1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qapi/error.h" 33 #include "hw/sysbus.h" 34 #include "hw/arm/arm.h" 35 #include "hw/arm/primecell.h" 36 #include "hw/arm/virt.h" 37 #include "hw/vfio/vfio-calxeda-xgmac.h" 38 #include "hw/vfio/vfio-amd-xgbe.h" 39 #include "hw/display/ramfb.h" 40 #include "hw/devices.h" 41 #include "net/net.h" 42 #include "sysemu/device_tree.h" 43 #include "sysemu/numa.h" 44 #include "sysemu/sysemu.h" 45 #include "sysemu/kvm.h" 46 #include "hw/loader.h" 47 #include "exec/address-spaces.h" 48 #include "qemu/bitops.h" 49 #include "qemu/error-report.h" 50 #include "hw/pci-host/gpex.h" 51 #include "hw/arm/sysbus-fdt.h" 52 #include "hw/platform-bus.h" 53 #include "hw/arm/fdt.h" 54 #include "hw/intc/arm_gic.h" 55 #include "hw/intc/arm_gicv3_common.h" 56 #include "kvm_arm.h" 57 #include "hw/firmware/smbios.h" 58 #include "qapi/visitor.h" 59 #include "standard-headers/linux/input.h" 60 #include "hw/arm/smmuv3.h" 61 62 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ 63 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ 64 void *data) \ 65 { \ 66 MachineClass *mc = MACHINE_CLASS(oc); \ 67 virt_machine_##major##_##minor##_options(mc); \ 68 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ 69 if (latest) { \ 70 mc->alias = "virt"; \ 71 } \ 72 } \ 73 static const TypeInfo machvirt_##major##_##minor##_info = { \ 74 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ 75 .parent = TYPE_VIRT_MACHINE, \ 76 .class_init = virt_##major##_##minor##_class_init, \ 77 }; \ 78 static void machvirt_machine_##major##_##minor##_init(void) \ 79 { \ 80 type_register_static(&machvirt_##major##_##minor##_info); \ 81 } \ 82 type_init(machvirt_machine_##major##_##minor##_init); 83 84 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 85 DEFINE_VIRT_MACHINE_LATEST(major, minor, true) 86 #define DEFINE_VIRT_MACHINE(major, minor) \ 87 DEFINE_VIRT_MACHINE_LATEST(major, minor, false) 88 89 90 /* Number of external interrupt lines to configure the GIC with */ 91 #define NUM_IRQS 256 92 93 #define PLATFORM_BUS_NUM_IRQS 64 94 95 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means 96 * RAM can go up to the 256GB mark, leaving 256GB of the physical 97 * address space unallocated and free for future use between 256G and 512G. 98 * If we need to provide more RAM to VMs in the future then we need to: 99 * * allocate a second bank of RAM starting at 2TB and working up 100 * * fix the DT and ACPI table generation code in QEMU to correctly 101 * report two split lumps of RAM to the guest 102 * * fix KVM in the host kernel to allow guests with >40 bit address spaces 103 * (We don't want to fill all the way up to 512GB with RAM because 104 * we might want it for non-RAM purposes later. Conversely it seems 105 * reasonable to assume that anybody configuring a VM with a quarter 106 * of a terabyte of RAM will be doing it on a host with more than a 107 * terabyte of physical address space.) 108 */ 109 #define RAMLIMIT_GB 255 110 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024) 111 112 /* Addresses and sizes of our components. 113 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 114 * 128MB..256MB is used for miscellaneous device I/O. 115 * 256MB..1GB is reserved for possible future PCI support (ie where the 116 * PCI memory window will go if we add a PCI host controller). 117 * 1GB and up is RAM (which may happily spill over into the 118 * high memory region beyond 4GB). 119 * This represents a compromise between how much RAM can be given to 120 * a 32 bit VM and leaving space for expansion and in particular for PCI. 121 * Note that devices should generally be placed at multiples of 0x10000, 122 * to accommodate guests using 64K pages. 123 */ 124 static const MemMapEntry a15memmap[] = { 125 /* Space up to 0x8000000 is reserved for a boot ROM */ 126 [VIRT_FLASH] = { 0, 0x08000000 }, 127 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 128 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 129 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 130 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 131 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 132 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 133 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 134 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 135 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 136 /* This redistributor space allows up to 2*64kB*123 CPUs */ 137 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 138 [VIRT_UART] = { 0x09000000, 0x00001000 }, 139 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 140 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 141 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 142 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, 143 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 144 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 145 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 146 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 147 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 148 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 149 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 150 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 151 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES }, 152 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 153 [VIRT_GIC_REDIST2] = { 0x4000000000ULL, 0x4000000 }, 154 [VIRT_PCIE_ECAM_HIGH] = { 0x4010000000ULL, 0x10000000 }, 155 /* Second PCIe window, 512GB wide at the 512GB boundary */ 156 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, 157 }; 158 159 static const int a15irqmap[] = { 160 [VIRT_UART] = 1, 161 [VIRT_RTC] = 2, 162 [VIRT_PCIE] = 3, /* ... to 6 */ 163 [VIRT_GPIO] = 7, 164 [VIRT_SECURE_UART] = 8, 165 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 166 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 167 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 168 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 169 }; 170 171 static const char *valid_cpus[] = { 172 ARM_CPU_TYPE_NAME("cortex-a15"), 173 ARM_CPU_TYPE_NAME("cortex-a53"), 174 ARM_CPU_TYPE_NAME("cortex-a57"), 175 ARM_CPU_TYPE_NAME("cortex-a72"), 176 ARM_CPU_TYPE_NAME("host"), 177 ARM_CPU_TYPE_NAME("max"), 178 }; 179 180 static bool cpu_type_valid(const char *cpu) 181 { 182 int i; 183 184 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { 185 if (strcmp(cpu, valid_cpus[i]) == 0) { 186 return true; 187 } 188 } 189 return false; 190 } 191 192 static void create_fdt(VirtMachineState *vms) 193 { 194 void *fdt = create_device_tree(&vms->fdt_size); 195 196 if (!fdt) { 197 error_report("create_device_tree() failed"); 198 exit(1); 199 } 200 201 vms->fdt = fdt; 202 203 /* Header */ 204 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 205 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 206 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 207 208 /* /chosen must exist for load_dtb to fill in necessary properties later */ 209 qemu_fdt_add_subnode(fdt, "/chosen"); 210 211 /* Clock node, for the benefit of the UART. The kernel device tree 212 * binding documentation claims the PL011 node clock properties are 213 * optional but in practice if you omit them the kernel refuses to 214 * probe for the device. 215 */ 216 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 217 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 218 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 219 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 220 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 221 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 222 "clk24mhz"); 223 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 224 225 if (have_numa_distance) { 226 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 227 uint32_t *matrix = g_malloc0(size); 228 int idx, i, j; 229 230 for (i = 0; i < nb_numa_nodes; i++) { 231 for (j = 0; j < nb_numa_nodes; j++) { 232 idx = (i * nb_numa_nodes + j) * 3; 233 matrix[idx + 0] = cpu_to_be32(i); 234 matrix[idx + 1] = cpu_to_be32(j); 235 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]); 236 } 237 } 238 239 qemu_fdt_add_subnode(fdt, "/distance-map"); 240 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 241 "numa-distance-map-v1"); 242 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 243 matrix, size); 244 g_free(matrix); 245 } 246 } 247 248 static void fdt_add_timer_nodes(const VirtMachineState *vms) 249 { 250 /* On real hardware these interrupts are level-triggered. 251 * On KVM they were edge-triggered before host kernel version 4.4, 252 * and level-triggered afterwards. 253 * On emulated QEMU they are level-triggered. 254 * 255 * Getting the DTB info about them wrong is awkward for some 256 * guest kernels: 257 * pre-4.8 ignore the DT and leave the interrupt configured 258 * with whatever the GIC reset value (or the bootloader) left it at 259 * 4.8 before rc6 honour the incorrect data by programming it back 260 * into the GIC, causing problems 261 * 4.8rc6 and later ignore the DT and always write "level triggered" 262 * into the GIC 263 * 264 * For backwards-compatibility, virt-2.8 and earlier will continue 265 * to say these are edge-triggered, but later machines will report 266 * the correct information. 267 */ 268 ARMCPU *armcpu; 269 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 270 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 271 272 if (vmc->claim_edge_triggered_timers) { 273 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 274 } 275 276 if (vms->gic_version == 2) { 277 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 278 GIC_FDT_IRQ_PPI_CPU_WIDTH, 279 (1 << vms->smp_cpus) - 1); 280 } 281 282 qemu_fdt_add_subnode(vms->fdt, "/timer"); 283 284 armcpu = ARM_CPU(qemu_get_cpu(0)); 285 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 286 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 287 qemu_fdt_setprop(vms->fdt, "/timer", "compatible", 288 compat, sizeof(compat)); 289 } else { 290 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible", 291 "arm,armv7-timer"); 292 } 293 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0); 294 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts", 295 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, 296 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, 297 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, 298 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); 299 } 300 301 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 302 { 303 int cpu; 304 int addr_cells = 1; 305 const MachineState *ms = MACHINE(vms); 306 307 /* 308 * From Documentation/devicetree/bindings/arm/cpus.txt 309 * On ARM v8 64-bit systems value should be set to 2, 310 * that corresponds to the MPIDR_EL1 register size. 311 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 312 * in the system, #address-cells can be set to 1, since 313 * MPIDR_EL1[63:32] bits are not used for CPUs 314 * identification. 315 * 316 * Here we actually don't know whether our system is 32- or 64-bit one. 317 * The simplest way to go is to examine affinity IDs of all our CPUs. If 318 * at least one of them has Aff3 populated, we set #address-cells to 2. 319 */ 320 for (cpu = 0; cpu < vms->smp_cpus; cpu++) { 321 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 322 323 if (armcpu->mp_affinity & ARM_AFF3_MASK) { 324 addr_cells = 2; 325 break; 326 } 327 } 328 329 qemu_fdt_add_subnode(vms->fdt, "/cpus"); 330 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells); 331 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0); 332 333 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) { 334 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 335 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 336 CPUState *cs = CPU(armcpu); 337 338 qemu_fdt_add_subnode(vms->fdt, nodename); 339 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu"); 340 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 341 armcpu->dtb_compatible); 342 343 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED 344 && vms->smp_cpus > 1) { 345 qemu_fdt_setprop_string(vms->fdt, nodename, 346 "enable-method", "psci"); 347 } 348 349 if (addr_cells == 2) { 350 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg", 351 armcpu->mp_affinity); 352 } else { 353 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg", 354 armcpu->mp_affinity); 355 } 356 357 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 358 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", 359 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 360 } 361 362 g_free(nodename); 363 } 364 } 365 366 static void fdt_add_its_gic_node(VirtMachineState *vms) 367 { 368 char *nodename; 369 370 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 371 nodename = g_strdup_printf("/intc/its@%" PRIx64, 372 vms->memmap[VIRT_GIC_ITS].base); 373 qemu_fdt_add_subnode(vms->fdt, nodename); 374 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 375 "arm,gic-v3-its"); 376 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 377 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 378 2, vms->memmap[VIRT_GIC_ITS].base, 379 2, vms->memmap[VIRT_GIC_ITS].size); 380 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 381 g_free(nodename); 382 } 383 384 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 385 { 386 char *nodename; 387 388 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 389 vms->memmap[VIRT_GIC_V2M].base); 390 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); 391 qemu_fdt_add_subnode(vms->fdt, nodename); 392 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 393 "arm,gic-v2m-frame"); 394 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0); 395 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 396 2, vms->memmap[VIRT_GIC_V2M].base, 397 2, vms->memmap[VIRT_GIC_V2M].size); 398 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle); 399 g_free(nodename); 400 } 401 402 static void fdt_add_gic_node(VirtMachineState *vms) 403 { 404 char *nodename; 405 406 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt); 407 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle); 408 409 nodename = g_strdup_printf("/intc@%" PRIx64, 410 vms->memmap[VIRT_GIC_DIST].base); 411 qemu_fdt_add_subnode(vms->fdt, nodename); 412 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3); 413 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0); 414 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2); 415 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2); 416 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0); 417 if (vms->gic_version == 3) { 418 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 419 420 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 421 "arm,gic-v3"); 422 423 qemu_fdt_setprop_cell(vms->fdt, nodename, 424 "#redistributor-regions", nb_redist_regions); 425 426 if (nb_redist_regions == 1) { 427 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 428 2, vms->memmap[VIRT_GIC_DIST].base, 429 2, vms->memmap[VIRT_GIC_DIST].size, 430 2, vms->memmap[VIRT_GIC_REDIST].base, 431 2, vms->memmap[VIRT_GIC_REDIST].size); 432 } else { 433 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 434 2, vms->memmap[VIRT_GIC_DIST].base, 435 2, vms->memmap[VIRT_GIC_DIST].size, 436 2, vms->memmap[VIRT_GIC_REDIST].base, 437 2, vms->memmap[VIRT_GIC_REDIST].size, 438 2, vms->memmap[VIRT_GIC_REDIST2].base, 439 2, vms->memmap[VIRT_GIC_REDIST2].size); 440 } 441 442 if (vms->virt) { 443 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 444 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 445 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 446 } 447 } else { 448 /* 'cortex-a15-gic' means 'GIC v2' */ 449 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", 450 "arm,cortex-a15-gic"); 451 if (!vms->virt) { 452 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 453 2, vms->memmap[VIRT_GIC_DIST].base, 454 2, vms->memmap[VIRT_GIC_DIST].size, 455 2, vms->memmap[VIRT_GIC_CPU].base, 456 2, vms->memmap[VIRT_GIC_CPU].size); 457 } else { 458 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 459 2, vms->memmap[VIRT_GIC_DIST].base, 460 2, vms->memmap[VIRT_GIC_DIST].size, 461 2, vms->memmap[VIRT_GIC_CPU].base, 462 2, vms->memmap[VIRT_GIC_CPU].size, 463 2, vms->memmap[VIRT_GIC_HYP].base, 464 2, vms->memmap[VIRT_GIC_HYP].size, 465 2, vms->memmap[VIRT_GIC_VCPU].base, 466 2, vms->memmap[VIRT_GIC_VCPU].size); 467 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 468 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ, 469 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 470 } 471 } 472 473 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle); 474 g_free(nodename); 475 } 476 477 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 478 { 479 CPUState *cpu; 480 ARMCPU *armcpu; 481 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 482 483 CPU_FOREACH(cpu) { 484 armcpu = ARM_CPU(cpu); 485 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 486 return; 487 } 488 if (kvm_enabled()) { 489 if (kvm_irqchip_in_kernel()) { 490 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); 491 } 492 kvm_arm_pmu_init(cpu); 493 } 494 } 495 496 if (vms->gic_version == 2) { 497 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 498 GIC_FDT_IRQ_PPI_CPU_WIDTH, 499 (1 << vms->smp_cpus) - 1); 500 } 501 502 armcpu = ARM_CPU(qemu_get_cpu(0)); 503 qemu_fdt_add_subnode(vms->fdt, "/pmu"); 504 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 505 const char compat[] = "arm,armv8-pmuv3"; 506 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible", 507 compat, sizeof(compat)); 508 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts", 509 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); 510 } 511 } 512 513 static void create_its(VirtMachineState *vms, DeviceState *gicdev) 514 { 515 const char *itsclass = its_class_name(); 516 DeviceState *dev; 517 518 if (!itsclass) { 519 /* Do nothing if not supported */ 520 return; 521 } 522 523 dev = qdev_create(NULL, itsclass); 524 525 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3", 526 &error_abort); 527 qdev_init_nofail(dev); 528 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 529 530 fdt_add_its_gic_node(vms); 531 } 532 533 static void create_v2m(VirtMachineState *vms, qemu_irq *pic) 534 { 535 int i; 536 int irq = vms->irqmap[VIRT_GIC_V2M]; 537 DeviceState *dev; 538 539 dev = qdev_create(NULL, "arm-gicv2m"); 540 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 541 qdev_prop_set_uint32(dev, "base-spi", irq); 542 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 543 qdev_init_nofail(dev); 544 545 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 546 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 547 } 548 549 fdt_add_v2m_gic_node(vms); 550 } 551 552 static void create_gic(VirtMachineState *vms, qemu_irq *pic) 553 { 554 /* We create a standalone GIC */ 555 DeviceState *gicdev; 556 SysBusDevice *gicbusdev; 557 const char *gictype; 558 int type = vms->gic_version, i; 559 uint32_t nb_redist_regions = 0; 560 561 gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); 562 563 gicdev = qdev_create(NULL, gictype); 564 qdev_prop_set_uint32(gicdev, "revision", type); 565 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); 566 /* Note that the num-irq property counts both internal and external 567 * interrupts; there are always 32 of the former (mandated by GIC spec). 568 */ 569 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); 570 if (!kvm_irqchip_in_kernel()) { 571 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure); 572 } 573 574 if (type == 3) { 575 uint32_t redist0_capacity = 576 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 577 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 578 579 nb_redist_regions = virt_gicv3_redist_region_count(vms); 580 581 qdev_prop_set_uint32(gicdev, "len-redist-region-count", 582 nb_redist_regions); 583 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count); 584 585 if (nb_redist_regions == 2) { 586 uint32_t redist1_capacity = 587 vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE; 588 589 qdev_prop_set_uint32(gicdev, "redist-region-count[1]", 590 MIN(smp_cpus - redist0_count, redist1_capacity)); 591 } 592 } else { 593 if (!kvm_irqchip_in_kernel()) { 594 qdev_prop_set_bit(gicdev, "has-virtualization-extensions", 595 vms->virt); 596 } 597 } 598 qdev_init_nofail(gicdev); 599 gicbusdev = SYS_BUS_DEVICE(gicdev); 600 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 601 if (type == 3) { 602 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 603 if (nb_redist_regions == 2) { 604 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_REDIST2].base); 605 } 606 } else { 607 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 608 if (vms->virt) { 609 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 610 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 611 } 612 } 613 614 /* Wire the outputs from each CPU's generic timer and the GICv3 615 * maintenance interrupt signal to the appropriate GIC PPI inputs, 616 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 617 */ 618 for (i = 0; i < smp_cpus; i++) { 619 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 620 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; 621 int irq; 622 /* Mapping from the output timer irq lines from the CPU to the 623 * GIC PPI inputs we use for the virt board. 624 */ 625 const int timer_irq[] = { 626 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 627 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 628 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 629 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 630 }; 631 632 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 633 qdev_connect_gpio_out(cpudev, irq, 634 qdev_get_gpio_in(gicdev, 635 ppibase + timer_irq[irq])); 636 } 637 638 if (type == 3) { 639 qemu_irq irq = qdev_get_gpio_in(gicdev, 640 ppibase + ARCH_GIC_MAINT_IRQ); 641 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 642 0, irq); 643 } else if (vms->virt) { 644 qemu_irq irq = qdev_get_gpio_in(gicdev, 645 ppibase + ARCH_GIC_MAINT_IRQ); 646 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 647 } 648 649 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 650 qdev_get_gpio_in(gicdev, ppibase 651 + VIRTUAL_PMU_IRQ)); 652 653 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 654 sysbus_connect_irq(gicbusdev, i + smp_cpus, 655 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 656 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 657 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 658 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 659 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 660 } 661 662 for (i = 0; i < NUM_IRQS; i++) { 663 pic[i] = qdev_get_gpio_in(gicdev, i); 664 } 665 666 fdt_add_gic_node(vms); 667 668 if (type == 3 && vms->its) { 669 create_its(vms, gicdev); 670 } else if (type == 2) { 671 create_v2m(vms, pic); 672 } 673 } 674 675 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart, 676 MemoryRegion *mem, Chardev *chr) 677 { 678 char *nodename; 679 hwaddr base = vms->memmap[uart].base; 680 hwaddr size = vms->memmap[uart].size; 681 int irq = vms->irqmap[uart]; 682 const char compat[] = "arm,pl011\0arm,primecell"; 683 const char clocknames[] = "uartclk\0apb_pclk"; 684 DeviceState *dev = qdev_create(NULL, "pl011"); 685 SysBusDevice *s = SYS_BUS_DEVICE(dev); 686 687 qdev_prop_set_chr(dev, "chardev", chr); 688 qdev_init_nofail(dev); 689 memory_region_add_subregion(mem, base, 690 sysbus_mmio_get_region(s, 0)); 691 sysbus_connect_irq(s, 0, pic[irq]); 692 693 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 694 qemu_fdt_add_subnode(vms->fdt, nodename); 695 /* Note that we can't use setprop_string because of the embedded NUL */ 696 qemu_fdt_setprop(vms->fdt, nodename, "compatible", 697 compat, sizeof(compat)); 698 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 699 2, base, 2, size); 700 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 701 GIC_FDT_IRQ_TYPE_SPI, irq, 702 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 703 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks", 704 vms->clock_phandle, vms->clock_phandle); 705 qemu_fdt_setprop(vms->fdt, nodename, "clock-names", 706 clocknames, sizeof(clocknames)); 707 708 if (uart == VIRT_UART) { 709 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename); 710 } else { 711 /* Mark as not usable by the normal world */ 712 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 713 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 714 715 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen"); 716 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path", 717 nodename); 718 } 719 720 g_free(nodename); 721 } 722 723 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic) 724 { 725 char *nodename; 726 hwaddr base = vms->memmap[VIRT_RTC].base; 727 hwaddr size = vms->memmap[VIRT_RTC].size; 728 int irq = vms->irqmap[VIRT_RTC]; 729 const char compat[] = "arm,pl031\0arm,primecell"; 730 731 sysbus_create_simple("pl031", base, pic[irq]); 732 733 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 734 qemu_fdt_add_subnode(vms->fdt, nodename); 735 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 736 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 737 2, base, 2, size); 738 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 739 GIC_FDT_IRQ_TYPE_SPI, irq, 740 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 741 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 742 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 743 g_free(nodename); 744 } 745 746 static DeviceState *gpio_key_dev; 747 static void virt_powerdown_req(Notifier *n, void *opaque) 748 { 749 /* use gpio Pin 3 for power button event */ 750 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 751 } 752 753 static Notifier virt_system_powerdown_notifier = { 754 .notify = virt_powerdown_req 755 }; 756 757 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic) 758 { 759 char *nodename; 760 DeviceState *pl061_dev; 761 hwaddr base = vms->memmap[VIRT_GPIO].base; 762 hwaddr size = vms->memmap[VIRT_GPIO].size; 763 int irq = vms->irqmap[VIRT_GPIO]; 764 const char compat[] = "arm,pl061\0arm,primecell"; 765 766 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); 767 768 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt); 769 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 770 qemu_fdt_add_subnode(vms->fdt, nodename); 771 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 772 2, base, 2, size); 773 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); 774 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2); 775 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0); 776 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 777 GIC_FDT_IRQ_TYPE_SPI, irq, 778 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 779 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); 780 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); 781 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle); 782 783 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 784 qdev_get_gpio_in(pl061_dev, 3)); 785 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys"); 786 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys"); 787 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0); 788 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1); 789 790 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff"); 791 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff", 792 "label", "GPIO Key Poweroff"); 793 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code", 794 KEY_POWER); 795 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff", 796 "gpios", phandle, 3, 0); 797 798 /* connect powerdown request */ 799 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); 800 801 g_free(nodename); 802 } 803 804 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic) 805 { 806 int i; 807 hwaddr size = vms->memmap[VIRT_MMIO].size; 808 809 /* We create the transports in forwards order. Since qbus_realize() 810 * prepends (not appends) new child buses, the incrementing loop below will 811 * create a list of virtio-mmio buses with decreasing base addresses. 812 * 813 * When a -device option is processed from the command line, 814 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 815 * order. The upshot is that -device options in increasing command line 816 * order are mapped to virtio-mmio buses with decreasing base addresses. 817 * 818 * When this code was originally written, that arrangement ensured that the 819 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 820 * the first -device on the command line. (The end-to-end order is a 821 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 822 * guest kernel's name-to-address assignment strategy.) 823 * 824 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 825 * the message, if not necessarily the code, of commit 70161ff336. 826 * Therefore the loop now establishes the inverse of the original intent. 827 * 828 * Unfortunately, we can't counteract the kernel change by reversing the 829 * loop; it would break existing command lines. 830 * 831 * In any case, the kernel makes no guarantee about the stability of 832 * enumeration order of virtio devices (as demonstrated by it changing 833 * between kernel versions). For reliable and stable identification 834 * of disks users must use UUIDs or similar mechanisms. 835 */ 836 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 837 int irq = vms->irqmap[VIRT_MMIO] + i; 838 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 839 840 sysbus_create_simple("virtio-mmio", base, pic[irq]); 841 } 842 843 /* We add dtb nodes in reverse order so that they appear in the finished 844 * device tree lowest address first. 845 * 846 * Note that this mapping is independent of the loop above. The previous 847 * loop influences virtio device to virtio transport assignment, whereas 848 * this loop controls how virtio transports are laid out in the dtb. 849 */ 850 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 851 char *nodename; 852 int irq = vms->irqmap[VIRT_MMIO] + i; 853 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 854 855 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 856 qemu_fdt_add_subnode(vms->fdt, nodename); 857 qemu_fdt_setprop_string(vms->fdt, nodename, 858 "compatible", "virtio,mmio"); 859 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 860 2, base, 2, size); 861 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", 862 GIC_FDT_IRQ_TYPE_SPI, irq, 863 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 864 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 865 g_free(nodename); 866 } 867 } 868 869 static void create_one_flash(const char *name, hwaddr flashbase, 870 hwaddr flashsize, const char *file, 871 MemoryRegion *sysmem) 872 { 873 /* Create and map a single flash device. We use the same 874 * parameters as the flash devices on the Versatile Express board. 875 */ 876 DriveInfo *dinfo = drive_get_next(IF_PFLASH); 877 DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); 878 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 879 const uint64_t sectorlength = 256 * 1024; 880 881 if (dinfo) { 882 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 883 &error_abort); 884 } 885 886 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); 887 qdev_prop_set_uint64(dev, "sector-length", sectorlength); 888 qdev_prop_set_uint8(dev, "width", 4); 889 qdev_prop_set_uint8(dev, "device-width", 2); 890 qdev_prop_set_bit(dev, "big-endian", false); 891 qdev_prop_set_uint16(dev, "id0", 0x89); 892 qdev_prop_set_uint16(dev, "id1", 0x18); 893 qdev_prop_set_uint16(dev, "id2", 0x00); 894 qdev_prop_set_uint16(dev, "id3", 0x00); 895 qdev_prop_set_string(dev, "name", name); 896 qdev_init_nofail(dev); 897 898 memory_region_add_subregion(sysmem, flashbase, 899 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0)); 900 901 if (file) { 902 char *fn; 903 int image_size; 904 905 if (drive_get(IF_PFLASH, 0, 0)) { 906 error_report("The contents of the first flash device may be " 907 "specified with -bios or with -drive if=pflash... " 908 "but you cannot use both options at once"); 909 exit(1); 910 } 911 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file); 912 if (!fn) { 913 error_report("Could not find ROM image '%s'", file); 914 exit(1); 915 } 916 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0)); 917 g_free(fn); 918 if (image_size < 0) { 919 error_report("Could not load ROM image '%s'", file); 920 exit(1); 921 } 922 } 923 } 924 925 static void create_flash(const VirtMachineState *vms, 926 MemoryRegion *sysmem, 927 MemoryRegion *secure_sysmem) 928 { 929 /* Create two flash devices to fill the VIRT_FLASH space in the memmap. 930 * Any file passed via -bios goes in the first of these. 931 * sysmem is the system memory space. secure_sysmem is the secure view 932 * of the system, and the first flash device should be made visible only 933 * there. The second flash device is visible to both secure and nonsecure. 934 * If sysmem == secure_sysmem this means there is no separate Secure 935 * address space and both flash devices are generally visible. 936 */ 937 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 938 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 939 char *nodename; 940 941 create_one_flash("virt.flash0", flashbase, flashsize, 942 bios_name, secure_sysmem); 943 create_one_flash("virt.flash1", flashbase + flashsize, flashsize, 944 NULL, sysmem); 945 946 if (sysmem == secure_sysmem) { 947 /* Report both flash devices as a single node in the DT */ 948 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 949 qemu_fdt_add_subnode(vms->fdt, nodename); 950 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 951 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 952 2, flashbase, 2, flashsize, 953 2, flashbase + flashsize, 2, flashsize); 954 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 955 g_free(nodename); 956 } else { 957 /* Report the devices as separate nodes so we can mark one as 958 * only visible to the secure world. 959 */ 960 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 961 qemu_fdt_add_subnode(vms->fdt, nodename); 962 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 963 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 964 2, flashbase, 2, flashsize); 965 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 966 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 967 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 968 g_free(nodename); 969 970 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 971 qemu_fdt_add_subnode(vms->fdt, nodename); 972 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); 973 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 974 2, flashbase + flashsize, 2, flashsize); 975 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); 976 g_free(nodename); 977 } 978 } 979 980 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 981 { 982 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 983 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 984 FWCfgState *fw_cfg; 985 char *nodename; 986 987 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 988 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); 989 990 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 991 qemu_fdt_add_subnode(vms->fdt, nodename); 992 qemu_fdt_setprop_string(vms->fdt, nodename, 993 "compatible", "qemu,fw-cfg-mmio"); 994 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 995 2, base, 2, size); 996 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 997 g_free(nodename); 998 return fw_cfg; 999 } 1000 1001 static void create_pcie_irq_map(const VirtMachineState *vms, 1002 uint32_t gic_phandle, 1003 int first_irq, const char *nodename) 1004 { 1005 int devfn, pin; 1006 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1007 uint32_t *irq_map = full_irq_map; 1008 1009 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1010 for (pin = 0; pin < 4; pin++) { 1011 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1012 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1013 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1014 int i; 1015 1016 uint32_t map[] = { 1017 devfn << 8, 0, 0, /* devfn */ 1018 pin + 1, /* PCI pin */ 1019 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1020 1021 /* Convert map to big endian */ 1022 for (i = 0; i < 10; i++) { 1023 irq_map[i] = cpu_to_be32(map[i]); 1024 } 1025 irq_map += 10; 1026 } 1027 } 1028 1029 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map", 1030 full_irq_map, sizeof(full_irq_map)); 1031 1032 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask", 1033 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 1034 0x7 /* PCI irq */); 1035 } 1036 1037 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic, 1038 PCIBus *bus) 1039 { 1040 char *node; 1041 const char compat[] = "arm,smmu-v3"; 1042 int irq = vms->irqmap[VIRT_SMMU]; 1043 int i; 1044 hwaddr base = vms->memmap[VIRT_SMMU].base; 1045 hwaddr size = vms->memmap[VIRT_SMMU].size; 1046 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1047 DeviceState *dev; 1048 1049 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1050 return; 1051 } 1052 1053 dev = qdev_create(NULL, "arm-smmuv3"); 1054 1055 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus", 1056 &error_abort); 1057 qdev_init_nofail(dev); 1058 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1059 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1060 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1061 } 1062 1063 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1064 qemu_fdt_add_subnode(vms->fdt, node); 1065 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); 1066 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size); 1067 1068 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts", 1069 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1070 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1071 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1072 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1073 1074 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names, 1075 sizeof(irq_names)); 1076 1077 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle); 1078 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk"); 1079 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0); 1080 1081 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); 1082 1083 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); 1084 g_free(node); 1085 } 1086 1087 static void create_pcie(VirtMachineState *vms, qemu_irq *pic) 1088 { 1089 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1090 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1091 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base; 1092 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size; 1093 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1094 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1095 hwaddr base_ecam, size_ecam; 1096 hwaddr base = base_mmio; 1097 int nr_pcie_buses; 1098 int irq = vms->irqmap[VIRT_PCIE]; 1099 MemoryRegion *mmio_alias; 1100 MemoryRegion *mmio_reg; 1101 MemoryRegion *ecam_alias; 1102 MemoryRegion *ecam_reg; 1103 DeviceState *dev; 1104 char *nodename; 1105 int i, ecam_id; 1106 PCIHostState *pci; 1107 1108 dev = qdev_create(NULL, TYPE_GPEX_HOST); 1109 qdev_init_nofail(dev); 1110 1111 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1112 base_ecam = vms->memmap[ecam_id].base; 1113 size_ecam = vms->memmap[ecam_id].size; 1114 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1115 /* Map only the first size_ecam bytes of ECAM space */ 1116 ecam_alias = g_new0(MemoryRegion, 1); 1117 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1118 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1119 ecam_reg, 0, size_ecam); 1120 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1121 1122 /* Map the MMIO window into system address space so as to expose 1123 * the section of PCI MMIO space which starts at the same base address 1124 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1125 * the window). 1126 */ 1127 mmio_alias = g_new0(MemoryRegion, 1); 1128 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1129 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1130 mmio_reg, base_mmio, size_mmio); 1131 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1132 1133 if (vms->highmem) { 1134 /* Map high MMIO space */ 1135 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1136 1137 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1138 mmio_reg, base_mmio_high, size_mmio_high); 1139 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1140 high_mmio_alias); 1141 } 1142 1143 /* Map IO port space */ 1144 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1145 1146 for (i = 0; i < GPEX_NUM_IRQS; i++) { 1147 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); 1148 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1149 } 1150 1151 pci = PCI_HOST_BRIDGE(dev); 1152 if (pci->bus) { 1153 for (i = 0; i < nb_nics; i++) { 1154 NICInfo *nd = &nd_table[i]; 1155 1156 if (!nd->model) { 1157 nd->model = g_strdup("virtio"); 1158 } 1159 1160 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); 1161 } 1162 } 1163 1164 nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1165 qemu_fdt_add_subnode(vms->fdt, nodename); 1166 qemu_fdt_setprop_string(vms->fdt, nodename, 1167 "compatible", "pci-host-ecam-generic"); 1168 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci"); 1169 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3); 1170 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2); 1171 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0); 1172 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0, 1173 nr_pcie_buses - 1); 1174 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); 1175 1176 if (vms->msi_phandle) { 1177 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent", 1178 vms->msi_phandle); 1179 } 1180 1181 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 1182 2, base_ecam, 2, size_ecam); 1183 1184 if (vms->highmem) { 1185 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1186 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1187 2, base_pio, 2, size_pio, 1188 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1189 2, base_mmio, 2, size_mmio, 1190 1, FDT_PCI_RANGE_MMIO_64BIT, 1191 2, base_mmio_high, 1192 2, base_mmio_high, 2, size_mmio_high); 1193 } else { 1194 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1195 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1196 2, base_pio, 2, size_pio, 1197 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1198 2, base_mmio, 2, size_mmio); 1199 } 1200 1201 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1); 1202 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename); 1203 1204 if (vms->iommu) { 1205 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); 1206 1207 create_smmu(vms, pic, pci->bus); 1208 1209 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map", 1210 0x0, vms->iommu_phandle, 0x0, 0x10000); 1211 } 1212 1213 g_free(nodename); 1214 } 1215 1216 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic) 1217 { 1218 DeviceState *dev; 1219 SysBusDevice *s; 1220 int i; 1221 MemoryRegion *sysmem = get_system_memory(); 1222 1223 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); 1224 dev->id = TYPE_PLATFORM_BUS_DEVICE; 1225 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1226 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1227 qdev_init_nofail(dev); 1228 vms->platform_bus_dev = dev; 1229 1230 s = SYS_BUS_DEVICE(dev); 1231 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1232 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1233 sysbus_connect_irq(s, i, pic[irqn]); 1234 } 1235 1236 memory_region_add_subregion(sysmem, 1237 vms->memmap[VIRT_PLATFORM_BUS].base, 1238 sysbus_mmio_get_region(s, 0)); 1239 } 1240 1241 static void create_secure_ram(VirtMachineState *vms, 1242 MemoryRegion *secure_sysmem) 1243 { 1244 MemoryRegion *secram = g_new(MemoryRegion, 1); 1245 char *nodename; 1246 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1247 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1248 1249 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1250 &error_fatal); 1251 memory_region_add_subregion(secure_sysmem, base, secram); 1252 1253 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1254 qemu_fdt_add_subnode(vms->fdt, nodename); 1255 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory"); 1256 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); 1257 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); 1258 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); 1259 1260 g_free(nodename); 1261 } 1262 1263 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1264 { 1265 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1266 bootinfo); 1267 1268 *fdt_size = board->fdt_size; 1269 return board->fdt; 1270 } 1271 1272 static void virt_build_smbios(VirtMachineState *vms) 1273 { 1274 MachineClass *mc = MACHINE_GET_CLASS(vms); 1275 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1276 uint8_t *smbios_tables, *smbios_anchor; 1277 size_t smbios_tables_len, smbios_anchor_len; 1278 const char *product = "QEMU Virtual Machine"; 1279 1280 if (!vms->fw_cfg) { 1281 return; 1282 } 1283 1284 if (kvm_enabled()) { 1285 product = "KVM Virtual Machine"; 1286 } 1287 1288 smbios_set_defaults("QEMU", product, 1289 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, 1290 true, SMBIOS_ENTRY_POINT_30); 1291 1292 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, 1293 &smbios_anchor, &smbios_anchor_len); 1294 1295 if (smbios_anchor) { 1296 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1297 smbios_tables, smbios_tables_len); 1298 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1299 smbios_anchor, smbios_anchor_len); 1300 } 1301 } 1302 1303 static 1304 void virt_machine_done(Notifier *notifier, void *data) 1305 { 1306 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1307 machine_done); 1308 ARMCPU *cpu = ARM_CPU(first_cpu); 1309 struct arm_boot_info *info = &vms->bootinfo; 1310 AddressSpace *as = arm_boot_address_space(cpu, info); 1311 1312 /* 1313 * If the user provided a dtb, we assume the dynamic sysbus nodes 1314 * already are integrated there. This corresponds to a use case where 1315 * the dynamic sysbus nodes are complex and their generation is not yet 1316 * supported. In that case the user can take charge of the guest dt 1317 * while qemu takes charge of the qom stuff. 1318 */ 1319 if (info->dtb_filename == NULL) { 1320 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc", 1321 vms->memmap[VIRT_PLATFORM_BUS].base, 1322 vms->memmap[VIRT_PLATFORM_BUS].size, 1323 vms->irqmap[VIRT_PLATFORM_BUS]); 1324 } 1325 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) { 1326 exit(1); 1327 } 1328 1329 virt_acpi_setup(vms); 1330 virt_build_smbios(vms); 1331 } 1332 1333 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1334 { 1335 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1336 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1337 1338 if (!vmc->disallow_affinity_adjustment) { 1339 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1340 * GIC's target-list limitations. 32-bit KVM hosts currently 1341 * always create clusters of 4 CPUs, but that is expected to 1342 * change when they gain support for gicv3. When KVM is enabled 1343 * it will override the changes we make here, therefore our 1344 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1345 * and to improve SGI efficiency. 1346 */ 1347 if (vms->gic_version == 3) { 1348 clustersz = GICV3_TARGETLIST_BITS; 1349 } else { 1350 clustersz = GIC_TARGETLIST_BITS; 1351 } 1352 } 1353 return arm_cpu_mp_affinity(idx, clustersz); 1354 } 1355 1356 static void machvirt_init(MachineState *machine) 1357 { 1358 VirtMachineState *vms = VIRT_MACHINE(machine); 1359 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 1360 MachineClass *mc = MACHINE_GET_CLASS(machine); 1361 const CPUArchIdList *possible_cpus; 1362 qemu_irq pic[NUM_IRQS]; 1363 MemoryRegion *sysmem = get_system_memory(); 1364 MemoryRegion *secure_sysmem = NULL; 1365 int n, virt_max_cpus; 1366 MemoryRegion *ram = g_new(MemoryRegion, 1); 1367 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); 1368 bool aarch64 = true; 1369 1370 /* We can probe only here because during property set 1371 * KVM is not available yet 1372 */ 1373 if (vms->gic_version <= 0) { 1374 /* "host" or "max" */ 1375 if (!kvm_enabled()) { 1376 if (vms->gic_version == 0) { 1377 error_report("gic-version=host requires KVM"); 1378 exit(1); 1379 } else { 1380 /* "max": currently means 3 for TCG */ 1381 vms->gic_version = 3; 1382 } 1383 } else { 1384 vms->gic_version = kvm_arm_vgic_probe(); 1385 if (!vms->gic_version) { 1386 error_report( 1387 "Unable to determine GIC version supported by host"); 1388 exit(1); 1389 } 1390 } 1391 } 1392 1393 if (!cpu_type_valid(machine->cpu_type)) { 1394 error_report("mach-virt: CPU type %s not supported", machine->cpu_type); 1395 exit(1); 1396 } 1397 1398 /* If we have an EL3 boot ROM then the assumption is that it will 1399 * implement PSCI itself, so disable QEMU's internal implementation 1400 * so it doesn't get in the way. Instead of starting secondary 1401 * CPUs in PSCI powerdown state we will start them all running and 1402 * let the boot ROM sort them out. 1403 * The usual case is that we do use QEMU's PSCI implementation; 1404 * if the guest has EL2 then we will use SMC as the conduit, 1405 * and otherwise we will use HVC (for backwards compatibility and 1406 * because if we're using KVM then we must use HVC). 1407 */ 1408 if (vms->secure && firmware_loaded) { 1409 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 1410 } else if (vms->virt) { 1411 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 1412 } else { 1413 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 1414 } 1415 1416 /* The maximum number of CPUs depends on the GIC version, or on how 1417 * many redistributors we can fit into the memory map. 1418 */ 1419 if (vms->gic_version == 3) { 1420 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; 1421 virt_max_cpus += vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE; 1422 } else { 1423 virt_max_cpus = GIC_NCPU; 1424 } 1425 1426 if (max_cpus > virt_max_cpus) { 1427 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 1428 "supported by machine 'mach-virt' (%d)", 1429 max_cpus, virt_max_cpus); 1430 exit(1); 1431 } 1432 1433 vms->smp_cpus = smp_cpus; 1434 1435 if (machine->ram_size > vms->memmap[VIRT_MEM].size) { 1436 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB); 1437 exit(1); 1438 } 1439 1440 if (vms->virt && kvm_enabled()) { 1441 error_report("mach-virt: KVM does not support providing " 1442 "Virtualization extensions to the guest CPU"); 1443 exit(1); 1444 } 1445 1446 if (vms->secure) { 1447 if (kvm_enabled()) { 1448 error_report("mach-virt: KVM does not support Security extensions"); 1449 exit(1); 1450 } 1451 1452 /* The Secure view of the world is the same as the NonSecure, 1453 * but with a few extra devices. Create it as a container region 1454 * containing the system memory at low priority; any secure-only 1455 * devices go in at higher priority and take precedence. 1456 */ 1457 secure_sysmem = g_new(MemoryRegion, 1); 1458 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 1459 UINT64_MAX); 1460 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 1461 } 1462 1463 create_fdt(vms); 1464 1465 possible_cpus = mc->possible_cpu_arch_ids(machine); 1466 for (n = 0; n < possible_cpus->len; n++) { 1467 Object *cpuobj; 1468 CPUState *cs; 1469 1470 if (n >= smp_cpus) { 1471 break; 1472 } 1473 1474 cpuobj = object_new(possible_cpus->cpus[n].type); 1475 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id, 1476 "mp-affinity", NULL); 1477 1478 cs = CPU(cpuobj); 1479 cs->cpu_index = n; 1480 1481 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 1482 &error_fatal); 1483 1484 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 1485 1486 if (!vms->secure) { 1487 object_property_set_bool(cpuobj, false, "has_el3", NULL); 1488 } 1489 1490 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) { 1491 object_property_set_bool(cpuobj, false, "has_el2", NULL); 1492 } 1493 1494 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { 1495 object_property_set_int(cpuobj, vms->psci_conduit, 1496 "psci-conduit", NULL); 1497 1498 /* Secondary CPUs start in PSCI powered-down state */ 1499 if (n > 0) { 1500 object_property_set_bool(cpuobj, true, 1501 "start-powered-off", NULL); 1502 } 1503 } 1504 1505 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) { 1506 object_property_set_bool(cpuobj, false, "pmu", NULL); 1507 } 1508 1509 if (object_property_find(cpuobj, "reset-cbar", NULL)) { 1510 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base, 1511 "reset-cbar", &error_abort); 1512 } 1513 1514 object_property_set_link(cpuobj, OBJECT(sysmem), "memory", 1515 &error_abort); 1516 if (vms->secure) { 1517 object_property_set_link(cpuobj, OBJECT(secure_sysmem), 1518 "secure-memory", &error_abort); 1519 } 1520 1521 object_property_set_bool(cpuobj, true, "realized", &error_fatal); 1522 object_unref(cpuobj); 1523 } 1524 fdt_add_timer_nodes(vms); 1525 fdt_add_cpu_nodes(vms); 1526 1527 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", 1528 machine->ram_size); 1529 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram); 1530 1531 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem); 1532 1533 create_gic(vms, pic); 1534 1535 fdt_add_pmu_nodes(vms); 1536 1537 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0)); 1538 1539 if (vms->secure) { 1540 create_secure_ram(vms, secure_sysmem); 1541 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); 1542 } 1543 1544 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); 1545 1546 create_rtc(vms, pic); 1547 1548 create_pcie(vms, pic); 1549 1550 create_gpio(vms, pic); 1551 1552 /* Create mmio transports, so the user can create virtio backends 1553 * (which will be automatically plugged in to the transports). If 1554 * no backend is created the transport will just sit harmlessly idle. 1555 */ 1556 create_virtio_devices(vms, pic); 1557 1558 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 1559 rom_set_fw(vms->fw_cfg); 1560 1561 create_platform_bus(vms, pic); 1562 1563 vms->bootinfo.ram_size = machine->ram_size; 1564 vms->bootinfo.kernel_filename = machine->kernel_filename; 1565 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline; 1566 vms->bootinfo.initrd_filename = machine->initrd_filename; 1567 vms->bootinfo.nb_cpus = smp_cpus; 1568 vms->bootinfo.board_id = -1; 1569 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 1570 vms->bootinfo.get_dtb = machvirt_dtb; 1571 vms->bootinfo.skip_dtb_autoload = true; 1572 vms->bootinfo.firmware_loaded = firmware_loaded; 1573 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo); 1574 1575 vms->machine_done.notify = virt_machine_done; 1576 qemu_add_machine_init_done_notifier(&vms->machine_done); 1577 } 1578 1579 static bool virt_get_secure(Object *obj, Error **errp) 1580 { 1581 VirtMachineState *vms = VIRT_MACHINE(obj); 1582 1583 return vms->secure; 1584 } 1585 1586 static void virt_set_secure(Object *obj, bool value, Error **errp) 1587 { 1588 VirtMachineState *vms = VIRT_MACHINE(obj); 1589 1590 vms->secure = value; 1591 } 1592 1593 static bool virt_get_virt(Object *obj, Error **errp) 1594 { 1595 VirtMachineState *vms = VIRT_MACHINE(obj); 1596 1597 return vms->virt; 1598 } 1599 1600 static void virt_set_virt(Object *obj, bool value, Error **errp) 1601 { 1602 VirtMachineState *vms = VIRT_MACHINE(obj); 1603 1604 vms->virt = value; 1605 } 1606 1607 static bool virt_get_highmem(Object *obj, Error **errp) 1608 { 1609 VirtMachineState *vms = VIRT_MACHINE(obj); 1610 1611 return vms->highmem; 1612 } 1613 1614 static void virt_set_highmem(Object *obj, bool value, Error **errp) 1615 { 1616 VirtMachineState *vms = VIRT_MACHINE(obj); 1617 1618 vms->highmem = value; 1619 } 1620 1621 static bool virt_get_its(Object *obj, Error **errp) 1622 { 1623 VirtMachineState *vms = VIRT_MACHINE(obj); 1624 1625 return vms->its; 1626 } 1627 1628 static void virt_set_its(Object *obj, bool value, Error **errp) 1629 { 1630 VirtMachineState *vms = VIRT_MACHINE(obj); 1631 1632 vms->its = value; 1633 } 1634 1635 static char *virt_get_gic_version(Object *obj, Error **errp) 1636 { 1637 VirtMachineState *vms = VIRT_MACHINE(obj); 1638 const char *val = vms->gic_version == 3 ? "3" : "2"; 1639 1640 return g_strdup(val); 1641 } 1642 1643 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 1644 { 1645 VirtMachineState *vms = VIRT_MACHINE(obj); 1646 1647 if (!strcmp(value, "3")) { 1648 vms->gic_version = 3; 1649 } else if (!strcmp(value, "2")) { 1650 vms->gic_version = 2; 1651 } else if (!strcmp(value, "host")) { 1652 vms->gic_version = 0; /* Will probe later */ 1653 } else if (!strcmp(value, "max")) { 1654 vms->gic_version = -1; /* Will probe later */ 1655 } else { 1656 error_setg(errp, "Invalid gic-version value"); 1657 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 1658 } 1659 } 1660 1661 static char *virt_get_iommu(Object *obj, Error **errp) 1662 { 1663 VirtMachineState *vms = VIRT_MACHINE(obj); 1664 1665 switch (vms->iommu) { 1666 case VIRT_IOMMU_NONE: 1667 return g_strdup("none"); 1668 case VIRT_IOMMU_SMMUV3: 1669 return g_strdup("smmuv3"); 1670 default: 1671 g_assert_not_reached(); 1672 } 1673 } 1674 1675 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 1676 { 1677 VirtMachineState *vms = VIRT_MACHINE(obj); 1678 1679 if (!strcmp(value, "smmuv3")) { 1680 vms->iommu = VIRT_IOMMU_SMMUV3; 1681 } else if (!strcmp(value, "none")) { 1682 vms->iommu = VIRT_IOMMU_NONE; 1683 } else { 1684 error_setg(errp, "Invalid iommu value"); 1685 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 1686 } 1687 } 1688 1689 static CpuInstanceProperties 1690 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 1691 { 1692 MachineClass *mc = MACHINE_GET_CLASS(ms); 1693 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 1694 1695 assert(cpu_index < possible_cpus->len); 1696 return possible_cpus->cpus[cpu_index].props; 1697 } 1698 1699 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 1700 { 1701 return idx % nb_numa_nodes; 1702 } 1703 1704 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 1705 { 1706 int n; 1707 VirtMachineState *vms = VIRT_MACHINE(ms); 1708 1709 if (ms->possible_cpus) { 1710 assert(ms->possible_cpus->len == max_cpus); 1711 return ms->possible_cpus; 1712 } 1713 1714 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 1715 sizeof(CPUArchId) * max_cpus); 1716 ms->possible_cpus->len = max_cpus; 1717 for (n = 0; n < ms->possible_cpus->len; n++) { 1718 ms->possible_cpus->cpus[n].type = ms->cpu_type; 1719 ms->possible_cpus->cpus[n].arch_id = 1720 virt_cpu_mp_affinity(vms, n); 1721 ms->possible_cpus->cpus[n].props.has_thread_id = true; 1722 ms->possible_cpus->cpus[n].props.thread_id = n; 1723 } 1724 return ms->possible_cpus; 1725 } 1726 1727 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 1728 DeviceState *dev, Error **errp) 1729 { 1730 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 1731 1732 if (vms->platform_bus_dev) { 1733 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 1734 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 1735 SYS_BUS_DEVICE(dev)); 1736 } 1737 } 1738 } 1739 1740 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 1741 DeviceState *dev) 1742 { 1743 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { 1744 return HOTPLUG_HANDLER(machine); 1745 } 1746 1747 return NULL; 1748 } 1749 1750 static void virt_machine_class_init(ObjectClass *oc, void *data) 1751 { 1752 MachineClass *mc = MACHINE_CLASS(oc); 1753 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 1754 1755 mc->init = machvirt_init; 1756 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 1757 * The value may be reduced later when we have more information about the 1758 * configuration of the particular instance. 1759 */ 1760 mc->max_cpus = 512; 1761 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 1762 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 1763 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 1764 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 1765 mc->block_default_type = IF_VIRTIO; 1766 mc->no_cdrom = 1; 1767 mc->pci_allow_0_address = true; 1768 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 1769 mc->minimum_page_bits = 12; 1770 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 1771 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 1772 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 1773 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 1774 assert(!mc->get_hotplug_handler); 1775 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 1776 hc->plug = virt_machine_device_plug_cb; 1777 } 1778 1779 static void virt_instance_init(Object *obj) 1780 { 1781 VirtMachineState *vms = VIRT_MACHINE(obj); 1782 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1783 1784 /* EL3 is disabled by default on virt: this makes us consistent 1785 * between KVM and TCG for this board, and it also allows us to 1786 * boot UEFI blobs which assume no TrustZone support. 1787 */ 1788 vms->secure = false; 1789 object_property_add_bool(obj, "secure", virt_get_secure, 1790 virt_set_secure, NULL); 1791 object_property_set_description(obj, "secure", 1792 "Set on/off to enable/disable the ARM " 1793 "Security Extensions (TrustZone)", 1794 NULL); 1795 1796 /* EL2 is also disabled by default, for similar reasons */ 1797 vms->virt = false; 1798 object_property_add_bool(obj, "virtualization", virt_get_virt, 1799 virt_set_virt, NULL); 1800 object_property_set_description(obj, "virtualization", 1801 "Set on/off to enable/disable emulating a " 1802 "guest CPU which implements the ARM " 1803 "Virtualization Extensions", 1804 NULL); 1805 1806 /* High memory is enabled by default */ 1807 vms->highmem = true; 1808 object_property_add_bool(obj, "highmem", virt_get_highmem, 1809 virt_set_highmem, NULL); 1810 object_property_set_description(obj, "highmem", 1811 "Set on/off to enable/disable using " 1812 "physical address space above 32 bits", 1813 NULL); 1814 /* Default GIC type is v2 */ 1815 vms->gic_version = 2; 1816 object_property_add_str(obj, "gic-version", virt_get_gic_version, 1817 virt_set_gic_version, NULL); 1818 object_property_set_description(obj, "gic-version", 1819 "Set GIC version. " 1820 "Valid values are 2, 3 and host", NULL); 1821 1822 vms->highmem_ecam = !vmc->no_highmem_ecam; 1823 1824 if (vmc->no_its) { 1825 vms->its = false; 1826 } else { 1827 /* Default allows ITS instantiation */ 1828 vms->its = true; 1829 object_property_add_bool(obj, "its", virt_get_its, 1830 virt_set_its, NULL); 1831 object_property_set_description(obj, "its", 1832 "Set on/off to enable/disable " 1833 "ITS instantiation", 1834 NULL); 1835 } 1836 1837 /* Default disallows iommu instantiation */ 1838 vms->iommu = VIRT_IOMMU_NONE; 1839 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL); 1840 object_property_set_description(obj, "iommu", 1841 "Set the IOMMU type. " 1842 "Valid values are none and smmuv3", 1843 NULL); 1844 1845 vms->memmap = a15memmap; 1846 vms->irqmap = a15irqmap; 1847 } 1848 1849 static const TypeInfo virt_machine_info = { 1850 .name = TYPE_VIRT_MACHINE, 1851 .parent = TYPE_MACHINE, 1852 .abstract = true, 1853 .instance_size = sizeof(VirtMachineState), 1854 .class_size = sizeof(VirtMachineClass), 1855 .class_init = virt_machine_class_init, 1856 .instance_init = virt_instance_init, 1857 .interfaces = (InterfaceInfo[]) { 1858 { TYPE_HOTPLUG_HANDLER }, 1859 { } 1860 }, 1861 }; 1862 1863 static void machvirt_machine_init(void) 1864 { 1865 type_register_static(&virt_machine_info); 1866 } 1867 type_init(machvirt_machine_init); 1868 1869 static void virt_machine_4_0_options(MachineClass *mc) 1870 { 1871 } 1872 DEFINE_VIRT_MACHINE_AS_LATEST(4, 0) 1873 1874 static void virt_machine_3_1_options(MachineClass *mc) 1875 { 1876 virt_machine_4_0_options(mc); 1877 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 1878 } 1879 DEFINE_VIRT_MACHINE(3, 1) 1880 1881 static void virt_machine_3_0_options(MachineClass *mc) 1882 { 1883 virt_machine_3_1_options(mc); 1884 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 1885 } 1886 DEFINE_VIRT_MACHINE(3, 0) 1887 1888 static void virt_machine_2_12_options(MachineClass *mc) 1889 { 1890 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 1891 1892 virt_machine_3_0_options(mc); 1893 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 1894 vmc->no_highmem_ecam = true; 1895 mc->max_cpus = 255; 1896 } 1897 DEFINE_VIRT_MACHINE(2, 12) 1898 1899 static void virt_machine_2_11_options(MachineClass *mc) 1900 { 1901 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 1902 1903 virt_machine_2_12_options(mc); 1904 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 1905 vmc->smbios_old_sys_ver = true; 1906 } 1907 DEFINE_VIRT_MACHINE(2, 11) 1908 1909 static void virt_machine_2_10_options(MachineClass *mc) 1910 { 1911 virt_machine_2_11_options(mc); 1912 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 1913 /* before 2.11 we never faulted accesses to bad addresses */ 1914 mc->ignore_memory_transaction_failures = true; 1915 } 1916 DEFINE_VIRT_MACHINE(2, 10) 1917 1918 static void virt_machine_2_9_options(MachineClass *mc) 1919 { 1920 virt_machine_2_10_options(mc); 1921 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 1922 } 1923 DEFINE_VIRT_MACHINE(2, 9) 1924 1925 static void virt_machine_2_8_options(MachineClass *mc) 1926 { 1927 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 1928 1929 virt_machine_2_9_options(mc); 1930 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 1931 /* For 2.8 and earlier we falsely claimed in the DT that 1932 * our timers were edge-triggered, not level-triggered. 1933 */ 1934 vmc->claim_edge_triggered_timers = true; 1935 } 1936 DEFINE_VIRT_MACHINE(2, 8) 1937 1938 static void virt_machine_2_7_options(MachineClass *mc) 1939 { 1940 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 1941 1942 virt_machine_2_8_options(mc); 1943 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 1944 /* ITS was introduced with 2.8 */ 1945 vmc->no_its = true; 1946 /* Stick with 1K pages for migration compatibility */ 1947 mc->minimum_page_bits = 0; 1948 } 1949 DEFINE_VIRT_MACHINE(2, 7) 1950 1951 static void virt_machine_2_6_options(MachineClass *mc) 1952 { 1953 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 1954 1955 virt_machine_2_7_options(mc); 1956 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 1957 vmc->disallow_affinity_adjustment = true; 1958 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 1959 vmc->no_pmu = true; 1960 } 1961 DEFINE_VIRT_MACHINE(2, 6) 1962