xref: /openbmc/qemu/hw/arm/virt-acpi-build.c (revision ee17db83)
1 /* Support for generating ACPI tables and passing them to Guests
2  *
3  * ARM virt ACPI generation
4  *
5  * Copyright (C) 2008-2010  Kevin O'Connor <kevin@koconnor.net>
6  * Copyright (C) 2006 Fabrice Bellard
7  * Copyright (C) 2013 Red Hat Inc
8  *
9  * Author: Michael S. Tsirkin <mst@redhat.com>
10  *
11  * Copyright (c) 2015 HUAWEI TECHNOLOGIES CO.,LTD.
12  *
13  * Author: Shannon Zhao <zhaoshenglong@huawei.com>
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19 
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24 
25  * You should have received a copy of the GNU General Public License along
26  * with this program; if not, see <http://www.gnu.org/licenses/>.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qapi/error.h"
31 #include "qemu/bitmap.h"
32 #include "trace.h"
33 #include "hw/core/cpu.h"
34 #include "target/arm/cpu.h"
35 #include "hw/acpi/acpi-defs.h"
36 #include "hw/acpi/acpi.h"
37 #include "hw/nvram/fw_cfg.h"
38 #include "hw/acpi/bios-linker-loader.h"
39 #include "hw/acpi/aml-build.h"
40 #include "hw/acpi/utils.h"
41 #include "hw/acpi/pci.h"
42 #include "hw/acpi/memory_hotplug.h"
43 #include "hw/acpi/generic_event_device.h"
44 #include "hw/acpi/tpm.h"
45 #include "hw/pci/pcie_host.h"
46 #include "hw/pci/pci.h"
47 #include "hw/pci-host/gpex.h"
48 #include "hw/arm/virt.h"
49 #include "hw/mem/nvdimm.h"
50 #include "hw/platform-bus.h"
51 #include "sysemu/numa.h"
52 #include "sysemu/reset.h"
53 #include "sysemu/tpm.h"
54 #include "kvm_arm.h"
55 #include "migration/vmstate.h"
56 #include "hw/acpi/ghes.h"
57 
58 #define ARM_SPI_BASE 32
59 
60 #define ACPI_BUILD_TABLE_SIZE             0x20000
61 
62 static void acpi_dsdt_add_cpus(Aml *scope, VirtMachineState *vms)
63 {
64     MachineState *ms = MACHINE(vms);
65     uint16_t i;
66 
67     for (i = 0; i < ms->smp.cpus; i++) {
68         Aml *dev = aml_device("C%.03X", i);
69         aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007")));
70         aml_append(dev, aml_name_decl("_UID", aml_int(i)));
71         aml_append(scope, dev);
72     }
73 }
74 
75 static void acpi_dsdt_add_uart(Aml *scope, const MemMapEntry *uart_memmap,
76                                            uint32_t uart_irq)
77 {
78     Aml *dev = aml_device("COM0");
79     aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0011")));
80     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
81 
82     Aml *crs = aml_resource_template();
83     aml_append(crs, aml_memory32_fixed(uart_memmap->base,
84                                        uart_memmap->size, AML_READ_WRITE));
85     aml_append(crs,
86                aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
87                              AML_EXCLUSIVE, &uart_irq, 1));
88     aml_append(dev, aml_name_decl("_CRS", crs));
89 
90     aml_append(scope, dev);
91 }
92 
93 static void acpi_dsdt_add_fw_cfg(Aml *scope, const MemMapEntry *fw_cfg_memmap)
94 {
95     Aml *dev = aml_device("FWCF");
96     aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002")));
97     /* device present, functioning, decoding, not shown in UI */
98     aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
99     aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
100 
101     Aml *crs = aml_resource_template();
102     aml_append(crs, aml_memory32_fixed(fw_cfg_memmap->base,
103                                        fw_cfg_memmap->size, AML_READ_WRITE));
104     aml_append(dev, aml_name_decl("_CRS", crs));
105     aml_append(scope, dev);
106 }
107 
108 static void acpi_dsdt_add_flash(Aml *scope, const MemMapEntry *flash_memmap)
109 {
110     Aml *dev, *crs;
111     hwaddr base = flash_memmap->base;
112     hwaddr size = flash_memmap->size / 2;
113 
114     dev = aml_device("FLS0");
115     aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
116     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
117 
118     crs = aml_resource_template();
119     aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
120     aml_append(dev, aml_name_decl("_CRS", crs));
121     aml_append(scope, dev);
122 
123     dev = aml_device("FLS1");
124     aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
125     aml_append(dev, aml_name_decl("_UID", aml_int(1)));
126     crs = aml_resource_template();
127     aml_append(crs, aml_memory32_fixed(base + size, size, AML_READ_WRITE));
128     aml_append(dev, aml_name_decl("_CRS", crs));
129     aml_append(scope, dev);
130 }
131 
132 static void acpi_dsdt_add_virtio(Aml *scope,
133                                  const MemMapEntry *virtio_mmio_memmap,
134                                  uint32_t mmio_irq, int num)
135 {
136     hwaddr base = virtio_mmio_memmap->base;
137     hwaddr size = virtio_mmio_memmap->size;
138     int i;
139 
140     for (i = 0; i < num; i++) {
141         uint32_t irq = mmio_irq + i;
142         Aml *dev = aml_device("VR%02u", i);
143         aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0005")));
144         aml_append(dev, aml_name_decl("_UID", aml_int(i)));
145         aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
146 
147         Aml *crs = aml_resource_template();
148         aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
149         aml_append(crs,
150                    aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
151                                  AML_EXCLUSIVE, &irq, 1));
152         aml_append(dev, aml_name_decl("_CRS", crs));
153         aml_append(scope, dev);
154         base += size;
155     }
156 }
157 
158 static void acpi_dsdt_add_pci(Aml *scope, const MemMapEntry *memmap,
159                               uint32_t irq, bool use_highmem, bool highmem_ecam,
160                               VirtMachineState *vms)
161 {
162     int ecam_id = VIRT_ECAM_ID(highmem_ecam);
163     struct GPEXConfig cfg = {
164         .mmio32 = memmap[VIRT_PCIE_MMIO],
165         .pio    = memmap[VIRT_PCIE_PIO],
166         .ecam   = memmap[ecam_id],
167         .irq    = irq,
168         .bus    = vms->bus,
169     };
170 
171     if (use_highmem) {
172         cfg.mmio64 = memmap[VIRT_HIGH_PCIE_MMIO];
173     }
174 
175     acpi_dsdt_add_gpex(scope, &cfg);
176 }
177 
178 static void acpi_dsdt_add_gpio(Aml *scope, const MemMapEntry *gpio_memmap,
179                                            uint32_t gpio_irq)
180 {
181     Aml *dev = aml_device("GPO0");
182     aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0061")));
183     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
184 
185     Aml *crs = aml_resource_template();
186     aml_append(crs, aml_memory32_fixed(gpio_memmap->base, gpio_memmap->size,
187                                        AML_READ_WRITE));
188     aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
189                                   AML_EXCLUSIVE, &gpio_irq, 1));
190     aml_append(dev, aml_name_decl("_CRS", crs));
191 
192     Aml *aei = aml_resource_template();
193     /* Pin 3 for power button */
194     const uint32_t pin_list[1] = {3};
195     aml_append(aei, aml_gpio_int(AML_CONSUMER, AML_EDGE, AML_ACTIVE_HIGH,
196                                  AML_EXCLUSIVE, AML_PULL_UP, 0, pin_list, 1,
197                                  "GPO0", NULL, 0));
198     aml_append(dev, aml_name_decl("_AEI", aei));
199 
200     /* _E03 is handle for power button */
201     Aml *method = aml_method("_E03", 0, AML_NOTSERIALIZED);
202     aml_append(method, aml_notify(aml_name(ACPI_POWER_BUTTON_DEVICE),
203                                   aml_int(0x80)));
204     aml_append(dev, method);
205     aml_append(scope, dev);
206 }
207 
208 static void acpi_dsdt_add_tpm(Aml *scope, VirtMachineState *vms)
209 {
210     PlatformBusDevice *pbus = PLATFORM_BUS_DEVICE(vms->platform_bus_dev);
211     hwaddr pbus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
212     SysBusDevice *sbdev = SYS_BUS_DEVICE(tpm_find());
213     MemoryRegion *sbdev_mr;
214     hwaddr tpm_base;
215 
216     if (!sbdev) {
217         return;
218     }
219 
220     tpm_base = platform_bus_get_mmio_addr(pbus, sbdev, 0);
221     assert(tpm_base != -1);
222 
223     tpm_base += pbus_base;
224 
225     sbdev_mr = sysbus_mmio_get_region(sbdev, 0);
226 
227     Aml *dev = aml_device("TPM0");
228     aml_append(dev, aml_name_decl("_HID", aml_string("MSFT0101")));
229     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
230 
231     Aml *crs = aml_resource_template();
232     aml_append(crs,
233                aml_memory32_fixed(tpm_base,
234                                   (uint32_t)memory_region_size(sbdev_mr),
235                                   AML_READ_WRITE));
236     aml_append(dev, aml_name_decl("_CRS", crs));
237     aml_append(scope, dev);
238 }
239 
240 static void
241 build_iort(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
242 {
243     int nb_nodes, iort_start = table_data->len;
244     AcpiIortIdMapping *idmap;
245     AcpiIortItsGroup *its;
246     AcpiIortTable *iort;
247     AcpiIortSmmu3 *smmu;
248     size_t node_size, iort_node_offset, iort_length, smmu_offset = 0;
249     AcpiIortRC *rc;
250 
251     iort = acpi_data_push(table_data, sizeof(*iort));
252 
253     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
254         nb_nodes = 3; /* RC, ITS, SMMUv3 */
255     } else {
256         nb_nodes = 2; /* RC, ITS */
257     }
258 
259     iort_length = sizeof(*iort);
260     iort->node_count = cpu_to_le32(nb_nodes);
261     /*
262      * Use a copy in case table_data->data moves during acpi_data_push
263      * operations.
264      */
265     iort_node_offset = sizeof(*iort);
266     iort->node_offset = cpu_to_le32(iort_node_offset);
267 
268     /* ITS group node */
269     node_size =  sizeof(*its) + sizeof(uint32_t);
270     iort_length += node_size;
271     its = acpi_data_push(table_data, node_size);
272 
273     its->type = ACPI_IORT_NODE_ITS_GROUP;
274     its->length = cpu_to_le16(node_size);
275     its->its_count = cpu_to_le32(1);
276     its->identifiers[0] = 0; /* MADT translation_id */
277 
278     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
279         int irq =  vms->irqmap[VIRT_SMMU] + ARM_SPI_BASE;
280 
281         /* SMMUv3 node */
282         smmu_offset = iort_node_offset + node_size;
283         node_size = sizeof(*smmu) + sizeof(*idmap);
284         iort_length += node_size;
285         smmu = acpi_data_push(table_data, node_size);
286 
287         smmu->type = ACPI_IORT_NODE_SMMU_V3;
288         smmu->length = cpu_to_le16(node_size);
289         smmu->mapping_count = cpu_to_le32(1);
290         smmu->mapping_offset = cpu_to_le32(sizeof(*smmu));
291         smmu->base_address = cpu_to_le64(vms->memmap[VIRT_SMMU].base);
292         smmu->flags = cpu_to_le32(ACPI_IORT_SMMU_V3_COHACC_OVERRIDE);
293         smmu->event_gsiv = cpu_to_le32(irq);
294         smmu->pri_gsiv = cpu_to_le32(irq + 1);
295         smmu->gerr_gsiv = cpu_to_le32(irq + 2);
296         smmu->sync_gsiv = cpu_to_le32(irq + 3);
297 
298         /* Identity RID mapping covering the whole input RID range */
299         idmap = &smmu->id_mapping_array[0];
300         idmap->input_base = 0;
301         idmap->id_count = cpu_to_le32(0xFFFF);
302         idmap->output_base = 0;
303         /* output IORT node is the ITS group node (the first node) */
304         idmap->output_reference = cpu_to_le32(iort_node_offset);
305     }
306 
307     /* Root Complex Node */
308     node_size = sizeof(*rc) + sizeof(*idmap);
309     iort_length += node_size;
310     rc = acpi_data_push(table_data, node_size);
311 
312     rc->type = ACPI_IORT_NODE_PCI_ROOT_COMPLEX;
313     rc->length = cpu_to_le16(node_size);
314     rc->mapping_count = cpu_to_le32(1);
315     rc->mapping_offset = cpu_to_le32(sizeof(*rc));
316 
317     /* fully coherent device */
318     rc->memory_properties.cache_coherency = cpu_to_le32(1);
319     rc->memory_properties.memory_flags = 0x3; /* CCA = CPM = DCAS = 1 */
320     rc->pci_segment_number = 0; /* MCFG pci_segment */
321 
322     /* Identity RID mapping covering the whole input RID range */
323     idmap = &rc->id_mapping_array[0];
324     idmap->input_base = 0;
325     idmap->id_count = cpu_to_le32(0xFFFF);
326     idmap->output_base = 0;
327 
328     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
329         /* output IORT node is the smmuv3 node */
330         idmap->output_reference = cpu_to_le32(smmu_offset);
331     } else {
332         /* output IORT node is the ITS group node (the first node) */
333         idmap->output_reference = cpu_to_le32(iort_node_offset);
334     }
335 
336     /*
337      * Update the pointer address in case table_data->data moves during above
338      * acpi_data_push operations.
339      */
340     iort = (AcpiIortTable *)(table_data->data + iort_start);
341     iort->length = cpu_to_le32(iort_length);
342 
343     build_header(linker, table_data, (void *)(table_data->data + iort_start),
344                  "IORT", table_data->len - iort_start, 0, NULL, NULL);
345 }
346 
347 static void
348 build_spcr(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
349 {
350     AcpiSerialPortConsoleRedirection *spcr;
351     const MemMapEntry *uart_memmap = &vms->memmap[VIRT_UART];
352     int irq = vms->irqmap[VIRT_UART] + ARM_SPI_BASE;
353     int spcr_start = table_data->len;
354 
355     spcr = acpi_data_push(table_data, sizeof(*spcr));
356 
357     spcr->interface_type = 0x3;    /* ARM PL011 UART */
358 
359     spcr->base_address.space_id = AML_SYSTEM_MEMORY;
360     spcr->base_address.bit_width = 8;
361     spcr->base_address.bit_offset = 0;
362     spcr->base_address.access_width = 1;
363     spcr->base_address.address = cpu_to_le64(uart_memmap->base);
364 
365     spcr->interrupt_types = (1 << 3); /* Bit[3] ARMH GIC interrupt */
366     spcr->gsi = cpu_to_le32(irq);  /* Global System Interrupt */
367 
368     spcr->baud = 3;                /* Baud Rate: 3 = 9600 */
369     spcr->parity = 0;              /* No Parity */
370     spcr->stopbits = 1;            /* 1 Stop bit */
371     spcr->flowctrl = (1 << 1);     /* Bit[1] = RTS/CTS hardware flow control */
372     spcr->term_type = 0;           /* Terminal Type: 0 = VT100 */
373 
374     spcr->pci_device_id = 0xffff;  /* PCI Device ID: not a PCI device */
375     spcr->pci_vendor_id = 0xffff;  /* PCI Vendor ID: not a PCI device */
376 
377     build_header(linker, table_data, (void *)(table_data->data + spcr_start),
378                  "SPCR", table_data->len - spcr_start, 2, NULL, NULL);
379 }
380 
381 static void
382 build_srat(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
383 {
384     AcpiSystemResourceAffinityTable *srat;
385     AcpiSratProcessorGiccAffinity *core;
386     AcpiSratMemoryAffinity *numamem;
387     int i, srat_start;
388     uint64_t mem_base;
389     MachineClass *mc = MACHINE_GET_CLASS(vms);
390     MachineState *ms = MACHINE(vms);
391     const CPUArchIdList *cpu_list = mc->possible_cpu_arch_ids(ms);
392 
393     srat_start = table_data->len;
394     srat = acpi_data_push(table_data, sizeof(*srat));
395     srat->reserved1 = cpu_to_le32(1);
396 
397     for (i = 0; i < cpu_list->len; ++i) {
398         core = acpi_data_push(table_data, sizeof(*core));
399         core->type = ACPI_SRAT_PROCESSOR_GICC;
400         core->length = sizeof(*core);
401         core->proximity = cpu_to_le32(cpu_list->cpus[i].props.node_id);
402         core->acpi_processor_uid = cpu_to_le32(i);
403         core->flags = cpu_to_le32(1);
404     }
405 
406     mem_base = vms->memmap[VIRT_MEM].base;
407     for (i = 0; i < ms->numa_state->num_nodes; ++i) {
408         if (ms->numa_state->nodes[i].node_mem > 0) {
409             numamem = acpi_data_push(table_data, sizeof(*numamem));
410             build_srat_memory(numamem, mem_base,
411                               ms->numa_state->nodes[i].node_mem, i,
412                               MEM_AFFINITY_ENABLED);
413             mem_base += ms->numa_state->nodes[i].node_mem;
414         }
415     }
416 
417     if (ms->nvdimms_state->is_enabled) {
418         nvdimm_build_srat(table_data);
419     }
420 
421     if (ms->device_memory) {
422         numamem = acpi_data_push(table_data, sizeof *numamem);
423         build_srat_memory(numamem, ms->device_memory->base,
424                           memory_region_size(&ms->device_memory->mr),
425                           ms->numa_state->num_nodes - 1,
426                           MEM_AFFINITY_HOTPLUGGABLE | MEM_AFFINITY_ENABLED);
427     }
428 
429     build_header(linker, table_data, (void *)(table_data->data + srat_start),
430                  "SRAT", table_data->len - srat_start, 3, NULL, NULL);
431 }
432 
433 /* GTDT */
434 static void
435 build_gtdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
436 {
437     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
438     int gtdt_start = table_data->len;
439     AcpiGenericTimerTable *gtdt;
440     uint32_t irqflags;
441 
442     if (vmc->claim_edge_triggered_timers) {
443         irqflags = ACPI_GTDT_INTERRUPT_MODE_EDGE;
444     } else {
445         irqflags = ACPI_GTDT_INTERRUPT_MODE_LEVEL;
446     }
447 
448     gtdt = acpi_data_push(table_data, sizeof *gtdt);
449     /* The interrupt values are the same with the device tree when adding 16 */
450     gtdt->secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_S_EL1_IRQ + 16);
451     gtdt->secure_el1_flags = cpu_to_le32(irqflags);
452 
453     gtdt->non_secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL1_IRQ + 16);
454     gtdt->non_secure_el1_flags = cpu_to_le32(irqflags |
455                                              ACPI_GTDT_CAP_ALWAYS_ON);
456 
457     gtdt->virtual_timer_interrupt = cpu_to_le32(ARCH_TIMER_VIRT_IRQ + 16);
458     gtdt->virtual_timer_flags = cpu_to_le32(irqflags);
459 
460     gtdt->non_secure_el2_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL2_IRQ + 16);
461     gtdt->non_secure_el2_flags = cpu_to_le32(irqflags);
462 
463     build_header(linker, table_data,
464                  (void *)(table_data->data + gtdt_start), "GTDT",
465                  table_data->len - gtdt_start, 2, NULL, NULL);
466 }
467 
468 /* MADT */
469 static void
470 build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
471 {
472     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
473     int madt_start = table_data->len;
474     const MemMapEntry *memmap = vms->memmap;
475     const int *irqmap = vms->irqmap;
476     AcpiMadtGenericDistributor *gicd;
477     AcpiMadtGenericMsiFrame *gic_msi;
478     int i;
479 
480     acpi_data_push(table_data, sizeof(AcpiMultipleApicTable));
481 
482     gicd = acpi_data_push(table_data, sizeof *gicd);
483     gicd->type = ACPI_APIC_GENERIC_DISTRIBUTOR;
484     gicd->length = sizeof(*gicd);
485     gicd->base_address = cpu_to_le64(memmap[VIRT_GIC_DIST].base);
486     gicd->version = vms->gic_version;
487 
488     for (i = 0; i < MACHINE(vms)->smp.cpus; i++) {
489         AcpiMadtGenericCpuInterface *gicc = acpi_data_push(table_data,
490                                                            sizeof(*gicc));
491         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));
492 
493         gicc->type = ACPI_APIC_GENERIC_CPU_INTERFACE;
494         gicc->length = sizeof(*gicc);
495         if (vms->gic_version == 2) {
496             gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base);
497             gicc->gich_base_address = cpu_to_le64(memmap[VIRT_GIC_HYP].base);
498             gicc->gicv_base_address = cpu_to_le64(memmap[VIRT_GIC_VCPU].base);
499         }
500         gicc->cpu_interface_number = cpu_to_le32(i);
501         gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity);
502         gicc->uid = cpu_to_le32(i);
503         gicc->flags = cpu_to_le32(ACPI_MADT_GICC_ENABLED);
504 
505         if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
506             gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ));
507         }
508         if (vms->virt) {
509             gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GIC_MAINT_IRQ));
510         }
511     }
512 
513     if (vms->gic_version == 3) {
514         AcpiMadtGenericTranslator *gic_its;
515         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
516         AcpiMadtGenericRedistributor *gicr = acpi_data_push(table_data,
517                                                          sizeof *gicr);
518 
519         gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
520         gicr->length = sizeof(*gicr);
521         gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST].base);
522         gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST].size);
523 
524         if (nb_redist_regions == 2) {
525             gicr = acpi_data_push(table_data, sizeof(*gicr));
526             gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
527             gicr->length = sizeof(*gicr);
528             gicr->base_address =
529                 cpu_to_le64(memmap[VIRT_HIGH_GIC_REDIST2].base);
530             gicr->range_length =
531                 cpu_to_le32(memmap[VIRT_HIGH_GIC_REDIST2].size);
532         }
533 
534         if (its_class_name() && !vmc->no_its) {
535             gic_its = acpi_data_push(table_data, sizeof *gic_its);
536             gic_its->type = ACPI_APIC_GENERIC_TRANSLATOR;
537             gic_its->length = sizeof(*gic_its);
538             gic_its->translation_id = 0;
539             gic_its->base_address = cpu_to_le64(memmap[VIRT_GIC_ITS].base);
540         }
541     } else {
542         gic_msi = acpi_data_push(table_data, sizeof *gic_msi);
543         gic_msi->type = ACPI_APIC_GENERIC_MSI_FRAME;
544         gic_msi->length = sizeof(*gic_msi);
545         gic_msi->gic_msi_frame_id = 0;
546         gic_msi->base_address = cpu_to_le64(memmap[VIRT_GIC_V2M].base);
547         gic_msi->flags = cpu_to_le32(1);
548         gic_msi->spi_count = cpu_to_le16(NUM_GICV2M_SPIS);
549         gic_msi->spi_base = cpu_to_le16(irqmap[VIRT_GIC_V2M] + ARM_SPI_BASE);
550     }
551 
552     build_header(linker, table_data,
553                  (void *)(table_data->data + madt_start), "APIC",
554                  table_data->len - madt_start, 3, NULL, NULL);
555 }
556 
557 /* FADT */
558 static void build_fadt_rev5(GArray *table_data, BIOSLinker *linker,
559                             VirtMachineState *vms, unsigned dsdt_tbl_offset)
560 {
561     /* ACPI v5.1 */
562     AcpiFadtData fadt = {
563         .rev = 5,
564         .minor_ver = 1,
565         .flags = 1 << ACPI_FADT_F_HW_REDUCED_ACPI,
566         .xdsdt_tbl_offset = &dsdt_tbl_offset,
567     };
568 
569     switch (vms->psci_conduit) {
570     case QEMU_PSCI_CONDUIT_DISABLED:
571         fadt.arm_boot_arch = 0;
572         break;
573     case QEMU_PSCI_CONDUIT_HVC:
574         fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT |
575                              ACPI_FADT_ARM_PSCI_USE_HVC;
576         break;
577     case QEMU_PSCI_CONDUIT_SMC:
578         fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT;
579         break;
580     default:
581         g_assert_not_reached();
582     }
583 
584     build_fadt(table_data, linker, &fadt, NULL, NULL);
585 }
586 
587 /* DSDT */
588 static void
589 build_dsdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
590 {
591     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
592     Aml *scope, *dsdt;
593     MachineState *ms = MACHINE(vms);
594     const MemMapEntry *memmap = vms->memmap;
595     const int *irqmap = vms->irqmap;
596 
597     dsdt = init_aml_allocator();
598     /* Reserve space for header */
599     acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader));
600 
601     /* When booting the VM with UEFI, UEFI takes ownership of the RTC hardware.
602      * While UEFI can use libfdt to disable the RTC device node in the DTB that
603      * it passes to the OS, it cannot modify AML. Therefore, we won't generate
604      * the RTC ACPI device at all when using UEFI.
605      */
606     scope = aml_scope("\\_SB");
607     acpi_dsdt_add_cpus(scope, vms);
608     acpi_dsdt_add_uart(scope, &memmap[VIRT_UART],
609                        (irqmap[VIRT_UART] + ARM_SPI_BASE));
610     if (vmc->acpi_expose_flash) {
611         acpi_dsdt_add_flash(scope, &memmap[VIRT_FLASH]);
612     }
613     acpi_dsdt_add_fw_cfg(scope, &memmap[VIRT_FW_CFG]);
614     acpi_dsdt_add_virtio(scope, &memmap[VIRT_MMIO],
615                     (irqmap[VIRT_MMIO] + ARM_SPI_BASE), NUM_VIRTIO_TRANSPORTS);
616     acpi_dsdt_add_pci(scope, memmap, (irqmap[VIRT_PCIE] + ARM_SPI_BASE),
617                       vms->highmem, vms->highmem_ecam, vms);
618     if (vms->acpi_dev) {
619         build_ged_aml(scope, "\\_SB."GED_DEVICE,
620                       HOTPLUG_HANDLER(vms->acpi_dev),
621                       irqmap[VIRT_ACPI_GED] + ARM_SPI_BASE, AML_SYSTEM_MEMORY,
622                       memmap[VIRT_ACPI_GED].base);
623     } else {
624         acpi_dsdt_add_gpio(scope, &memmap[VIRT_GPIO],
625                            (irqmap[VIRT_GPIO] + ARM_SPI_BASE));
626     }
627 
628     if (vms->acpi_dev) {
629         uint32_t event = object_property_get_uint(OBJECT(vms->acpi_dev),
630                                                   "ged-event", &error_abort);
631 
632         if (event & ACPI_GED_MEM_HOTPLUG_EVT) {
633             build_memory_hotplug_aml(scope, ms->ram_slots, "\\_SB", NULL,
634                                      AML_SYSTEM_MEMORY,
635                                      memmap[VIRT_PCDIMM_ACPI].base);
636         }
637     }
638 
639     acpi_dsdt_add_power_button(scope);
640     acpi_dsdt_add_tpm(scope, vms);
641 
642     aml_append(dsdt, scope);
643 
644     /* copy AML table into ACPI tables blob and patch header there */
645     g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len);
646     build_header(linker, table_data,
647         (void *)(table_data->data + table_data->len - dsdt->buf->len),
648         "DSDT", dsdt->buf->len, 2, NULL, NULL);
649     free_aml_allocator();
650 }
651 
652 typedef
653 struct AcpiBuildState {
654     /* Copy of table in RAM (for patching). */
655     MemoryRegion *table_mr;
656     MemoryRegion *rsdp_mr;
657     MemoryRegion *linker_mr;
658     /* Is table patched? */
659     bool patched;
660 } AcpiBuildState;
661 
662 static void acpi_align_size(GArray *blob, unsigned align)
663 {
664     /*
665      * Align size to multiple of given size. This reduces the chance
666      * we need to change size in the future (breaking cross version migration).
667      */
668     g_array_set_size(blob, ROUND_UP(acpi_data_len(blob), align));
669 }
670 
671 static
672 void virt_acpi_build(VirtMachineState *vms, AcpiBuildTables *tables)
673 {
674     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
675     GArray *table_offsets;
676     unsigned dsdt, xsdt;
677     GArray *tables_blob = tables->table_data;
678     MachineState *ms = MACHINE(vms);
679 
680     table_offsets = g_array_new(false, true /* clear */,
681                                         sizeof(uint32_t));
682 
683     bios_linker_loader_alloc(tables->linker,
684                              ACPI_BUILD_TABLE_FILE, tables_blob,
685                              64, false /* high memory */);
686 
687     /* DSDT is pointed to by FADT */
688     dsdt = tables_blob->len;
689     build_dsdt(tables_blob, tables->linker, vms);
690 
691     /* FADT MADT GTDT MCFG SPCR pointed to by RSDT */
692     acpi_add_table(table_offsets, tables_blob);
693     build_fadt_rev5(tables_blob, tables->linker, vms, dsdt);
694 
695     acpi_add_table(table_offsets, tables_blob);
696     build_madt(tables_blob, tables->linker, vms);
697 
698     acpi_add_table(table_offsets, tables_blob);
699     build_gtdt(tables_blob, tables->linker, vms);
700 
701     acpi_add_table(table_offsets, tables_blob);
702     {
703         AcpiMcfgInfo mcfg = {
704            .base = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].base,
705            .size = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].size,
706         };
707         build_mcfg(tables_blob, tables->linker, &mcfg);
708     }
709 
710     acpi_add_table(table_offsets, tables_blob);
711     build_spcr(tables_blob, tables->linker, vms);
712 
713     if (vms->ras) {
714         build_ghes_error_table(tables->hardware_errors, tables->linker);
715         acpi_add_table(table_offsets, tables_blob);
716         acpi_build_hest(tables_blob, tables->linker);
717     }
718 
719     if (ms->numa_state->num_nodes > 0) {
720         acpi_add_table(table_offsets, tables_blob);
721         build_srat(tables_blob, tables->linker, vms);
722         if (ms->numa_state->have_numa_distance) {
723             acpi_add_table(table_offsets, tables_blob);
724             build_slit(tables_blob, tables->linker, ms);
725         }
726     }
727 
728     if (ms->nvdimms_state->is_enabled) {
729         nvdimm_build_acpi(table_offsets, tables_blob, tables->linker,
730                           ms->nvdimms_state, ms->ram_slots);
731     }
732 
733     if (its_class_name() && !vmc->no_its) {
734         acpi_add_table(table_offsets, tables_blob);
735         build_iort(tables_blob, tables->linker, vms);
736     }
737 
738     if (tpm_get_version(tpm_find()) == TPM_VERSION_2_0) {
739         acpi_add_table(table_offsets, tables_blob);
740         build_tpm2(tables_blob, tables->linker, tables->tcpalog);
741     }
742 
743     /* XSDT is pointed to by RSDP */
744     xsdt = tables_blob->len;
745     build_xsdt(tables_blob, tables->linker, table_offsets, NULL, NULL);
746 
747     /* RSDP is in FSEG memory, so allocate it separately */
748     {
749         AcpiRsdpData rsdp_data = {
750             .revision = 2,
751             .oem_id = ACPI_BUILD_APPNAME6,
752             .xsdt_tbl_offset = &xsdt,
753             .rsdt_tbl_offset = NULL,
754         };
755         build_rsdp(tables->rsdp, tables->linker, &rsdp_data);
756     }
757 
758     /*
759      * The align size is 128, warn if 64k is not enough therefore
760      * the align size could be resized.
761      */
762     if (tables_blob->len > ACPI_BUILD_TABLE_SIZE / 2) {
763         warn_report("ACPI table size %u exceeds %d bytes,"
764                     " migration may not work",
765                     tables_blob->len, ACPI_BUILD_TABLE_SIZE / 2);
766         error_printf("Try removing CPUs, NUMA nodes, memory slots"
767                      " or PCI bridges.");
768     }
769     acpi_align_size(tables_blob, ACPI_BUILD_TABLE_SIZE);
770 
771 
772     /* Cleanup memory that's no longer used. */
773     g_array_free(table_offsets, true);
774 }
775 
776 static void acpi_ram_update(MemoryRegion *mr, GArray *data)
777 {
778     uint32_t size = acpi_data_len(data);
779 
780     /* Make sure RAM size is correct - in case it got changed
781      * e.g. by migration */
782     memory_region_ram_resize(mr, size, &error_abort);
783 
784     memcpy(memory_region_get_ram_ptr(mr), data->data, size);
785     memory_region_set_dirty(mr, 0, size);
786 }
787 
788 static void virt_acpi_build_update(void *build_opaque)
789 {
790     AcpiBuildState *build_state = build_opaque;
791     AcpiBuildTables tables;
792 
793     /* No state to update or already patched? Nothing to do. */
794     if (!build_state || build_state->patched) {
795         return;
796     }
797     build_state->patched = true;
798 
799     acpi_build_tables_init(&tables);
800 
801     virt_acpi_build(VIRT_MACHINE(qdev_get_machine()), &tables);
802 
803     acpi_ram_update(build_state->table_mr, tables.table_data);
804     acpi_ram_update(build_state->rsdp_mr, tables.rsdp);
805     acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob);
806 
807     acpi_build_tables_cleanup(&tables, true);
808 }
809 
810 static void virt_acpi_build_reset(void *build_opaque)
811 {
812     AcpiBuildState *build_state = build_opaque;
813     build_state->patched = false;
814 }
815 
816 static const VMStateDescription vmstate_virt_acpi_build = {
817     .name = "virt_acpi_build",
818     .version_id = 1,
819     .minimum_version_id = 1,
820     .fields = (VMStateField[]) {
821         VMSTATE_BOOL(patched, AcpiBuildState),
822         VMSTATE_END_OF_LIST()
823     },
824 };
825 
826 void virt_acpi_setup(VirtMachineState *vms)
827 {
828     AcpiBuildTables tables;
829     AcpiBuildState *build_state;
830     AcpiGedState *acpi_ged_state;
831 
832     if (!vms->fw_cfg) {
833         trace_virt_acpi_setup();
834         return;
835     }
836 
837     if (!virt_is_acpi_enabled(vms)) {
838         trace_virt_acpi_setup();
839         return;
840     }
841 
842     build_state = g_malloc0(sizeof *build_state);
843 
844     acpi_build_tables_init(&tables);
845     virt_acpi_build(vms, &tables);
846 
847     /* Now expose it all to Guest */
848     build_state->table_mr = acpi_add_rom_blob(virt_acpi_build_update,
849                                               build_state, tables.table_data,
850                                               ACPI_BUILD_TABLE_FILE,
851                                               ACPI_BUILD_TABLE_MAX_SIZE);
852     assert(build_state->table_mr != NULL);
853 
854     build_state->linker_mr =
855         acpi_add_rom_blob(virt_acpi_build_update, build_state,
856                           tables.linker->cmd_blob, ACPI_BUILD_LOADER_FILE, 0);
857 
858     fw_cfg_add_file(vms->fw_cfg, ACPI_BUILD_TPMLOG_FILE, tables.tcpalog->data,
859                     acpi_data_len(tables.tcpalog));
860 
861     if (vms->ras) {
862         assert(vms->acpi_dev);
863         acpi_ged_state = ACPI_GED(vms->acpi_dev);
864         acpi_ghes_add_fw_cfg(&acpi_ged_state->ghes_state,
865                              vms->fw_cfg, tables.hardware_errors);
866     }
867 
868     build_state->rsdp_mr = acpi_add_rom_blob(virt_acpi_build_update,
869                                              build_state, tables.rsdp,
870                                              ACPI_BUILD_RSDP_FILE, 0);
871 
872     qemu_register_reset(virt_acpi_build_reset, build_state);
873     virt_acpi_build_reset(build_state);
874     vmstate_register(NULL, 0, &vmstate_virt_acpi_build, build_state);
875 
876     /* Cleanup tables but don't free the memory: we track it
877      * in build_state.
878      */
879     acpi_build_tables_cleanup(&tables, false);
880 }
881