xref: /openbmc/qemu/hw/arm/virt.c (revision 0a9516c2)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
36 #include "net/net.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
47 #include "hw/arm/virt-acpi-build.h"
48 #include "hw/arm/sysbus-fdt.h"
49 #include "hw/platform-bus.h"
50 #include "hw/arm/fdt.h"
51 #include "hw/intc/arm_gic_common.h"
52 #include "kvm_arm.h"
53 #include "hw/smbios/smbios.h"
54 #include "qapi/visitor.h"
55 
56 /* Number of external interrupt lines to configure the GIC with */
57 #define NUM_IRQS 256
58 
59 #define PLATFORM_BUS_NUM_IRQS 64
60 
61 static ARMPlatformBusSystemParams platform_bus_params;
62 
63 typedef struct VirtBoardInfo {
64     struct arm_boot_info bootinfo;
65     const char *cpu_model;
66     const MemMapEntry *memmap;
67     const int *irqmap;
68     int smp_cpus;
69     void *fdt;
70     int fdt_size;
71     uint32_t clock_phandle;
72     uint32_t gic_phandle;
73     uint32_t v2m_phandle;
74 } VirtBoardInfo;
75 
76 typedef struct {
77     MachineClass parent;
78     VirtBoardInfo *daughterboard;
79 } VirtMachineClass;
80 
81 typedef struct {
82     MachineState parent;
83     bool secure;
84     bool highmem;
85     int32_t gic_version;
86 } VirtMachineState;
87 
88 #define TYPE_VIRT_MACHINE   MACHINE_TYPE_NAME("virt")
89 #define VIRT_MACHINE(obj) \
90     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
91 #define VIRT_MACHINE_GET_CLASS(obj) \
92     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
93 #define VIRT_MACHINE_CLASS(klass) \
94     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
95 
96 /* Addresses and sizes of our components.
97  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
98  * 128MB..256MB is used for miscellaneous device I/O.
99  * 256MB..1GB is reserved for possible future PCI support (ie where the
100  * PCI memory window will go if we add a PCI host controller).
101  * 1GB and up is RAM (which may happily spill over into the
102  * high memory region beyond 4GB).
103  * This represents a compromise between how much RAM can be given to
104  * a 32 bit VM and leaving space for expansion and in particular for PCI.
105  * Note that devices should generally be placed at multiples of 0x10000,
106  * to accommodate guests using 64K pages.
107  */
108 static const MemMapEntry a15memmap[] = {
109     /* Space up to 0x8000000 is reserved for a boot ROM */
110     [VIRT_FLASH] =              {          0, 0x08000000 },
111     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
112     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
113     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
114     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
115     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
116     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
117     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
118     /* This redistributor space allows up to 2*64kB*123 CPUs */
119     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
120     [VIRT_UART] =               { 0x09000000, 0x00001000 },
121     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
122     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
123     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
124     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
125     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
126     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
127     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
128     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
129     [VIRT_MEM] =                { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
130     /* Second PCIe window, 512GB wide at the 512GB boundary */
131     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
132 };
133 
134 static const int a15irqmap[] = {
135     [VIRT_UART] = 1,
136     [VIRT_RTC] = 2,
137     [VIRT_PCIE] = 3, /* ... to 6 */
138     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
139     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
140     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
141 };
142 
143 static VirtBoardInfo machines[] = {
144     {
145         .cpu_model = "cortex-a15",
146         .memmap = a15memmap,
147         .irqmap = a15irqmap,
148     },
149     {
150         .cpu_model = "cortex-a53",
151         .memmap = a15memmap,
152         .irqmap = a15irqmap,
153     },
154     {
155         .cpu_model = "cortex-a57",
156         .memmap = a15memmap,
157         .irqmap = a15irqmap,
158     },
159     {
160         .cpu_model = "host",
161         .memmap = a15memmap,
162         .irqmap = a15irqmap,
163     },
164 };
165 
166 static VirtBoardInfo *find_machine_info(const char *cpu)
167 {
168     int i;
169 
170     for (i = 0; i < ARRAY_SIZE(machines); i++) {
171         if (strcmp(cpu, machines[i].cpu_model) == 0) {
172             return &machines[i];
173         }
174     }
175     return NULL;
176 }
177 
178 static void create_fdt(VirtBoardInfo *vbi)
179 {
180     void *fdt = create_device_tree(&vbi->fdt_size);
181 
182     if (!fdt) {
183         error_report("create_device_tree() failed");
184         exit(1);
185     }
186 
187     vbi->fdt = fdt;
188 
189     /* Header */
190     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
191     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
192     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
193 
194     /*
195      * /chosen and /memory nodes must exist for load_dtb
196      * to fill in necessary properties later
197      */
198     qemu_fdt_add_subnode(fdt, "/chosen");
199     qemu_fdt_add_subnode(fdt, "/memory");
200     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
201 
202     /* Clock node, for the benefit of the UART. The kernel device tree
203      * binding documentation claims the PL011 node clock properties are
204      * optional but in practice if you omit them the kernel refuses to
205      * probe for the device.
206      */
207     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
208     qemu_fdt_add_subnode(fdt, "/apb-pclk");
209     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
210     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
211     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
212     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
213                                 "clk24mhz");
214     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
215 
216 }
217 
218 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
219 {
220     uint32_t cpu_suspend_fn;
221     uint32_t cpu_off_fn;
222     uint32_t cpu_on_fn;
223     uint32_t migrate_fn;
224     void *fdt = vbi->fdt;
225     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
226 
227     qemu_fdt_add_subnode(fdt, "/psci");
228     if (armcpu->psci_version == 2) {
229         const char comp[] = "arm,psci-0.2\0arm,psci";
230         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
231 
232         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
233         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
234             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
235             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
236             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
237         } else {
238             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
239             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
240             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
241         }
242     } else {
243         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
244 
245         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
246         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
247         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
248         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
249     }
250 
251     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
252      * to the instruction that should be used to invoke PSCI functions.
253      * However, the device tree binding uses 'method' instead, so that is
254      * what we should use here.
255      */
256     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
257 
258     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
259     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
260     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
261     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
262 }
263 
264 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
265 {
266     /* Note that on A15 h/w these interrupts are level-triggered,
267      * but for the GIC implementation provided by both QEMU and KVM
268      * they are edge-triggered.
269      */
270     ARMCPU *armcpu;
271     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
272 
273     if (gictype == 2) {
274         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
275                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
276                              (1 << vbi->smp_cpus) - 1);
277     }
278 
279     qemu_fdt_add_subnode(vbi->fdt, "/timer");
280 
281     armcpu = ARM_CPU(qemu_get_cpu(0));
282     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
283         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
284         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
285                          compat, sizeof(compat));
286     } else {
287         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
288                                 "arm,armv7-timer");
289     }
290     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
291                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
292                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
293                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
294                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
295 }
296 
297 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
298 {
299     int cpu;
300     int addr_cells = 1;
301 
302     /*
303      * From Documentation/devicetree/bindings/arm/cpus.txt
304      *  On ARM v8 64-bit systems value should be set to 2,
305      *  that corresponds to the MPIDR_EL1 register size.
306      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
307      *  in the system, #address-cells can be set to 1, since
308      *  MPIDR_EL1[63:32] bits are not used for CPUs
309      *  identification.
310      *
311      *  Here we actually don't know whether our system is 32- or 64-bit one.
312      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
313      *  at least one of them has Aff3 populated, we set #address-cells to 2.
314      */
315     for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
316         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
317 
318         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
319             addr_cells = 2;
320             break;
321         }
322     }
323 
324     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
325     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
326     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
327 
328     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
329         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
330         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
331 
332         qemu_fdt_add_subnode(vbi->fdt, nodename);
333         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
334         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
335                                     armcpu->dtb_compatible);
336 
337         if (vbi->smp_cpus > 1) {
338             qemu_fdt_setprop_string(vbi->fdt, nodename,
339                                         "enable-method", "psci");
340         }
341 
342         if (addr_cells == 2) {
343             qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
344                                  armcpu->mp_affinity);
345         } else {
346             qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
347                                   armcpu->mp_affinity);
348         }
349 
350         g_free(nodename);
351     }
352 }
353 
354 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
355 {
356     vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
357     qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
358     qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
359                             "arm,gic-v2m-frame");
360     qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
361     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
362                                  2, vbi->memmap[VIRT_GIC_V2M].base,
363                                  2, vbi->memmap[VIRT_GIC_V2M].size);
364     qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
365 }
366 
367 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
368 {
369     vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
370     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
371 
372     qemu_fdt_add_subnode(vbi->fdt, "/intc");
373     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
374     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
375     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
376     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
377     qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
378     if (type == 3) {
379         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
380                                 "arm,gic-v3");
381         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
382                                      2, vbi->memmap[VIRT_GIC_DIST].base,
383                                      2, vbi->memmap[VIRT_GIC_DIST].size,
384                                      2, vbi->memmap[VIRT_GIC_REDIST].base,
385                                      2, vbi->memmap[VIRT_GIC_REDIST].size);
386     } else {
387         /* 'cortex-a15-gic' means 'GIC v2' */
388         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
389                                 "arm,cortex-a15-gic");
390         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
391                                       2, vbi->memmap[VIRT_GIC_DIST].base,
392                                       2, vbi->memmap[VIRT_GIC_DIST].size,
393                                       2, vbi->memmap[VIRT_GIC_CPU].base,
394                                       2, vbi->memmap[VIRT_GIC_CPU].size);
395     }
396 
397     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
398 }
399 
400 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
401 {
402     int i;
403     int irq = vbi->irqmap[VIRT_GIC_V2M];
404     DeviceState *dev;
405 
406     dev = qdev_create(NULL, "arm-gicv2m");
407     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
408     qdev_prop_set_uint32(dev, "base-spi", irq);
409     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
410     qdev_init_nofail(dev);
411 
412     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
413         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
414     }
415 
416     fdt_add_v2m_gic_node(vbi);
417 }
418 
419 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
420 {
421     /* We create a standalone GIC */
422     DeviceState *gicdev;
423     SysBusDevice *gicbusdev;
424     const char *gictype;
425     int i;
426 
427     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
428 
429     gicdev = qdev_create(NULL, gictype);
430     qdev_prop_set_uint32(gicdev, "revision", type);
431     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
432     /* Note that the num-irq property counts both internal and external
433      * interrupts; there are always 32 of the former (mandated by GIC spec).
434      */
435     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
436     if (!kvm_irqchip_in_kernel()) {
437         qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
438     }
439     qdev_init_nofail(gicdev);
440     gicbusdev = SYS_BUS_DEVICE(gicdev);
441     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
442     if (type == 3) {
443         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
444     } else {
445         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
446     }
447 
448     /* Wire the outputs from each CPU's generic timer to the
449      * appropriate GIC PPI inputs, and the GIC's IRQ output to
450      * the CPU's IRQ input.
451      */
452     for (i = 0; i < smp_cpus; i++) {
453         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
454         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
455         int irq;
456         /* Mapping from the output timer irq lines from the CPU to the
457          * GIC PPI inputs we use for the virt board.
458          */
459         const int timer_irq[] = {
460             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
461             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
462             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
463             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
464         };
465 
466         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
467             qdev_connect_gpio_out(cpudev, irq,
468                                   qdev_get_gpio_in(gicdev,
469                                                    ppibase + timer_irq[irq]));
470         }
471 
472         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
473         sysbus_connect_irq(gicbusdev, i + smp_cpus,
474                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
475     }
476 
477     for (i = 0; i < NUM_IRQS; i++) {
478         pic[i] = qdev_get_gpio_in(gicdev, i);
479     }
480 
481     fdt_add_gic_node(vbi, type);
482 
483     if (type == 2) {
484         create_v2m(vbi, pic);
485     }
486 }
487 
488 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
489 {
490     char *nodename;
491     hwaddr base = vbi->memmap[VIRT_UART].base;
492     hwaddr size = vbi->memmap[VIRT_UART].size;
493     int irq = vbi->irqmap[VIRT_UART];
494     const char compat[] = "arm,pl011\0arm,primecell";
495     const char clocknames[] = "uartclk\0apb_pclk";
496 
497     sysbus_create_simple("pl011", base, pic[irq]);
498 
499     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
500     qemu_fdt_add_subnode(vbi->fdt, nodename);
501     /* Note that we can't use setprop_string because of the embedded NUL */
502     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
503                          compat, sizeof(compat));
504     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
505                                      2, base, 2, size);
506     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
507                                GIC_FDT_IRQ_TYPE_SPI, irq,
508                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
509     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
510                                vbi->clock_phandle, vbi->clock_phandle);
511     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
512                          clocknames, sizeof(clocknames));
513 
514     qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
515     g_free(nodename);
516 }
517 
518 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
519 {
520     char *nodename;
521     hwaddr base = vbi->memmap[VIRT_RTC].base;
522     hwaddr size = vbi->memmap[VIRT_RTC].size;
523     int irq = vbi->irqmap[VIRT_RTC];
524     const char compat[] = "arm,pl031\0arm,primecell";
525 
526     sysbus_create_simple("pl031", base, pic[irq]);
527 
528     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
529     qemu_fdt_add_subnode(vbi->fdt, nodename);
530     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
531     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
532                                  2, base, 2, size);
533     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
534                            GIC_FDT_IRQ_TYPE_SPI, irq,
535                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
536     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
537     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
538     g_free(nodename);
539 }
540 
541 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
542 {
543     int i;
544     hwaddr size = vbi->memmap[VIRT_MMIO].size;
545 
546     /* We create the transports in forwards order. Since qbus_realize()
547      * prepends (not appends) new child buses, the incrementing loop below will
548      * create a list of virtio-mmio buses with decreasing base addresses.
549      *
550      * When a -device option is processed from the command line,
551      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
552      * order. The upshot is that -device options in increasing command line
553      * order are mapped to virtio-mmio buses with decreasing base addresses.
554      *
555      * When this code was originally written, that arrangement ensured that the
556      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
557      * the first -device on the command line. (The end-to-end order is a
558      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
559      * guest kernel's name-to-address assignment strategy.)
560      *
561      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
562      * the message, if not necessarily the code, of commit 70161ff336.
563      * Therefore the loop now establishes the inverse of the original intent.
564      *
565      * Unfortunately, we can't counteract the kernel change by reversing the
566      * loop; it would break existing command lines.
567      *
568      * In any case, the kernel makes no guarantee about the stability of
569      * enumeration order of virtio devices (as demonstrated by it changing
570      * between kernel versions). For reliable and stable identification
571      * of disks users must use UUIDs or similar mechanisms.
572      */
573     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
574         int irq = vbi->irqmap[VIRT_MMIO] + i;
575         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
576 
577         sysbus_create_simple("virtio-mmio", base, pic[irq]);
578     }
579 
580     /* We add dtb nodes in reverse order so that they appear in the finished
581      * device tree lowest address first.
582      *
583      * Note that this mapping is independent of the loop above. The previous
584      * loop influences virtio device to virtio transport assignment, whereas
585      * this loop controls how virtio transports are laid out in the dtb.
586      */
587     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
588         char *nodename;
589         int irq = vbi->irqmap[VIRT_MMIO] + i;
590         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
591 
592         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
593         qemu_fdt_add_subnode(vbi->fdt, nodename);
594         qemu_fdt_setprop_string(vbi->fdt, nodename,
595                                 "compatible", "virtio,mmio");
596         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
597                                      2, base, 2, size);
598         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
599                                GIC_FDT_IRQ_TYPE_SPI, irq,
600                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
601         g_free(nodename);
602     }
603 }
604 
605 static void create_one_flash(const char *name, hwaddr flashbase,
606                              hwaddr flashsize)
607 {
608     /* Create and map a single flash device. We use the same
609      * parameters as the flash devices on the Versatile Express board.
610      */
611     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
612     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
613     const uint64_t sectorlength = 256 * 1024;
614 
615     if (dinfo) {
616         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
617                             &error_abort);
618     }
619 
620     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
621     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
622     qdev_prop_set_uint8(dev, "width", 4);
623     qdev_prop_set_uint8(dev, "device-width", 2);
624     qdev_prop_set_bit(dev, "big-endian", false);
625     qdev_prop_set_uint16(dev, "id0", 0x89);
626     qdev_prop_set_uint16(dev, "id1", 0x18);
627     qdev_prop_set_uint16(dev, "id2", 0x00);
628     qdev_prop_set_uint16(dev, "id3", 0x00);
629     qdev_prop_set_string(dev, "name", name);
630     qdev_init_nofail(dev);
631 
632     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
633 }
634 
635 static void create_flash(const VirtBoardInfo *vbi)
636 {
637     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
638      * Any file passed via -bios goes in the first of these.
639      */
640     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
641     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
642     char *nodename;
643 
644     if (bios_name) {
645         char *fn;
646         int image_size;
647 
648         if (drive_get(IF_PFLASH, 0, 0)) {
649             error_report("The contents of the first flash device may be "
650                          "specified with -bios or with -drive if=pflash... "
651                          "but you cannot use both options at once");
652             exit(1);
653         }
654         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
655         if (!fn) {
656             error_report("Could not find ROM image '%s'", bios_name);
657             exit(1);
658         }
659         image_size = load_image_targphys(fn, flashbase, flashsize);
660         g_free(fn);
661         if (image_size < 0) {
662             error_report("Could not load ROM image '%s'", bios_name);
663             exit(1);
664         }
665     }
666 
667     create_one_flash("virt.flash0", flashbase, flashsize);
668     create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
669 
670     nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
671     qemu_fdt_add_subnode(vbi->fdt, nodename);
672     qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
673     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
674                                  2, flashbase, 2, flashsize,
675                                  2, flashbase + flashsize, 2, flashsize);
676     qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
677     g_free(nodename);
678 }
679 
680 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
681 {
682     hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
683     hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
684     char *nodename;
685 
686     fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
687 
688     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
689     qemu_fdt_add_subnode(vbi->fdt, nodename);
690     qemu_fdt_setprop_string(vbi->fdt, nodename,
691                             "compatible", "qemu,fw-cfg-mmio");
692     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
693                                  2, base, 2, size);
694     g_free(nodename);
695 }
696 
697 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
698                                 int first_irq, const char *nodename)
699 {
700     int devfn, pin;
701     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
702     uint32_t *irq_map = full_irq_map;
703 
704     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
705         for (pin = 0; pin < 4; pin++) {
706             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
707             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
708             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
709             int i;
710 
711             uint32_t map[] = {
712                 devfn << 8, 0, 0,                           /* devfn */
713                 pin + 1,                                    /* PCI pin */
714                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
715 
716             /* Convert map to big endian */
717             for (i = 0; i < 10; i++) {
718                 irq_map[i] = cpu_to_be32(map[i]);
719             }
720             irq_map += 10;
721         }
722     }
723 
724     qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
725                      full_irq_map, sizeof(full_irq_map));
726 
727     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
728                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
729                            0x7           /* PCI irq */);
730 }
731 
732 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
733                         bool use_highmem)
734 {
735     hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
736     hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
737     hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
738     hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
739     hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
740     hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
741     hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
742     hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
743     hwaddr base = base_mmio;
744     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
745     int irq = vbi->irqmap[VIRT_PCIE];
746     MemoryRegion *mmio_alias;
747     MemoryRegion *mmio_reg;
748     MemoryRegion *ecam_alias;
749     MemoryRegion *ecam_reg;
750     DeviceState *dev;
751     char *nodename;
752     int i;
753 
754     dev = qdev_create(NULL, TYPE_GPEX_HOST);
755     qdev_init_nofail(dev);
756 
757     /* Map only the first size_ecam bytes of ECAM space */
758     ecam_alias = g_new0(MemoryRegion, 1);
759     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
760     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
761                              ecam_reg, 0, size_ecam);
762     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
763 
764     /* Map the MMIO window into system address space so as to expose
765      * the section of PCI MMIO space which starts at the same base address
766      * (ie 1:1 mapping for that part of PCI MMIO space visible through
767      * the window).
768      */
769     mmio_alias = g_new0(MemoryRegion, 1);
770     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
771     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
772                              mmio_reg, base_mmio, size_mmio);
773     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
774 
775     if (use_highmem) {
776         /* Map high MMIO space */
777         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
778 
779         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
780                                  mmio_reg, base_mmio_high, size_mmio_high);
781         memory_region_add_subregion(get_system_memory(), base_mmio_high,
782                                     high_mmio_alias);
783     }
784 
785     /* Map IO port space */
786     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
787 
788     for (i = 0; i < GPEX_NUM_IRQS; i++) {
789         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
790     }
791 
792     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
793     qemu_fdt_add_subnode(vbi->fdt, nodename);
794     qemu_fdt_setprop_string(vbi->fdt, nodename,
795                             "compatible", "pci-host-ecam-generic");
796     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
797     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
798     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
799     qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
800                            nr_pcie_buses - 1);
801 
802     if (vbi->v2m_phandle) {
803         qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
804                                vbi->v2m_phandle);
805     }
806 
807     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
808                                  2, base_ecam, 2, size_ecam);
809 
810     if (use_highmem) {
811         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
812                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
813                                      2, base_pio, 2, size_pio,
814                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
815                                      2, base_mmio, 2, size_mmio,
816                                      1, FDT_PCI_RANGE_MMIO_64BIT,
817                                      2, base_mmio_high,
818                                      2, base_mmio_high, 2, size_mmio_high);
819     } else {
820         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
821                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
822                                      2, base_pio, 2, size_pio,
823                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
824                                      2, base_mmio, 2, size_mmio);
825     }
826 
827     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
828     create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
829 
830     g_free(nodename);
831 }
832 
833 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
834 {
835     DeviceState *dev;
836     SysBusDevice *s;
837     int i;
838     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
839     MemoryRegion *sysmem = get_system_memory();
840 
841     platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
842     platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
843     platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
844     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
845 
846     fdt_params->system_params = &platform_bus_params;
847     fdt_params->binfo = &vbi->bootinfo;
848     fdt_params->intc = "/intc";
849     /*
850      * register a machine init done notifier that creates the device tree
851      * nodes of the platform bus and its children dynamic sysbus devices
852      */
853     arm_register_platform_bus_fdt_creator(fdt_params);
854 
855     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
856     dev->id = TYPE_PLATFORM_BUS_DEVICE;
857     qdev_prop_set_uint32(dev, "num_irqs",
858         platform_bus_params.platform_bus_num_irqs);
859     qdev_prop_set_uint32(dev, "mmio_size",
860         platform_bus_params.platform_bus_size);
861     qdev_init_nofail(dev);
862     s = SYS_BUS_DEVICE(dev);
863 
864     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
865         int irqn = platform_bus_params.platform_bus_first_irq + i;
866         sysbus_connect_irq(s, i, pic[irqn]);
867     }
868 
869     memory_region_add_subregion(sysmem,
870                                 platform_bus_params.platform_bus_base,
871                                 sysbus_mmio_get_region(s, 0));
872 }
873 
874 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
875 {
876     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
877 
878     *fdt_size = board->fdt_size;
879     return board->fdt;
880 }
881 
882 static void virt_build_smbios(VirtGuestInfo *guest_info)
883 {
884     FWCfgState *fw_cfg = guest_info->fw_cfg;
885     uint8_t *smbios_tables, *smbios_anchor;
886     size_t smbios_tables_len, smbios_anchor_len;
887     const char *product = "QEMU Virtual Machine";
888 
889     if (!fw_cfg) {
890         return;
891     }
892 
893     if (kvm_enabled()) {
894         product = "KVM Virtual Machine";
895     }
896 
897     smbios_set_defaults("QEMU", product,
898                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
899 
900     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
901                       &smbios_anchor, &smbios_anchor_len);
902 
903     if (smbios_anchor) {
904         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
905                         smbios_tables, smbios_tables_len);
906         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
907                         smbios_anchor, smbios_anchor_len);
908     }
909 }
910 
911 static
912 void virt_guest_info_machine_done(Notifier *notifier, void *data)
913 {
914     VirtGuestInfoState *guest_info_state = container_of(notifier,
915                                               VirtGuestInfoState, machine_done);
916     virt_acpi_setup(&guest_info_state->info);
917     virt_build_smbios(&guest_info_state->info);
918 }
919 
920 static void machvirt_init(MachineState *machine)
921 {
922     VirtMachineState *vms = VIRT_MACHINE(machine);
923     qemu_irq pic[NUM_IRQS];
924     MemoryRegion *sysmem = get_system_memory();
925     int gic_version = vms->gic_version;
926     int n, max_cpus;
927     MemoryRegion *ram = g_new(MemoryRegion, 1);
928     const char *cpu_model = machine->cpu_model;
929     VirtBoardInfo *vbi;
930     VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
931     VirtGuestInfo *guest_info = &guest_info_state->info;
932     char **cpustr;
933 
934     if (!cpu_model) {
935         cpu_model = "cortex-a15";
936     }
937 
938     /* We can probe only here because during property set
939      * KVM is not available yet
940      */
941     if (!gic_version) {
942         gic_version = kvm_arm_vgic_probe();
943         if (!gic_version) {
944             error_report("Unable to determine GIC version supported by host");
945             error_printf("KVM acceleration is probably not supported\n");
946             exit(1);
947         }
948     }
949 
950     /* Separate the actual CPU model name from any appended features */
951     cpustr = g_strsplit(cpu_model, ",", 2);
952 
953     vbi = find_machine_info(cpustr[0]);
954 
955     if (!vbi) {
956         error_report("mach-virt: CPU %s not supported", cpustr[0]);
957         exit(1);
958     }
959 
960     /* The maximum number of CPUs depends on the GIC version, or on how
961      * many redistributors we can fit into the memory map.
962      */
963     if (gic_version == 3) {
964         max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
965     } else {
966         max_cpus = GIC_NCPU;
967     }
968 
969     if (smp_cpus > max_cpus) {
970         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
971                      "supported by machine 'mach-virt' (%d)",
972                      smp_cpus, max_cpus);
973         exit(1);
974     }
975 
976     vbi->smp_cpus = smp_cpus;
977 
978     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
979         error_report("mach-virt: cannot model more than 30GB RAM");
980         exit(1);
981     }
982 
983     create_fdt(vbi);
984 
985     for (n = 0; n < smp_cpus; n++) {
986         ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
987         CPUClass *cc = CPU_CLASS(oc);
988         Object *cpuobj;
989         Error *err = NULL;
990         char *cpuopts = g_strdup(cpustr[1]);
991 
992         if (!oc) {
993             error_report("Unable to find CPU definition");
994             exit(1);
995         }
996         cpuobj = object_new(object_class_get_name(oc));
997 
998         /* Handle any CPU options specified by the user */
999         cc->parse_features(CPU(cpuobj), cpuopts, &err);
1000         g_free(cpuopts);
1001         if (err) {
1002             error_report_err(err);
1003             exit(1);
1004         }
1005 
1006         if (!vms->secure) {
1007             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1008         }
1009 
1010         object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
1011                                 NULL);
1012 
1013         /* Secondary CPUs start in PSCI powered-down state */
1014         if (n > 0) {
1015             object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
1016         }
1017 
1018         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1019             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1020                                     "reset-cbar", &error_abort);
1021         }
1022 
1023         object_property_set_bool(cpuobj, true, "realized", NULL);
1024     }
1025     g_strfreev(cpustr);
1026     fdt_add_timer_nodes(vbi, gic_version);
1027     fdt_add_cpu_nodes(vbi);
1028     fdt_add_psci_node(vbi);
1029 
1030     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1031                                          machine->ram_size);
1032     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1033 
1034     create_flash(vbi);
1035 
1036     create_gic(vbi, pic, gic_version, vms->secure);
1037 
1038     create_uart(vbi, pic);
1039 
1040     create_rtc(vbi, pic);
1041 
1042     create_pcie(vbi, pic, vms->highmem);
1043 
1044     /* Create mmio transports, so the user can create virtio backends
1045      * (which will be automatically plugged in to the transports). If
1046      * no backend is created the transport will just sit harmlessly idle.
1047      */
1048     create_virtio_devices(vbi, pic);
1049 
1050     create_fw_cfg(vbi, &address_space_memory);
1051     rom_set_fw(fw_cfg_find());
1052 
1053     guest_info->smp_cpus = smp_cpus;
1054     guest_info->fw_cfg = fw_cfg_find();
1055     guest_info->memmap = vbi->memmap;
1056     guest_info->irqmap = vbi->irqmap;
1057     guest_info->use_highmem = vms->highmem;
1058     guest_info->gic_version = gic_version;
1059     guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1060     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1061 
1062     vbi->bootinfo.ram_size = machine->ram_size;
1063     vbi->bootinfo.kernel_filename = machine->kernel_filename;
1064     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1065     vbi->bootinfo.initrd_filename = machine->initrd_filename;
1066     vbi->bootinfo.nb_cpus = smp_cpus;
1067     vbi->bootinfo.board_id = -1;
1068     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1069     vbi->bootinfo.get_dtb = machvirt_dtb;
1070     vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1071     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1072 
1073     /*
1074      * arm_load_kernel machine init done notifier registration must
1075      * happen before the platform_bus_create call. In this latter,
1076      * another notifier is registered which adds platform bus nodes.
1077      * Notifiers are executed in registration reverse order.
1078      */
1079     create_platform_bus(vbi, pic);
1080 }
1081 
1082 static bool virt_get_secure(Object *obj, Error **errp)
1083 {
1084     VirtMachineState *vms = VIRT_MACHINE(obj);
1085 
1086     return vms->secure;
1087 }
1088 
1089 static void virt_set_secure(Object *obj, bool value, Error **errp)
1090 {
1091     VirtMachineState *vms = VIRT_MACHINE(obj);
1092 
1093     vms->secure = value;
1094 }
1095 
1096 static bool virt_get_highmem(Object *obj, Error **errp)
1097 {
1098     VirtMachineState *vms = VIRT_MACHINE(obj);
1099 
1100     return vms->highmem;
1101 }
1102 
1103 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1104 {
1105     VirtMachineState *vms = VIRT_MACHINE(obj);
1106 
1107     vms->highmem = value;
1108 }
1109 
1110 static char *virt_get_gic_version(Object *obj, Error **errp)
1111 {
1112     VirtMachineState *vms = VIRT_MACHINE(obj);
1113     const char *val = vms->gic_version == 3 ? "3" : "2";
1114 
1115     return g_strdup(val);
1116 }
1117 
1118 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1119 {
1120     VirtMachineState *vms = VIRT_MACHINE(obj);
1121 
1122     if (!strcmp(value, "3")) {
1123         vms->gic_version = 3;
1124     } else if (!strcmp(value, "2")) {
1125         vms->gic_version = 2;
1126     } else if (!strcmp(value, "host")) {
1127         vms->gic_version = 0; /* Will probe later */
1128     } else {
1129         error_report("Invalid gic-version option value");
1130         error_printf("Allowed gic-version values are: 3, 2, host\n");
1131         exit(1);
1132     }
1133 }
1134 
1135 static void virt_instance_init(Object *obj)
1136 {
1137     VirtMachineState *vms = VIRT_MACHINE(obj);
1138 
1139     /* EL3 is disabled by default on virt: this makes us consistent
1140      * between KVM and TCG for this board, and it also allows us to
1141      * boot UEFI blobs which assume no TrustZone support.
1142      */
1143     vms->secure = false;
1144     object_property_add_bool(obj, "secure", virt_get_secure,
1145                              virt_set_secure, NULL);
1146     object_property_set_description(obj, "secure",
1147                                     "Set on/off to enable/disable the ARM "
1148                                     "Security Extensions (TrustZone)",
1149                                     NULL);
1150 
1151     /* High memory is enabled by default */
1152     vms->highmem = true;
1153     object_property_add_bool(obj, "highmem", virt_get_highmem,
1154                              virt_set_highmem, NULL);
1155     object_property_set_description(obj, "highmem",
1156                                     "Set on/off to enable/disable using "
1157                                     "physical address space above 32 bits",
1158                                     NULL);
1159     /* Default GIC type is v2 */
1160     vms->gic_version = 2;
1161     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1162                         virt_set_gic_version, NULL);
1163     object_property_set_description(obj, "gic-version",
1164                                     "Set GIC version. "
1165                                     "Valid values are 2, 3 and host", NULL);
1166 }
1167 
1168 static void virt_class_init(ObjectClass *oc, void *data)
1169 {
1170     MachineClass *mc = MACHINE_CLASS(oc);
1171 
1172     mc->desc = "ARM Virtual Machine",
1173     mc->init = machvirt_init;
1174     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1175      * it later in machvirt_init, where we have more information about the
1176      * configuration of the particular instance.
1177      */
1178     mc->max_cpus = MAX_CPUMASK_BITS;
1179     mc->has_dynamic_sysbus = true;
1180     mc->block_default_type = IF_VIRTIO;
1181     mc->no_cdrom = 1;
1182     mc->pci_allow_0_address = true;
1183 }
1184 
1185 static const TypeInfo machvirt_info = {
1186     .name = TYPE_VIRT_MACHINE,
1187     .parent = TYPE_MACHINE,
1188     .instance_size = sizeof(VirtMachineState),
1189     .instance_init = virt_instance_init,
1190     .class_size = sizeof(VirtMachineClass),
1191     .class_init = virt_class_init,
1192 };
1193 
1194 static void machvirt_machine_init(void)
1195 {
1196     type_register_static(&machvirt_info);
1197 }
1198 
1199 machine_init(machvirt_machine_init);
1200