1 /* Support for generating ACPI tables and passing them to Guests 2 * 3 * ARM virt ACPI generation 4 * 5 * Copyright (C) 2008-2010 Kevin O'Connor <kevin@koconnor.net> 6 * Copyright (C) 2006 Fabrice Bellard 7 * Copyright (C) 2013 Red Hat Inc 8 * 9 * Author: Michael S. Tsirkin <mst@redhat.com> 10 * 11 * Copyright (c) 2015 HUAWEI TECHNOLOGIES CO.,LTD. 12 * 13 * Author: Shannon Zhao <zhaoshenglong@huawei.com> 14 * 15 * This program is free software; you can redistribute it and/or modify 16 * it under the terms of the GNU General Public License as published by 17 * the Free Software Foundation; either version 2 of the License, or 18 * (at your option) any later version. 19 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 23 * GNU General Public License for more details. 24 25 * You should have received a copy of the GNU General Public License along 26 * with this program; if not, see <http://www.gnu.org/licenses/>. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qapi/error.h" 31 #include "qemu-common.h" 32 #include "qemu/bitmap.h" 33 #include "trace.h" 34 #include "qom/cpu.h" 35 #include "target/arm/cpu.h" 36 #include "hw/acpi/acpi-defs.h" 37 #include "hw/acpi/acpi.h" 38 #include "hw/nvram/fw_cfg.h" 39 #include "hw/acpi/bios-linker-loader.h" 40 #include "hw/loader.h" 41 #include "hw/hw.h" 42 #include "hw/acpi/aml-build.h" 43 #include "hw/pci/pcie_host.h" 44 #include "hw/pci/pci.h" 45 #include "hw/arm/virt.h" 46 #include "sysemu/numa.h" 47 #include "kvm_arm.h" 48 49 #define ARM_SPI_BASE 32 50 #define ACPI_POWER_BUTTON_DEVICE "PWRB" 51 52 static void acpi_dsdt_add_cpus(Aml *scope, int smp_cpus) 53 { 54 uint16_t i; 55 56 for (i = 0; i < smp_cpus; i++) { 57 Aml *dev = aml_device("C%.03X", i); 58 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007"))); 59 aml_append(dev, aml_name_decl("_UID", aml_int(i))); 60 aml_append(scope, dev); 61 } 62 } 63 64 static void acpi_dsdt_add_uart(Aml *scope, const MemMapEntry *uart_memmap, 65 uint32_t uart_irq) 66 { 67 Aml *dev = aml_device("COM0"); 68 aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0011"))); 69 aml_append(dev, aml_name_decl("_UID", aml_int(0))); 70 71 Aml *crs = aml_resource_template(); 72 aml_append(crs, aml_memory32_fixed(uart_memmap->base, 73 uart_memmap->size, AML_READ_WRITE)); 74 aml_append(crs, 75 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 76 AML_EXCLUSIVE, &uart_irq, 1)); 77 aml_append(dev, aml_name_decl("_CRS", crs)); 78 79 /* The _ADR entry is used to link this device to the UART described 80 * in the SPCR table, i.e. SPCR.base_address.address == _ADR. 81 */ 82 aml_append(dev, aml_name_decl("_ADR", aml_int(uart_memmap->base))); 83 84 aml_append(scope, dev); 85 } 86 87 static void acpi_dsdt_add_fw_cfg(Aml *scope, const MemMapEntry *fw_cfg_memmap) 88 { 89 Aml *dev = aml_device("FWCF"); 90 aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002"))); 91 /* device present, functioning, decoding, not shown in UI */ 92 aml_append(dev, aml_name_decl("_STA", aml_int(0xB))); 93 aml_append(dev, aml_name_decl("_CCA", aml_int(1))); 94 95 Aml *crs = aml_resource_template(); 96 aml_append(crs, aml_memory32_fixed(fw_cfg_memmap->base, 97 fw_cfg_memmap->size, AML_READ_WRITE)); 98 aml_append(dev, aml_name_decl("_CRS", crs)); 99 aml_append(scope, dev); 100 } 101 102 static void acpi_dsdt_add_flash(Aml *scope, const MemMapEntry *flash_memmap) 103 { 104 Aml *dev, *crs; 105 hwaddr base = flash_memmap->base; 106 hwaddr size = flash_memmap->size / 2; 107 108 dev = aml_device("FLS0"); 109 aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015"))); 110 aml_append(dev, aml_name_decl("_UID", aml_int(0))); 111 112 crs = aml_resource_template(); 113 aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE)); 114 aml_append(dev, aml_name_decl("_CRS", crs)); 115 aml_append(scope, dev); 116 117 dev = aml_device("FLS1"); 118 aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015"))); 119 aml_append(dev, aml_name_decl("_UID", aml_int(1))); 120 crs = aml_resource_template(); 121 aml_append(crs, aml_memory32_fixed(base + size, size, AML_READ_WRITE)); 122 aml_append(dev, aml_name_decl("_CRS", crs)); 123 aml_append(scope, dev); 124 } 125 126 static void acpi_dsdt_add_virtio(Aml *scope, 127 const MemMapEntry *virtio_mmio_memmap, 128 uint32_t mmio_irq, int num) 129 { 130 hwaddr base = virtio_mmio_memmap->base; 131 hwaddr size = virtio_mmio_memmap->size; 132 int i; 133 134 for (i = 0; i < num; i++) { 135 uint32_t irq = mmio_irq + i; 136 Aml *dev = aml_device("VR%02u", i); 137 aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0005"))); 138 aml_append(dev, aml_name_decl("_UID", aml_int(i))); 139 aml_append(dev, aml_name_decl("_CCA", aml_int(1))); 140 141 Aml *crs = aml_resource_template(); 142 aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE)); 143 aml_append(crs, 144 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 145 AML_EXCLUSIVE, &irq, 1)); 146 aml_append(dev, aml_name_decl("_CRS", crs)); 147 aml_append(scope, dev); 148 base += size; 149 } 150 } 151 152 static void acpi_dsdt_add_pci(Aml *scope, const MemMapEntry *memmap, 153 uint32_t irq, bool use_highmem, bool highmem_ecam) 154 { 155 int ecam_id = VIRT_ECAM_ID(highmem_ecam); 156 Aml *method, *crs, *ifctx, *UUID, *ifctx1, *elsectx, *buf; 157 int i, bus_no; 158 hwaddr base_mmio = memmap[VIRT_PCIE_MMIO].base; 159 hwaddr size_mmio = memmap[VIRT_PCIE_MMIO].size; 160 hwaddr base_pio = memmap[VIRT_PCIE_PIO].base; 161 hwaddr size_pio = memmap[VIRT_PCIE_PIO].size; 162 hwaddr base_ecam = memmap[ecam_id].base; 163 hwaddr size_ecam = memmap[ecam_id].size; 164 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 165 166 Aml *dev = aml_device("%s", "PCI0"); 167 aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A08"))); 168 aml_append(dev, aml_name_decl("_CID", aml_string("PNP0A03"))); 169 aml_append(dev, aml_name_decl("_SEG", aml_int(0))); 170 aml_append(dev, aml_name_decl("_BBN", aml_int(0))); 171 aml_append(dev, aml_name_decl("_ADR", aml_int(0))); 172 aml_append(dev, aml_name_decl("_UID", aml_string("PCI0"))); 173 aml_append(dev, aml_name_decl("_STR", aml_unicode("PCIe 0 Device"))); 174 aml_append(dev, aml_name_decl("_CCA", aml_int(1))); 175 176 /* Declare the PCI Routing Table. */ 177 Aml *rt_pkg = aml_varpackage(nr_pcie_buses * PCI_NUM_PINS); 178 for (bus_no = 0; bus_no < nr_pcie_buses; bus_no++) { 179 for (i = 0; i < PCI_NUM_PINS; i++) { 180 int gsi = (i + bus_no) % PCI_NUM_PINS; 181 Aml *pkg = aml_package(4); 182 aml_append(pkg, aml_int((bus_no << 16) | 0xFFFF)); 183 aml_append(pkg, aml_int(i)); 184 aml_append(pkg, aml_name("GSI%d", gsi)); 185 aml_append(pkg, aml_int(0)); 186 aml_append(rt_pkg, pkg); 187 } 188 } 189 aml_append(dev, aml_name_decl("_PRT", rt_pkg)); 190 191 /* Create GSI link device */ 192 for (i = 0; i < PCI_NUM_PINS; i++) { 193 uint32_t irqs = irq + i; 194 Aml *dev_gsi = aml_device("GSI%d", i); 195 aml_append(dev_gsi, aml_name_decl("_HID", aml_string("PNP0C0F"))); 196 aml_append(dev_gsi, aml_name_decl("_UID", aml_int(0))); 197 crs = aml_resource_template(); 198 aml_append(crs, 199 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 200 AML_EXCLUSIVE, &irqs, 1)); 201 aml_append(dev_gsi, aml_name_decl("_PRS", crs)); 202 crs = aml_resource_template(); 203 aml_append(crs, 204 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 205 AML_EXCLUSIVE, &irqs, 1)); 206 aml_append(dev_gsi, aml_name_decl("_CRS", crs)); 207 method = aml_method("_SRS", 1, AML_NOTSERIALIZED); 208 aml_append(dev_gsi, method); 209 aml_append(dev, dev_gsi); 210 } 211 212 method = aml_method("_CBA", 0, AML_NOTSERIALIZED); 213 aml_append(method, aml_return(aml_int(base_ecam))); 214 aml_append(dev, method); 215 216 method = aml_method("_CRS", 0, AML_NOTSERIALIZED); 217 Aml *rbuf = aml_resource_template(); 218 aml_append(rbuf, 219 aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE, 220 0x0000, 0x0000, nr_pcie_buses - 1, 0x0000, 221 nr_pcie_buses)); 222 aml_append(rbuf, 223 aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED, 224 AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_mmio, 225 base_mmio + size_mmio - 1, 0x0000, size_mmio)); 226 aml_append(rbuf, 227 aml_dword_io(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE, 228 AML_ENTIRE_RANGE, 0x0000, 0x0000, size_pio - 1, base_pio, 229 size_pio)); 230 231 if (use_highmem) { 232 hwaddr base_mmio_high = memmap[VIRT_PCIE_MMIO_HIGH].base; 233 hwaddr size_mmio_high = memmap[VIRT_PCIE_MMIO_HIGH].size; 234 235 aml_append(rbuf, 236 aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED, 237 AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, 238 base_mmio_high, 239 base_mmio_high + size_mmio_high - 1, 0x0000, 240 size_mmio_high)); 241 } 242 243 aml_append(method, aml_name_decl("RBUF", rbuf)); 244 aml_append(method, aml_return(rbuf)); 245 aml_append(dev, method); 246 247 /* Declare an _OSC (OS Control Handoff) method */ 248 aml_append(dev, aml_name_decl("SUPP", aml_int(0))); 249 aml_append(dev, aml_name_decl("CTRL", aml_int(0))); 250 method = aml_method("_OSC", 4, AML_NOTSERIALIZED); 251 aml_append(method, 252 aml_create_dword_field(aml_arg(3), aml_int(0), "CDW1")); 253 254 /* PCI Firmware Specification 3.0 255 * 4.5.1. _OSC Interface for PCI Host Bridge Devices 256 * The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is 257 * identified by the Universal Unique IDentifier (UUID) 258 * 33DB4D5B-1FF7-401C-9657-7441C03DD766 259 */ 260 UUID = aml_touuid("33DB4D5B-1FF7-401C-9657-7441C03DD766"); 261 ifctx = aml_if(aml_equal(aml_arg(0), UUID)); 262 aml_append(ifctx, 263 aml_create_dword_field(aml_arg(3), aml_int(4), "CDW2")); 264 aml_append(ifctx, 265 aml_create_dword_field(aml_arg(3), aml_int(8), "CDW3")); 266 aml_append(ifctx, aml_store(aml_name("CDW2"), aml_name("SUPP"))); 267 aml_append(ifctx, aml_store(aml_name("CDW3"), aml_name("CTRL"))); 268 aml_append(ifctx, aml_store(aml_and(aml_name("CTRL"), aml_int(0x1D), NULL), 269 aml_name("CTRL"))); 270 271 ifctx1 = aml_if(aml_lnot(aml_equal(aml_arg(1), aml_int(0x1)))); 272 aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x08), NULL), 273 aml_name("CDW1"))); 274 aml_append(ifctx, ifctx1); 275 276 ifctx1 = aml_if(aml_lnot(aml_equal(aml_name("CDW3"), aml_name("CTRL")))); 277 aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x10), NULL), 278 aml_name("CDW1"))); 279 aml_append(ifctx, ifctx1); 280 281 aml_append(ifctx, aml_store(aml_name("CTRL"), aml_name("CDW3"))); 282 aml_append(ifctx, aml_return(aml_arg(3))); 283 aml_append(method, ifctx); 284 285 elsectx = aml_else(); 286 aml_append(elsectx, aml_store(aml_or(aml_name("CDW1"), aml_int(4), NULL), 287 aml_name("CDW1"))); 288 aml_append(elsectx, aml_return(aml_arg(3))); 289 aml_append(method, elsectx); 290 aml_append(dev, method); 291 292 method = aml_method("_DSM", 4, AML_NOTSERIALIZED); 293 294 /* PCI Firmware Specification 3.0 295 * 4.6.1. _DSM for PCI Express Slot Information 296 * The UUID in _DSM in this context is 297 * {E5C937D0-3553-4D7A-9117-EA4D19C3434D} 298 */ 299 UUID = aml_touuid("E5C937D0-3553-4D7A-9117-EA4D19C3434D"); 300 ifctx = aml_if(aml_equal(aml_arg(0), UUID)); 301 ifctx1 = aml_if(aml_equal(aml_arg(2), aml_int(0))); 302 uint8_t byte_list[1] = {1}; 303 buf = aml_buffer(1, byte_list); 304 aml_append(ifctx1, aml_return(buf)); 305 aml_append(ifctx, ifctx1); 306 aml_append(method, ifctx); 307 308 byte_list[0] = 0; 309 buf = aml_buffer(1, byte_list); 310 aml_append(method, aml_return(buf)); 311 aml_append(dev, method); 312 313 Aml *dev_rp0 = aml_device("%s", "RP0"); 314 aml_append(dev_rp0, aml_name_decl("_ADR", aml_int(0))); 315 aml_append(dev, dev_rp0); 316 317 Aml *dev_res0 = aml_device("%s", "RES0"); 318 aml_append(dev_res0, aml_name_decl("_HID", aml_string("PNP0C02"))); 319 crs = aml_resource_template(); 320 aml_append(crs, 321 aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED, 322 AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_ecam, 323 base_ecam + size_ecam - 1, 0x0000, size_ecam)); 324 aml_append(dev_res0, aml_name_decl("_CRS", crs)); 325 aml_append(dev, dev_res0); 326 aml_append(scope, dev); 327 } 328 329 static void acpi_dsdt_add_gpio(Aml *scope, const MemMapEntry *gpio_memmap, 330 uint32_t gpio_irq) 331 { 332 Aml *dev = aml_device("GPO0"); 333 aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0061"))); 334 aml_append(dev, aml_name_decl("_ADR", aml_int(0))); 335 aml_append(dev, aml_name_decl("_UID", aml_int(0))); 336 337 Aml *crs = aml_resource_template(); 338 aml_append(crs, aml_memory32_fixed(gpio_memmap->base, gpio_memmap->size, 339 AML_READ_WRITE)); 340 aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 341 AML_EXCLUSIVE, &gpio_irq, 1)); 342 aml_append(dev, aml_name_decl("_CRS", crs)); 343 344 Aml *aei = aml_resource_template(); 345 /* Pin 3 for power button */ 346 const uint32_t pin_list[1] = {3}; 347 aml_append(aei, aml_gpio_int(AML_CONSUMER, AML_EDGE, AML_ACTIVE_HIGH, 348 AML_EXCLUSIVE, AML_PULL_UP, 0, pin_list, 1, 349 "GPO0", NULL, 0)); 350 aml_append(dev, aml_name_decl("_AEI", aei)); 351 352 /* _E03 is handle for power button */ 353 Aml *method = aml_method("_E03", 0, AML_NOTSERIALIZED); 354 aml_append(method, aml_notify(aml_name(ACPI_POWER_BUTTON_DEVICE), 355 aml_int(0x80))); 356 aml_append(dev, method); 357 aml_append(scope, dev); 358 } 359 360 static void acpi_dsdt_add_power_button(Aml *scope) 361 { 362 Aml *dev = aml_device(ACPI_POWER_BUTTON_DEVICE); 363 aml_append(dev, aml_name_decl("_HID", aml_string("PNP0C0C"))); 364 aml_append(dev, aml_name_decl("_ADR", aml_int(0))); 365 aml_append(dev, aml_name_decl("_UID", aml_int(0))); 366 aml_append(scope, dev); 367 } 368 369 /* RSDP */ 370 static GArray * 371 build_rsdp(GArray *rsdp_table, BIOSLinker *linker, unsigned xsdt_tbl_offset) 372 { 373 AcpiRsdpDescriptor *rsdp = acpi_data_push(rsdp_table, sizeof *rsdp); 374 unsigned xsdt_pa_size = sizeof(rsdp->xsdt_physical_address); 375 unsigned xsdt_pa_offset = 376 (char *)&rsdp->xsdt_physical_address - rsdp_table->data; 377 378 bios_linker_loader_alloc(linker, ACPI_BUILD_RSDP_FILE, rsdp_table, 16, 379 true /* fseg memory */); 380 381 memcpy(&rsdp->signature, "RSD PTR ", sizeof(rsdp->signature)); 382 memcpy(rsdp->oem_id, ACPI_BUILD_APPNAME6, sizeof(rsdp->oem_id)); 383 rsdp->length = cpu_to_le32(sizeof(*rsdp)); 384 rsdp->revision = 0x02; 385 386 /* Address to be filled by Guest linker */ 387 bios_linker_loader_add_pointer(linker, 388 ACPI_BUILD_RSDP_FILE, xsdt_pa_offset, xsdt_pa_size, 389 ACPI_BUILD_TABLE_FILE, xsdt_tbl_offset); 390 391 /* Checksum to be filled by Guest linker */ 392 bios_linker_loader_add_checksum(linker, ACPI_BUILD_RSDP_FILE, 393 (char *)rsdp - rsdp_table->data, sizeof *rsdp, 394 (char *)&rsdp->checksum - rsdp_table->data); 395 396 return rsdp_table; 397 } 398 399 static void 400 build_iort(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 401 { 402 int nb_nodes, iort_start = table_data->len; 403 AcpiIortIdMapping *idmap; 404 AcpiIortItsGroup *its; 405 AcpiIortTable *iort; 406 AcpiIortSmmu3 *smmu; 407 size_t node_size, iort_node_offset, iort_length, smmu_offset = 0; 408 AcpiIortRC *rc; 409 410 iort = acpi_data_push(table_data, sizeof(*iort)); 411 412 if (vms->iommu == VIRT_IOMMU_SMMUV3) { 413 nb_nodes = 3; /* RC, ITS, SMMUv3 */ 414 } else { 415 nb_nodes = 2; /* RC, ITS */ 416 } 417 418 iort_length = sizeof(*iort); 419 iort->node_count = cpu_to_le32(nb_nodes); 420 /* 421 * Use a copy in case table_data->data moves during acpi_data_push 422 * operations. 423 */ 424 iort_node_offset = sizeof(*iort); 425 iort->node_offset = cpu_to_le32(iort_node_offset); 426 427 /* ITS group node */ 428 node_size = sizeof(*its) + sizeof(uint32_t); 429 iort_length += node_size; 430 its = acpi_data_push(table_data, node_size); 431 432 its->type = ACPI_IORT_NODE_ITS_GROUP; 433 its->length = cpu_to_le16(node_size); 434 its->its_count = cpu_to_le32(1); 435 its->identifiers[0] = 0; /* MADT translation_id */ 436 437 if (vms->iommu == VIRT_IOMMU_SMMUV3) { 438 int irq = vms->irqmap[VIRT_SMMU]; 439 440 /* SMMUv3 node */ 441 smmu_offset = iort_node_offset + node_size; 442 node_size = sizeof(*smmu) + sizeof(*idmap); 443 iort_length += node_size; 444 smmu = acpi_data_push(table_data, node_size); 445 446 smmu->type = ACPI_IORT_NODE_SMMU_V3; 447 smmu->length = cpu_to_le16(node_size); 448 smmu->mapping_count = cpu_to_le32(1); 449 smmu->mapping_offset = cpu_to_le32(sizeof(*smmu)); 450 smmu->base_address = cpu_to_le64(vms->memmap[VIRT_SMMU].base); 451 smmu->event_gsiv = cpu_to_le32(irq); 452 smmu->pri_gsiv = cpu_to_le32(irq + 1); 453 smmu->gerr_gsiv = cpu_to_le32(irq + 2); 454 smmu->sync_gsiv = cpu_to_le32(irq + 3); 455 456 /* Identity RID mapping covering the whole input RID range */ 457 idmap = &smmu->id_mapping_array[0]; 458 idmap->input_base = 0; 459 idmap->id_count = cpu_to_le32(0xFFFF); 460 idmap->output_base = 0; 461 /* output IORT node is the ITS group node (the first node) */ 462 idmap->output_reference = cpu_to_le32(iort_node_offset); 463 } 464 465 /* Root Complex Node */ 466 node_size = sizeof(*rc) + sizeof(*idmap); 467 iort_length += node_size; 468 rc = acpi_data_push(table_data, node_size); 469 470 rc->type = ACPI_IORT_NODE_PCI_ROOT_COMPLEX; 471 rc->length = cpu_to_le16(node_size); 472 rc->mapping_count = cpu_to_le32(1); 473 rc->mapping_offset = cpu_to_le32(sizeof(*rc)); 474 475 /* fully coherent device */ 476 rc->memory_properties.cache_coherency = cpu_to_le32(1); 477 rc->memory_properties.memory_flags = 0x3; /* CCA = CPM = DCAS = 1 */ 478 rc->pci_segment_number = 0; /* MCFG pci_segment */ 479 480 /* Identity RID mapping covering the whole input RID range */ 481 idmap = &rc->id_mapping_array[0]; 482 idmap->input_base = 0; 483 idmap->id_count = cpu_to_le32(0xFFFF); 484 idmap->output_base = 0; 485 486 if (vms->iommu == VIRT_IOMMU_SMMUV3) { 487 /* output IORT node is the smmuv3 node */ 488 idmap->output_reference = cpu_to_le32(smmu_offset); 489 } else { 490 /* output IORT node is the ITS group node (the first node) */ 491 idmap->output_reference = cpu_to_le32(iort_node_offset); 492 } 493 494 /* 495 * Update the pointer address in case table_data->data moves during above 496 * acpi_data_push operations. 497 */ 498 iort = (AcpiIortTable *)(table_data->data + iort_start); 499 iort->length = cpu_to_le32(iort_length); 500 501 build_header(linker, table_data, (void *)(table_data->data + iort_start), 502 "IORT", table_data->len - iort_start, 0, NULL, NULL); 503 } 504 505 static void 506 build_spcr(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 507 { 508 AcpiSerialPortConsoleRedirection *spcr; 509 const MemMapEntry *uart_memmap = &vms->memmap[VIRT_UART]; 510 int irq = vms->irqmap[VIRT_UART] + ARM_SPI_BASE; 511 int spcr_start = table_data->len; 512 513 spcr = acpi_data_push(table_data, sizeof(*spcr)); 514 515 spcr->interface_type = 0x3; /* ARM PL011 UART */ 516 517 spcr->base_address.space_id = AML_SYSTEM_MEMORY; 518 spcr->base_address.bit_width = 8; 519 spcr->base_address.bit_offset = 0; 520 spcr->base_address.access_width = 1; 521 spcr->base_address.address = cpu_to_le64(uart_memmap->base); 522 523 spcr->interrupt_types = (1 << 3); /* Bit[3] ARMH GIC interrupt */ 524 spcr->gsi = cpu_to_le32(irq); /* Global System Interrupt */ 525 526 spcr->baud = 3; /* Baud Rate: 3 = 9600 */ 527 spcr->parity = 0; /* No Parity */ 528 spcr->stopbits = 1; /* 1 Stop bit */ 529 spcr->flowctrl = (1 << 1); /* Bit[1] = RTS/CTS hardware flow control */ 530 spcr->term_type = 0; /* Terminal Type: 0 = VT100 */ 531 532 spcr->pci_device_id = 0xffff; /* PCI Device ID: not a PCI device */ 533 spcr->pci_vendor_id = 0xffff; /* PCI Vendor ID: not a PCI device */ 534 535 build_header(linker, table_data, (void *)(table_data->data + spcr_start), 536 "SPCR", table_data->len - spcr_start, 2, NULL, NULL); 537 } 538 539 static void 540 build_srat(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 541 { 542 AcpiSystemResourceAffinityTable *srat; 543 AcpiSratProcessorGiccAffinity *core; 544 AcpiSratMemoryAffinity *numamem; 545 int i, srat_start; 546 uint64_t mem_base; 547 MachineClass *mc = MACHINE_GET_CLASS(vms); 548 const CPUArchIdList *cpu_list = mc->possible_cpu_arch_ids(MACHINE(vms)); 549 550 srat_start = table_data->len; 551 srat = acpi_data_push(table_data, sizeof(*srat)); 552 srat->reserved1 = cpu_to_le32(1); 553 554 for (i = 0; i < cpu_list->len; ++i) { 555 core = acpi_data_push(table_data, sizeof(*core)); 556 core->type = ACPI_SRAT_PROCESSOR_GICC; 557 core->length = sizeof(*core); 558 core->proximity = cpu_to_le32(cpu_list->cpus[i].props.node_id); 559 core->acpi_processor_uid = cpu_to_le32(i); 560 core->flags = cpu_to_le32(1); 561 } 562 563 mem_base = vms->memmap[VIRT_MEM].base; 564 for (i = 0; i < nb_numa_nodes; ++i) { 565 numamem = acpi_data_push(table_data, sizeof(*numamem)); 566 build_srat_memory(numamem, mem_base, numa_info[i].node_mem, i, 567 MEM_AFFINITY_ENABLED); 568 mem_base += numa_info[i].node_mem; 569 } 570 571 build_header(linker, table_data, (void *)(table_data->data + srat_start), 572 "SRAT", table_data->len - srat_start, 3, NULL, NULL); 573 } 574 575 static void 576 build_mcfg(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 577 { 578 AcpiTableMcfg *mcfg; 579 const MemMapEntry *memmap = vms->memmap; 580 int ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 581 int len = sizeof(*mcfg) + sizeof(mcfg->allocation[0]); 582 int mcfg_start = table_data->len; 583 584 mcfg = acpi_data_push(table_data, len); 585 mcfg->allocation[0].address = cpu_to_le64(memmap[ecam_id].base); 586 587 /* Only a single allocation so no need to play with segments */ 588 mcfg->allocation[0].pci_segment = cpu_to_le16(0); 589 mcfg->allocation[0].start_bus_number = 0; 590 mcfg->allocation[0].end_bus_number = (memmap[ecam_id].size 591 / PCIE_MMCFG_SIZE_MIN) - 1; 592 593 build_header(linker, table_data, (void *)(table_data->data + mcfg_start), 594 "MCFG", table_data->len - mcfg_start, 1, NULL, NULL); 595 } 596 597 /* GTDT */ 598 static void 599 build_gtdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 600 { 601 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 602 int gtdt_start = table_data->len; 603 AcpiGenericTimerTable *gtdt; 604 uint32_t irqflags; 605 606 if (vmc->claim_edge_triggered_timers) { 607 irqflags = ACPI_GTDT_INTERRUPT_MODE_EDGE; 608 } else { 609 irqflags = ACPI_GTDT_INTERRUPT_MODE_LEVEL; 610 } 611 612 gtdt = acpi_data_push(table_data, sizeof *gtdt); 613 /* The interrupt values are the same with the device tree when adding 16 */ 614 gtdt->secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_S_EL1_IRQ + 16); 615 gtdt->secure_el1_flags = cpu_to_le32(irqflags); 616 617 gtdt->non_secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL1_IRQ + 16); 618 gtdt->non_secure_el1_flags = cpu_to_le32(irqflags | 619 ACPI_GTDT_CAP_ALWAYS_ON); 620 621 gtdt->virtual_timer_interrupt = cpu_to_le32(ARCH_TIMER_VIRT_IRQ + 16); 622 gtdt->virtual_timer_flags = cpu_to_le32(irqflags); 623 624 gtdt->non_secure_el2_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL2_IRQ + 16); 625 gtdt->non_secure_el2_flags = cpu_to_le32(irqflags); 626 627 build_header(linker, table_data, 628 (void *)(table_data->data + gtdt_start), "GTDT", 629 table_data->len - gtdt_start, 2, NULL, NULL); 630 } 631 632 /* MADT */ 633 static void 634 build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 635 { 636 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 637 int madt_start = table_data->len; 638 const MemMapEntry *memmap = vms->memmap; 639 const int *irqmap = vms->irqmap; 640 AcpiMultipleApicTable *madt; 641 AcpiMadtGenericDistributor *gicd; 642 AcpiMadtGenericMsiFrame *gic_msi; 643 int i; 644 645 madt = acpi_data_push(table_data, sizeof *madt); 646 647 gicd = acpi_data_push(table_data, sizeof *gicd); 648 gicd->type = ACPI_APIC_GENERIC_DISTRIBUTOR; 649 gicd->length = sizeof(*gicd); 650 gicd->base_address = cpu_to_le64(memmap[VIRT_GIC_DIST].base); 651 gicd->version = vms->gic_version; 652 653 for (i = 0; i < vms->smp_cpus; i++) { 654 AcpiMadtGenericCpuInterface *gicc = acpi_data_push(table_data, 655 sizeof(*gicc)); 656 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i)); 657 658 gicc->type = ACPI_APIC_GENERIC_CPU_INTERFACE; 659 gicc->length = sizeof(*gicc); 660 if (vms->gic_version == 2) { 661 gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base); 662 } 663 gicc->cpu_interface_number = cpu_to_le32(i); 664 gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity); 665 gicc->uid = cpu_to_le32(i); 666 gicc->flags = cpu_to_le32(ACPI_MADT_GICC_ENABLED); 667 668 if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 669 gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ)); 670 } 671 if (vms->virt && vms->gic_version == 3) { 672 gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GICV3_MAINT_IRQ)); 673 } 674 } 675 676 if (vms->gic_version == 3) { 677 AcpiMadtGenericTranslator *gic_its; 678 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 679 AcpiMadtGenericRedistributor *gicr = acpi_data_push(table_data, 680 sizeof *gicr); 681 682 gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR; 683 gicr->length = sizeof(*gicr); 684 gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST].base); 685 gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST].size); 686 687 if (nb_redist_regions == 2) { 688 gicr = acpi_data_push(table_data, sizeof(*gicr)); 689 gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR; 690 gicr->length = sizeof(*gicr); 691 gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST2].base); 692 gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST2].size); 693 } 694 695 if (its_class_name() && !vmc->no_its) { 696 gic_its = acpi_data_push(table_data, sizeof *gic_its); 697 gic_its->type = ACPI_APIC_GENERIC_TRANSLATOR; 698 gic_its->length = sizeof(*gic_its); 699 gic_its->translation_id = 0; 700 gic_its->base_address = cpu_to_le64(memmap[VIRT_GIC_ITS].base); 701 } 702 } else { 703 gic_msi = acpi_data_push(table_data, sizeof *gic_msi); 704 gic_msi->type = ACPI_APIC_GENERIC_MSI_FRAME; 705 gic_msi->length = sizeof(*gic_msi); 706 gic_msi->gic_msi_frame_id = 0; 707 gic_msi->base_address = cpu_to_le64(memmap[VIRT_GIC_V2M].base); 708 gic_msi->flags = cpu_to_le32(1); 709 gic_msi->spi_count = cpu_to_le16(NUM_GICV2M_SPIS); 710 gic_msi->spi_base = cpu_to_le16(irqmap[VIRT_GIC_V2M] + ARM_SPI_BASE); 711 } 712 713 build_header(linker, table_data, 714 (void *)(table_data->data + madt_start), "APIC", 715 table_data->len - madt_start, 3, NULL, NULL); 716 } 717 718 /* FADT */ 719 static void build_fadt_rev5(GArray *table_data, BIOSLinker *linker, 720 VirtMachineState *vms, unsigned dsdt_tbl_offset) 721 { 722 /* ACPI v5.1 */ 723 AcpiFadtData fadt = { 724 .rev = 5, 725 .minor_ver = 1, 726 .flags = 1 << ACPI_FADT_F_HW_REDUCED_ACPI, 727 .xdsdt_tbl_offset = &dsdt_tbl_offset, 728 }; 729 730 switch (vms->psci_conduit) { 731 case QEMU_PSCI_CONDUIT_DISABLED: 732 fadt.arm_boot_arch = 0; 733 break; 734 case QEMU_PSCI_CONDUIT_HVC: 735 fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT | 736 ACPI_FADT_ARM_PSCI_USE_HVC; 737 break; 738 case QEMU_PSCI_CONDUIT_SMC: 739 fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT; 740 break; 741 default: 742 g_assert_not_reached(); 743 } 744 745 build_fadt(table_data, linker, &fadt, NULL, NULL); 746 } 747 748 /* DSDT */ 749 static void 750 build_dsdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 751 { 752 Aml *scope, *dsdt; 753 const MemMapEntry *memmap = vms->memmap; 754 const int *irqmap = vms->irqmap; 755 756 dsdt = init_aml_allocator(); 757 /* Reserve space for header */ 758 acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader)); 759 760 /* When booting the VM with UEFI, UEFI takes ownership of the RTC hardware. 761 * While UEFI can use libfdt to disable the RTC device node in the DTB that 762 * it passes to the OS, it cannot modify AML. Therefore, we won't generate 763 * the RTC ACPI device at all when using UEFI. 764 */ 765 scope = aml_scope("\\_SB"); 766 acpi_dsdt_add_cpus(scope, vms->smp_cpus); 767 acpi_dsdt_add_uart(scope, &memmap[VIRT_UART], 768 (irqmap[VIRT_UART] + ARM_SPI_BASE)); 769 acpi_dsdt_add_flash(scope, &memmap[VIRT_FLASH]); 770 acpi_dsdt_add_fw_cfg(scope, &memmap[VIRT_FW_CFG]); 771 acpi_dsdt_add_virtio(scope, &memmap[VIRT_MMIO], 772 (irqmap[VIRT_MMIO] + ARM_SPI_BASE), NUM_VIRTIO_TRANSPORTS); 773 acpi_dsdt_add_pci(scope, memmap, (irqmap[VIRT_PCIE] + ARM_SPI_BASE), 774 vms->highmem, vms->highmem_ecam); 775 acpi_dsdt_add_gpio(scope, &memmap[VIRT_GPIO], 776 (irqmap[VIRT_GPIO] + ARM_SPI_BASE)); 777 acpi_dsdt_add_power_button(scope); 778 779 aml_append(dsdt, scope); 780 781 /* copy AML table into ACPI tables blob and patch header there */ 782 g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len); 783 build_header(linker, table_data, 784 (void *)(table_data->data + table_data->len - dsdt->buf->len), 785 "DSDT", dsdt->buf->len, 2, NULL, NULL); 786 free_aml_allocator(); 787 } 788 789 typedef 790 struct AcpiBuildState { 791 /* Copy of table in RAM (for patching). */ 792 MemoryRegion *table_mr; 793 MemoryRegion *rsdp_mr; 794 MemoryRegion *linker_mr; 795 /* Is table patched? */ 796 bool patched; 797 } AcpiBuildState; 798 799 static 800 void virt_acpi_build(VirtMachineState *vms, AcpiBuildTables *tables) 801 { 802 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 803 GArray *table_offsets; 804 unsigned dsdt, xsdt; 805 GArray *tables_blob = tables->table_data; 806 807 table_offsets = g_array_new(false, true /* clear */, 808 sizeof(uint32_t)); 809 810 bios_linker_loader_alloc(tables->linker, 811 ACPI_BUILD_TABLE_FILE, tables_blob, 812 64, false /* high memory */); 813 814 /* DSDT is pointed to by FADT */ 815 dsdt = tables_blob->len; 816 build_dsdt(tables_blob, tables->linker, vms); 817 818 /* FADT MADT GTDT MCFG SPCR pointed to by RSDT */ 819 acpi_add_table(table_offsets, tables_blob); 820 build_fadt_rev5(tables_blob, tables->linker, vms, dsdt); 821 822 acpi_add_table(table_offsets, tables_blob); 823 build_madt(tables_blob, tables->linker, vms); 824 825 acpi_add_table(table_offsets, tables_blob); 826 build_gtdt(tables_blob, tables->linker, vms); 827 828 acpi_add_table(table_offsets, tables_blob); 829 build_mcfg(tables_blob, tables->linker, vms); 830 831 acpi_add_table(table_offsets, tables_blob); 832 build_spcr(tables_blob, tables->linker, vms); 833 834 if (nb_numa_nodes > 0) { 835 acpi_add_table(table_offsets, tables_blob); 836 build_srat(tables_blob, tables->linker, vms); 837 if (have_numa_distance) { 838 acpi_add_table(table_offsets, tables_blob); 839 build_slit(tables_blob, tables->linker); 840 } 841 } 842 843 if (its_class_name() && !vmc->no_its) { 844 acpi_add_table(table_offsets, tables_blob); 845 build_iort(tables_blob, tables->linker, vms); 846 } 847 848 /* XSDT is pointed to by RSDP */ 849 xsdt = tables_blob->len; 850 build_xsdt(tables_blob, tables->linker, table_offsets, NULL, NULL); 851 852 /* RSDP is in FSEG memory, so allocate it separately */ 853 build_rsdp(tables->rsdp, tables->linker, xsdt); 854 855 /* Cleanup memory that's no longer used. */ 856 g_array_free(table_offsets, true); 857 } 858 859 static void acpi_ram_update(MemoryRegion *mr, GArray *data) 860 { 861 uint32_t size = acpi_data_len(data); 862 863 /* Make sure RAM size is correct - in case it got changed 864 * e.g. by migration */ 865 memory_region_ram_resize(mr, size, &error_abort); 866 867 memcpy(memory_region_get_ram_ptr(mr), data->data, size); 868 memory_region_set_dirty(mr, 0, size); 869 } 870 871 static void virt_acpi_build_update(void *build_opaque) 872 { 873 AcpiBuildState *build_state = build_opaque; 874 AcpiBuildTables tables; 875 876 /* No state to update or already patched? Nothing to do. */ 877 if (!build_state || build_state->patched) { 878 return; 879 } 880 build_state->patched = true; 881 882 acpi_build_tables_init(&tables); 883 884 virt_acpi_build(VIRT_MACHINE(qdev_get_machine()), &tables); 885 886 acpi_ram_update(build_state->table_mr, tables.table_data); 887 acpi_ram_update(build_state->rsdp_mr, tables.rsdp); 888 acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob); 889 890 acpi_build_tables_cleanup(&tables, true); 891 } 892 893 static void virt_acpi_build_reset(void *build_opaque) 894 { 895 AcpiBuildState *build_state = build_opaque; 896 build_state->patched = false; 897 } 898 899 static MemoryRegion *acpi_add_rom_blob(AcpiBuildState *build_state, 900 GArray *blob, const char *name, 901 uint64_t max_size) 902 { 903 return rom_add_blob(name, blob->data, acpi_data_len(blob), max_size, -1, 904 name, virt_acpi_build_update, build_state, NULL, true); 905 } 906 907 static const VMStateDescription vmstate_virt_acpi_build = { 908 .name = "virt_acpi_build", 909 .version_id = 1, 910 .minimum_version_id = 1, 911 .fields = (VMStateField[]) { 912 VMSTATE_BOOL(patched, AcpiBuildState), 913 VMSTATE_END_OF_LIST() 914 }, 915 }; 916 917 void virt_acpi_setup(VirtMachineState *vms) 918 { 919 AcpiBuildTables tables; 920 AcpiBuildState *build_state; 921 922 if (!vms->fw_cfg) { 923 trace_virt_acpi_setup(); 924 return; 925 } 926 927 if (!acpi_enabled) { 928 trace_virt_acpi_setup(); 929 return; 930 } 931 932 build_state = g_malloc0(sizeof *build_state); 933 934 acpi_build_tables_init(&tables); 935 virt_acpi_build(vms, &tables); 936 937 /* Now expose it all to Guest */ 938 build_state->table_mr = acpi_add_rom_blob(build_state, tables.table_data, 939 ACPI_BUILD_TABLE_FILE, 940 ACPI_BUILD_TABLE_MAX_SIZE); 941 assert(build_state->table_mr != NULL); 942 943 build_state->linker_mr = 944 acpi_add_rom_blob(build_state, tables.linker->cmd_blob, 945 "etc/table-loader", 0); 946 947 fw_cfg_add_file(vms->fw_cfg, ACPI_BUILD_TPMLOG_FILE, tables.tcpalog->data, 948 acpi_data_len(tables.tcpalog)); 949 950 build_state->rsdp_mr = acpi_add_rom_blob(build_state, tables.rsdp, 951 ACPI_BUILD_RSDP_FILE, 0); 952 953 qemu_register_reset(virt_acpi_build_reset, build_state); 954 virt_acpi_build_reset(build_state); 955 vmstate_register(NULL, 0, &vmstate_virt_acpi_build, build_state); 956 957 /* Cleanup tables but don't free the memory: we track it 958 * in build_state. 959 */ 960 acpi_build_tables_cleanup(&tables, false); 961 } 962