(vbi->fdt, nodename);
629     qemu_fdt_setprop_string(vbi->fdt, nodename,
630                             "compatible", "qemu,fw-cfg-mmio");
631     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
632                                  2, base, 2, size);
633     g_free(nodename);
634 }
635 
636 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
637                                 int first_irq, const char *nodename)
638 {
639     int devfn, pin;
640     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
641     uint32_t *irq_map = full_irq_map;
642 
643     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
644         for (pin = 0; pin < 4; pin++) {
645             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
646             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
647             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
648             int i;
649 
650             uint32_t map[] = {
651                 devfn << 8, 0, 0,                           /* devfn */
652                 pin + 1,                                    /* PCI pin */
653                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
654 
655             /* Convert map to big endian */
656             for (i = 0; i < 10; i++) {
657                 irq_map[i] = cpu_to_be32(map[i]);
658             }
659             irq_map += 10;
660         }
661     }
662 
663     qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
664                      full_irq_map, sizeof(full_irq_map));
665 
666     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
667                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
668                            0x7           /* PCI irq */);
669 }
670 
671 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic)
672 {
673     hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
674     hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
675     hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
676     hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
677     hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
678     hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
679     hwaddr base = base_mmio;
680     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
681     int irq = vbi->irqmap[VIRT_PCIE];
682     MemoryRegion *mmio_alias;
683     MemoryRegion *mmio_reg;
684     MemoryRegion *ecam_alias;
685     MemoryRegion *ecam_reg;
686     DeviceState *dev;
687     char *nodename;
688     int i;
689 
690     dev = qdev_create(NULL, TYPE_GPEX_HOST);
691     qdev_init_nofail(dev);
692 
693     /* Map only the first size_ecam bytes of ECAM space */
694     ecam_alias = g_new0(MemoryRegion, 1);
695     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
696     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
697                              ecam_reg, 0, size_ecam);
698     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
699 
700     /* Map the MMIO window into system address space so as to expose
701      * the section of PCI MMIO space which starts at the same base address
702      * (ie 1:1 mapping for that part of PCI MMIO space visible through
703      * the window).
704      */
705     mmio_alias = g_new0(MemoryRegion, 1);
706     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
707     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
708                              mmio_reg, base_mmio, size_mmio);
709     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
710 
711     /* Map IO port space */
712     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
713 
714     for (i = 0; i < GPEX_NUM_IRQS; i++) {
715         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
716     }
717 
718     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
719     qemu_fdt_add_subnode(vbi->fdt, nodename);
720     qemu_fdt_setprop_string(vbi->fdt, nodename,
721                             "compatible", "pci-host-ecam-generic");
722     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
723     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
724     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
725     qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
726                            nr_pcie_buses - 1);
727 
728     qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", vbi->v2m_phandle);
729 
730     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
731                                  2, base_ecam, 2, size_ecam);
732     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
733                                  1, FDT_PCI_RANGE_IOPORT, 2, 0,
734                                  2, base_pio, 2, size_pio,
735                                  1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
736                                  2, base_mmio, 2, size_mmio);
737 
738     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
739     create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
740 
741     g_free(nodename);
742 }
743 
744 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
745 {
746     DeviceState *dev;
747     SysBusDevice *s;
748     int i;
749     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
750     MemoryRegion *sysmem = get_system_memory();
751 
752     platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
753     platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
754     platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
755     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
756 
757     fdt_params->system_params = &platform_bus_params;
758     fdt_params->binfo = &vbi->bootinfo;
759     fdt_params->intc = "/intc";
760     /*
761      * register a machine init done notifier that creates the device tree
762      * nodes of the platform bus and its children dynamic sysbus devices
763      */
764     arm_register_platform_bus_fdt_creator(fdt_params);
765 
766     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
767     dev->id = TYPE_PLATFORM_BUS_DEVICE;
768     qdev_prop_set_uint32(dev, "num_irqs",
769         platform_bus_params.platform_bus_num_irqs);
770     qdev_prop_set_uint32(dev, "mmio_size",
771         platform_bus_params.platform_bus_size);
772     qdev_init_nofail(dev);
773     s = SYS_BUS_DEVICE(dev);
774 
775     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
776         int irqn = platform_bus_params.platform_bus_first_irq + i;
777         sysbus_connect_irq(s, i, pic[irqn]);
778     }
779 
780     memory_region_add_subregion(sysmem,
781                                 platform_bus_params.platform_bus_base,
782                                 sysbus_mmio_get_region(s, 0));
783 }
784 
785 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
786 {
787     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
788 
789     *fdt_size = board->fdt_size;
790     return board->fdt;
791 }
792 
793 static
794 void virt_guest_info_machine_done(Notifier *notifier, void *data)
795 {
796     VirtGuestInfoState *guest_info_state = container_of(notifier,
797                                               VirtGuestInfoState, machine_done);
798     virt_acpi_setup(&guest_info_state->info);
799 }
800 
801 static void machvirt_init(MachineState *machine)
802 {
803     VirtMachineState *vms = VIRT_MACHINE(machine);
804     qemu_irq pic[NUM_IRQS];
805     MemoryRegion *sysmem = get_system_memory();
806     int n;
807     MemoryRegion *ram = g_new(MemoryRegion, 1);
808     const char *cpu_model = machine->cpu_model;
809     VirtBoardInfo *vbi;
810     VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
811     VirtGuestInfo *guest_info = &guest_info_state->info;
812     char **cpustr;
813 
814     if (!cpu_model) {
815         cpu_model = "cortex-a15";
816     }
817 
818     /* Separate the actual CPU model name from any appended features */
819     cpustr = g_strsplit(cpu_model, ",", 2);
820 
821     vbi = find_machine_info(cpustr[0]);
822 
823     if (!vbi) {
824         error_report("mach-virt: CPU %s not supported", cpustr[0]);
825         exit(1);
826     }
827 
828     vbi->smp_cpus = smp_cpus;
829 
830     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
831         error_report("mach-virt: cannot model more than 30GB RAM");
832         exit(1);
833     }
834 
835     create_fdt(vbi);
836 
837     for (n = 0; n < smp_cpus; n++) {
838         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
839         CPUClass *cc = CPU_CLASS(oc);
840         Object *cpuobj;
841         Error *err = NULL;
842         char *cpuopts = g_strdup(cpustr[1]);
843 
844         if (!oc) {
845             fprintf(stderr, "Unable to find CPU definition\n");
846             exit(1);
847         }
848         cpuobj = object_new(object_class_get_name(oc));
849 
850         /* Handle any CPU options specified by the user */
851         cc->parse_features(CPU(cpuobj), cpuopts, &err);
852         g_free(cpuopts);
853         if (err) {
854             error_report_err(err);
855             exit(1);
856         }
857 
858         if (!vms->secure) {
859             object_property_set_bool(cpuobj, false, "has_el3", NULL);
860         }
861 
862         object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
863                                 NULL);
864 
865         /* Secondary CPUs start in PSCI powered-down state */
866         if (n > 0) {
867             object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
868         }
869 
870         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
871             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
872                                     "reset-cbar", &error_abort);
873         }
874 
875         object_property_set_bool(cpuobj, true, "realized", NULL);
876     }
877     g_strfreev(cpustr);
878     fdt_add_timer_nodes(vbi);
879     fdt_add_cpu_nodes(vbi);
880     fdt_add_psci_node(vbi);
881 
882     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
883                                          machine->ram_size);
884     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
885 
886     create_flash(vbi);
887 
888     create_gic(vbi, pic);
889 
890     create_uart(vbi, pic);
891 
892     create_rtc(vbi, pic);
893 
894     create_pcie(vbi, pic);
895 
896     /* Create mmio transports, so the user can create virtio backends
897      * (which will be automatically plugged in to the transports). If
898      * no backend is created the transport will just sit harmlessly idle.
899      */
900     create_virtio_devices(vbi, pic);
901 
902     create_fw_cfg(vbi);
903     rom_set_fw(fw_cfg_find());
904 
905     guest_info->smp_cpus = smp_cpus;
906     guest_info->fw_cfg = fw_cfg_find();
907     guest_info->memmap = vbi->memmap;
908     guest_info->irqmap = vbi->irqmap;
909     guest_info_state->machine_done.notify = virt_guest_info_machine_done;
910     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
911 
912     vbi->bootinfo.ram_size = machine->ram_size;
913     vbi->bootinfo.kernel_filename = machine->kernel_filename;
914     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
915     vbi->bootinfo.initrd_filename = machine->initrd_filename;
916     vbi->bootinfo.nb_cpus = smp_cpus;
917     vbi->bootinfo.board_id = -1;
918     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
919     vbi->bootinfo.get_dtb = machvirt_dtb;
920     vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
921     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
922 
923     /*
924      * arm_load_kernel machine init done notifier registration must
925      * happen before the platform_bus_create call. In this latter,
926      * another notifier is registered which adds platform bus nodes.
927      * Notifiers are executed in registration reverse order.
928      */
929     create_platform_bus(vbi, pic);
930 }
931 
932 static bool virt_get_secure(Object *obj, Error **errp)
933 {
934     VirtMachineState *vms = VIRT_MACHINE(obj);
935 
936     return vms->secure;
937 }
938 
939 static void virt_set_secure(Object *obj, bool value, Error **errp)
940 {
941     VirtMachineState *vms = VIRT_MACHINE(obj);
942 
943     vms->secure = value;
944 }
945 
946 static void virt_instance_init(Object *obj)
947 {
948     VirtMachineState *vms = VIRT_MACHINE(obj);
949 
950     /* EL3 is enabled by default on virt */
951     vms->secure = true;
952     object_property_add_bool(obj, "secure", virt_get_secure,
953                              virt_set_secure, NULL);
954     object_property_set_description(obj, "secure",
955                                     "Set on/off to enable/disable the ARM "
956                                     "Security Extensions (TrustZone)",
957                                     NULL);
958 }
959 
960 static void virt_class_init(ObjectClass *oc, void *data)
961 {
962     MachineClass *mc = MACHINE_CLASS(oc);
963 
964     mc->name = TYPE_VIRT_MACHINE;
965     mc->desc = "ARM Virtual Machine",
966     mc->init = machvirt_init;
967     mc->max_cpus = 8;
968     mc->has_dynamic_sysbus = true;
969 }
970 
971 static const TypeInfo machvirt_info = {
972     .name = TYPE_VIRT_MACHINE,
973     .parent = TYPE_MACHINE,
974     .instance_size = sizeof(VirtMachineState),
975     .instance_init = virt_instance_init,
976     .class_size = sizeof(VirtMachineClass),
977     .class_init = virt_class_init,
978 };
979 
980 static void machvirt_machine_init(void)
981 {
982     type_register_static(&machvirt_info);
983 }
984 
985 machine_init(machvirt_machine_init);
986