1 /* Support for generating ACPI tables and passing them to Guests 2 * 3 * ARM virt ACPI generation 4 * 5 * Copyright (C) 2008-2010 Kevin O'Connor <kevin@koconnor.net> 6 * Copyright (C) 2006 Fabrice Bellard 7 * Copyright (C) 2013 Red Hat Inc 8 * 9 * Author: Michael S. Tsirkin <mst@redhat.com> 10 * 11 * Copyright (c) 2015 HUAWEI TECHNOLOGIES CO.,LTD. 12 * 13 * Author: Shannon Zhao <zhaoshenglong@huawei.com> 14 * 15 * This program is free software; you can redistribute it and/or modify 16 * it under the terms of the GNU General Public License as published by 17 * the Free Software Foundation; either version 2 of the License, or 18 * (at your option) any later version. 19 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 23 * GNU General Public License for more details. 24 25 * You should have received a copy of the GNU General Public License along 26 * with this program; if not, see <http://www.gnu.org/licenses/>. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qapi/error.h" 31 #include "qemu/bitmap.h" 32 #include "trace.h" 33 #include "qom/cpu.h" 34 #include "target/arm/cpu.h" 35 #include "hw/acpi/acpi-defs.h" 36 #include "hw/acpi/acpi.h" 37 #include "hw/nvram/fw_cfg.h" 38 #include "hw/acpi/bios-linker-loader.h" 39 #include "hw/hw.h" 40 #include "hw/acpi/aml-build.h" 41 #include "hw/acpi/utils.h" 42 #include "hw/acpi/pci.h" 43 #include "hw/pci/pcie_host.h" 44 #include "hw/pci/pci.h" 45 #include "hw/arm/virt.h" 46 #include "sysemu/numa.h" 47 #include "sysemu/reset.h" 48 #include "kvm_arm.h" 49 #include "migration/vmstate.h" 50 51 #define ARM_SPI_BASE 32 52 #define ACPI_POWER_BUTTON_DEVICE "PWRB" 53 54 static void acpi_dsdt_add_cpus(Aml *scope, int smp_cpus) 55 { 56 uint16_t i; 57 58 for (i = 0; i < smp_cpus; i++) { 59 Aml *dev = aml_device("C%.03X", i); 60 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007"))); 61 aml_append(dev, aml_name_decl("_UID", aml_int(i))); 62 aml_append(scope, dev); 63 } 64 } 65 66 static void acpi_dsdt_add_uart(Aml *scope, const MemMapEntry *uart_memmap, 67 uint32_t uart_irq) 68 { 69 Aml *dev = aml_device("COM0"); 70 aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0011"))); 71 aml_append(dev, aml_name_decl("_UID", aml_int(0))); 72 73 Aml *crs = aml_resource_template(); 74 aml_append(crs, aml_memory32_fixed(uart_memmap->base, 75 uart_memmap->size, AML_READ_WRITE)); 76 aml_append(crs, 77 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 78 AML_EXCLUSIVE, &uart_irq, 1)); 79 aml_append(dev, aml_name_decl("_CRS", crs)); 80 81 /* The _ADR entry is used to link this device to the UART described 82 * in the SPCR table, i.e. SPCR.base_address.address == _ADR. 83 */ 84 aml_append(dev, aml_name_decl("_ADR", aml_int(uart_memmap->base))); 85 86 aml_append(scope, dev); 87 } 88 89 static void acpi_dsdt_add_fw_cfg(Aml *scope, const MemMapEntry *fw_cfg_memmap) 90 { 91 Aml *dev = aml_device("FWCF"); 92 aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002"))); 93 /* device present, functioning, decoding, not shown in UI */ 94 aml_append(dev, aml_name_decl("_STA", aml_int(0xB))); 95 aml_append(dev, aml_name_decl("_CCA", aml_int(1))); 96 97 Aml *crs = aml_resource_template(); 98 aml_append(crs, aml_memory32_fixed(fw_cfg_memmap->base, 99 fw_cfg_memmap->size, AML_READ_WRITE)); 100 aml_append(dev, aml_name_decl("_CRS", crs)); 101 aml_append(scope, dev); 102 } 103 104 static void acpi_dsdt_add_flash(Aml *scope, const MemMapEntry *flash_memmap) 105 { 106 Aml *dev, *crs; 107 hwaddr base = flash_memmap->base; 108 hwaddr size = flash_memmap->size / 2; 109 110 dev = aml_device("FLS0"); 111 aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015"))); 112 aml_append(dev, aml_name_decl("_UID", aml_int(0))); 113 114 crs = aml_resource_template(); 115 aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE)); 116 aml_append(dev, aml_name_decl("_CRS", crs)); 117 aml_append(scope, dev); 118 119 dev = aml_device("FLS1"); 120 aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015"))); 121 aml_append(dev, aml_name_decl("_UID", aml_int(1))); 122 crs = aml_resource_template(); 123 aml_append(crs, aml_memory32_fixed(base + size, size, AML_READ_WRITE)); 124 aml_append(dev, aml_name_decl("_CRS", crs)); 125 aml_append(scope, dev); 126 } 127 128 static void acpi_dsdt_add_virtio(Aml *scope, 129 const MemMapEntry *virtio_mmio_memmap, 130 uint32_t mmio_irq, int num) 131 { 132 hwaddr base = virtio_mmio_memmap->base; 133 hwaddr size = virtio_mmio_memmap->size; 134 int i; 135 136 for (i = 0; i < num; i++) { 137 uint32_t irq = mmio_irq + i; 138 Aml *dev = aml_device("VR%02u", i); 139 aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0005"))); 140 aml_append(dev, aml_name_decl("_UID", aml_int(i))); 141 aml_append(dev, aml_name_decl("_CCA", aml_int(1))); 142 143 Aml *crs = aml_resource_template(); 144 aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE)); 145 aml_append(crs, 146 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 147 AML_EXCLUSIVE, &irq, 1)); 148 aml_append(dev, aml_name_decl("_CRS", crs)); 149 aml_append(scope, dev); 150 base += size; 151 } 152 } 153 154 static void acpi_dsdt_add_pci(Aml *scope, const MemMapEntry *memmap, 155 uint32_t irq, bool use_highmem, bool highmem_ecam) 156 { 157 int ecam_id = VIRT_ECAM_ID(highmem_ecam); 158 Aml *method, *crs, *ifctx, *UUID, *ifctx1, *elsectx, *buf; 159 int i, bus_no; 160 hwaddr base_mmio = memmap[VIRT_PCIE_MMIO].base; 161 hwaddr size_mmio = memmap[VIRT_PCIE_MMIO].size; 162 hwaddr base_pio = memmap[VIRT_PCIE_PIO].base; 163 hwaddr size_pio = memmap[VIRT_PCIE_PIO].size; 164 hwaddr base_ecam = memmap[ecam_id].base; 165 hwaddr size_ecam = memmap[ecam_id].size; 166 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 167 168 Aml *dev = aml_device("%s", "PCI0"); 169 aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A08"))); 170 aml_append(dev, aml_name_decl("_CID", aml_string("PNP0A03"))); 171 aml_append(dev, aml_name_decl("_SEG", aml_int(0))); 172 aml_append(dev, aml_name_decl("_BBN", aml_int(0))); 173 aml_append(dev, aml_name_decl("_ADR", aml_int(0))); 174 aml_append(dev, aml_name_decl("_UID", aml_string("PCI0"))); 175 aml_append(dev, aml_name_decl("_STR", aml_unicode("PCIe 0 Device"))); 176 aml_append(dev, aml_name_decl("_CCA", aml_int(1))); 177 178 /* Declare the PCI Routing Table. */ 179 Aml *rt_pkg = aml_varpackage(nr_pcie_buses * PCI_NUM_PINS); 180 for (bus_no = 0; bus_no < nr_pcie_buses; bus_no++) { 181 for (i = 0; i < PCI_NUM_PINS; i++) { 182 int gsi = (i + bus_no) % PCI_NUM_PINS; 183 Aml *pkg = aml_package(4); 184 aml_append(pkg, aml_int((bus_no << 16) | 0xFFFF)); 185 aml_append(pkg, aml_int(i)); 186 aml_append(pkg, aml_name("GSI%d", gsi)); 187 aml_append(pkg, aml_int(0)); 188 aml_append(rt_pkg, pkg); 189 } 190 } 191 aml_append(dev, aml_name_decl("_PRT", rt_pkg)); 192 193 /* Create GSI link device */ 194 for (i = 0; i < PCI_NUM_PINS; i++) { 195 uint32_t irqs = irq + i; 196 Aml *dev_gsi = aml_device("GSI%d", i); 197 aml_append(dev_gsi, aml_name_decl("_HID", aml_string("PNP0C0F"))); 198 aml_append(dev_gsi, aml_name_decl("_UID", aml_int(0))); 199 crs = aml_resource_template(); 200 aml_append(crs, 201 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 202 AML_EXCLUSIVE, &irqs, 1)); 203 aml_append(dev_gsi, aml_name_decl("_PRS", crs)); 204 crs = aml_resource_template(); 205 aml_append(crs, 206 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 207 AML_EXCLUSIVE, &irqs, 1)); 208 aml_append(dev_gsi, aml_name_decl("_CRS", crs)); 209 method = aml_method("_SRS", 1, AML_NOTSERIALIZED); 210 aml_append(dev_gsi, method); 211 aml_append(dev, dev_gsi); 212 } 213 214 method = aml_method("_CBA", 0, AML_NOTSERIALIZED); 215 aml_append(method, aml_return(aml_int(base_ecam))); 216 aml_append(dev, method); 217 218 method = aml_method("_CRS", 0, AML_NOTSERIALIZED); 219 Aml *rbuf = aml_resource_template(); 220 aml_append(rbuf, 221 aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE, 222 0x0000, 0x0000, nr_pcie_buses - 1, 0x0000, 223 nr_pcie_buses)); 224 aml_append(rbuf, 225 aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED, 226 AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_mmio, 227 base_mmio + size_mmio - 1, 0x0000, size_mmio)); 228 aml_append(rbuf, 229 aml_dword_io(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE, 230 AML_ENTIRE_RANGE, 0x0000, 0x0000, size_pio - 1, base_pio, 231 size_pio)); 232 233 if (use_highmem) { 234 hwaddr base_mmio_high = memmap[VIRT_HIGH_PCIE_MMIO].base; 235 hwaddr size_mmio_high = memmap[VIRT_HIGH_PCIE_MMIO].size; 236 237 aml_append(rbuf, 238 aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED, 239 AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, 240 base_mmio_high, 241 base_mmio_high + size_mmio_high - 1, 0x0000, 242 size_mmio_high)); 243 } 244 245 aml_append(method, aml_name_decl("RBUF", rbuf)); 246 aml_append(method, aml_return(rbuf)); 247 aml_append(dev, method); 248 249 /* Declare an _OSC (OS Control Handoff) method */ 250 aml_append(dev, aml_name_decl("SUPP", aml_int(0))); 251 aml_append(dev, aml_name_decl("CTRL", aml_int(0))); 252 method = aml_method("_OSC", 4, AML_NOTSERIALIZED); 253 aml_append(method, 254 aml_create_dword_field(aml_arg(3), aml_int(0), "CDW1")); 255 256 /* PCI Firmware Specification 3.0 257 * 4.5.1. _OSC Interface for PCI Host Bridge Devices 258 * The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is 259 * identified by the Universal Unique IDentifier (UUID) 260 * 33DB4D5B-1FF7-401C-9657-7441C03DD766 261 */ 262 UUID = aml_touuid("33DB4D5B-1FF7-401C-9657-7441C03DD766"); 263 ifctx = aml_if(aml_equal(aml_arg(0), UUID)); 264 aml_append(ifctx, 265 aml_create_dword_field(aml_arg(3), aml_int(4), "CDW2")); 266 aml_append(ifctx, 267 aml_create_dword_field(aml_arg(3), aml_int(8), "CDW3")); 268 aml_append(ifctx, aml_store(aml_name("CDW2"), aml_name("SUPP"))); 269 aml_append(ifctx, aml_store(aml_name("CDW3"), aml_name("CTRL"))); 270 aml_append(ifctx, aml_store(aml_and(aml_name("CTRL"), aml_int(0x1D), NULL), 271 aml_name("CTRL"))); 272 273 ifctx1 = aml_if(aml_lnot(aml_equal(aml_arg(1), aml_int(0x1)))); 274 aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x08), NULL), 275 aml_name("CDW1"))); 276 aml_append(ifctx, ifctx1); 277 278 ifctx1 = aml_if(aml_lnot(aml_equal(aml_name("CDW3"), aml_name("CTRL")))); 279 aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x10), NULL), 280 aml_name("CDW1"))); 281 aml_append(ifctx, ifctx1); 282 283 aml_append(ifctx, aml_store(aml_name("CTRL"), aml_name("CDW3"))); 284 aml_append(ifctx, aml_return(aml_arg(3))); 285 aml_append(method, ifctx); 286 287 elsectx = aml_else(); 288 aml_append(elsectx, aml_store(aml_or(aml_name("CDW1"), aml_int(4), NULL), 289 aml_name("CDW1"))); 290 aml_append(elsectx, aml_return(aml_arg(3))); 291 aml_append(method, elsectx); 292 aml_append(dev, method); 293 294 method = aml_method("_DSM", 4, AML_NOTSERIALIZED); 295 296 /* PCI Firmware Specification 3.0 297 * 4.6.1. _DSM for PCI Express Slot Information 298 * The UUID in _DSM in this context is 299 * {E5C937D0-3553-4D7A-9117-EA4D19C3434D} 300 */ 301 UUID = aml_touuid("E5C937D0-3553-4D7A-9117-EA4D19C3434D"); 302 ifctx = aml_if(aml_equal(aml_arg(0), UUID)); 303 ifctx1 = aml_if(aml_equal(aml_arg(2), aml_int(0))); 304 uint8_t byte_list[1] = {1}; 305 buf = aml_buffer(1, byte_list); 306 aml_append(ifctx1, aml_return(buf)); 307 aml_append(ifctx, ifctx1); 308 aml_append(method, ifctx); 309 310 byte_list[0] = 0; 311 buf = aml_buffer(1, byte_list); 312 aml_append(method, aml_return(buf)); 313 aml_append(dev, method); 314 315 Aml *dev_rp0 = aml_device("%s", "RP0"); 316 aml_append(dev_rp0, aml_name_decl("_ADR", aml_int(0))); 317 aml_append(dev, dev_rp0); 318 319 Aml *dev_res0 = aml_device("%s", "RES0"); 320 aml_append(dev_res0, aml_name_decl("_HID", aml_string("PNP0C02"))); 321 crs = aml_resource_template(); 322 aml_append(crs, 323 aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED, 324 AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_ecam, 325 base_ecam + size_ecam - 1, 0x0000, size_ecam)); 326 aml_append(dev_res0, aml_name_decl("_CRS", crs)); 327 aml_append(dev, dev_res0); 328 aml_append(scope, dev); 329 } 330 331 static void acpi_dsdt_add_gpio(Aml *scope, const MemMapEntry *gpio_memmap, 332 uint32_t gpio_irq) 333 { 334 Aml *dev = aml_device("GPO0"); 335 aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0061"))); 336 aml_append(dev, aml_name_decl("_ADR", aml_int(0))); 337 aml_append(dev, aml_name_decl("_UID", aml_int(0))); 338 339 Aml *crs = aml_resource_template(); 340 aml_append(crs, aml_memory32_fixed(gpio_memmap->base, gpio_memmap->size, 341 AML_READ_WRITE)); 342 aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 343 AML_EXCLUSIVE, &gpio_irq, 1)); 344 aml_append(dev, aml_name_decl("_CRS", crs)); 345 346 Aml *aei = aml_resource_template(); 347 /* Pin 3 for power button */ 348 const uint32_t pin_list[1] = {3}; 349 aml_append(aei, aml_gpio_int(AML_CONSUMER, AML_EDGE, AML_ACTIVE_HIGH, 350 AML_EXCLUSIVE, AML_PULL_UP, 0, pin_list, 1, 351 "GPO0", NULL, 0)); 352 aml_append(dev, aml_name_decl("_AEI", aei)); 353 354 /* _E03 is handle for power button */ 355 Aml *method = aml_method("_E03", 0, AML_NOTSERIALIZED); 356 aml_append(method, aml_notify(aml_name(ACPI_POWER_BUTTON_DEVICE), 357 aml_int(0x80))); 358 aml_append(dev, method); 359 aml_append(scope, dev); 360 } 361 362 static void acpi_dsdt_add_power_button(Aml *scope) 363 { 364 Aml *dev = aml_device(ACPI_POWER_BUTTON_DEVICE); 365 aml_append(dev, aml_name_decl("_HID", aml_string("PNP0C0C"))); 366 aml_append(dev, aml_name_decl("_ADR", aml_int(0))); 367 aml_append(dev, aml_name_decl("_UID", aml_int(0))); 368 aml_append(scope, dev); 369 } 370 371 static void 372 build_iort(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 373 { 374 int nb_nodes, iort_start = table_data->len; 375 AcpiIortIdMapping *idmap; 376 AcpiIortItsGroup *its; 377 AcpiIortTable *iort; 378 AcpiIortSmmu3 *smmu; 379 size_t node_size, iort_node_offset, iort_length, smmu_offset = 0; 380 AcpiIortRC *rc; 381 382 iort = acpi_data_push(table_data, sizeof(*iort)); 383 384 if (vms->iommu == VIRT_IOMMU_SMMUV3) { 385 nb_nodes = 3; /* RC, ITS, SMMUv3 */ 386 } else { 387 nb_nodes = 2; /* RC, ITS */ 388 } 389 390 iort_length = sizeof(*iort); 391 iort->node_count = cpu_to_le32(nb_nodes); 392 /* 393 * Use a copy in case table_data->data moves during acpi_data_push 394 * operations. 395 */ 396 iort_node_offset = sizeof(*iort); 397 iort->node_offset = cpu_to_le32(iort_node_offset); 398 399 /* ITS group node */ 400 node_size = sizeof(*its) + sizeof(uint32_t); 401 iort_length += node_size; 402 its = acpi_data_push(table_data, node_size); 403 404 its->type = ACPI_IORT_NODE_ITS_GROUP; 405 its->length = cpu_to_le16(node_size); 406 its->its_count = cpu_to_le32(1); 407 its->identifiers[0] = 0; /* MADT translation_id */ 408 409 if (vms->iommu == VIRT_IOMMU_SMMUV3) { 410 int irq = vms->irqmap[VIRT_SMMU] + ARM_SPI_BASE; 411 412 /* SMMUv3 node */ 413 smmu_offset = iort_node_offset + node_size; 414 node_size = sizeof(*smmu) + sizeof(*idmap); 415 iort_length += node_size; 416 smmu = acpi_data_push(table_data, node_size); 417 418 smmu->type = ACPI_IORT_NODE_SMMU_V3; 419 smmu->length = cpu_to_le16(node_size); 420 smmu->mapping_count = cpu_to_le32(1); 421 smmu->mapping_offset = cpu_to_le32(sizeof(*smmu)); 422 smmu->base_address = cpu_to_le64(vms->memmap[VIRT_SMMU].base); 423 smmu->flags = cpu_to_le32(ACPI_IORT_SMMU_V3_COHACC_OVERRIDE); 424 smmu->event_gsiv = cpu_to_le32(irq); 425 smmu->pri_gsiv = cpu_to_le32(irq + 1); 426 smmu->gerr_gsiv = cpu_to_le32(irq + 2); 427 smmu->sync_gsiv = cpu_to_le32(irq + 3); 428 429 /* Identity RID mapping covering the whole input RID range */ 430 idmap = &smmu->id_mapping_array[0]; 431 idmap->input_base = 0; 432 idmap->id_count = cpu_to_le32(0xFFFF); 433 idmap->output_base = 0; 434 /* output IORT node is the ITS group node (the first node) */ 435 idmap->output_reference = cpu_to_le32(iort_node_offset); 436 } 437 438 /* Root Complex Node */ 439 node_size = sizeof(*rc) + sizeof(*idmap); 440 iort_length += node_size; 441 rc = acpi_data_push(table_data, node_size); 442 443 rc->type = ACPI_IORT_NODE_PCI_ROOT_COMPLEX; 444 rc->length = cpu_to_le16(node_size); 445 rc->mapping_count = cpu_to_le32(1); 446 rc->mapping_offset = cpu_to_le32(sizeof(*rc)); 447 448 /* fully coherent device */ 449 rc->memory_properties.cache_coherency = cpu_to_le32(1); 450 rc->memory_properties.memory_flags = 0x3; /* CCA = CPM = DCAS = 1 */ 451 rc->pci_segment_number = 0; /* MCFG pci_segment */ 452 453 /* Identity RID mapping covering the whole input RID range */ 454 idmap = &rc->id_mapping_array[0]; 455 idmap->input_base = 0; 456 idmap->id_count = cpu_to_le32(0xFFFF); 457 idmap->output_base = 0; 458 459 if (vms->iommu == VIRT_IOMMU_SMMUV3) { 460 /* output IORT node is the smmuv3 node */ 461 idmap->output_reference = cpu_to_le32(smmu_offset); 462 } else { 463 /* output IORT node is the ITS group node (the first node) */ 464 idmap->output_reference = cpu_to_le32(iort_node_offset); 465 } 466 467 /* 468 * Update the pointer address in case table_data->data moves during above 469 * acpi_data_push operations. 470 */ 471 iort = (AcpiIortTable *)(table_data->data + iort_start); 472 iort->length = cpu_to_le32(iort_length); 473 474 build_header(linker, table_data, (void *)(table_data->data + iort_start), 475 "IORT", table_data->len - iort_start, 0, NULL, NULL); 476 } 477 478 static void 479 build_spcr(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 480 { 481 AcpiSerialPortConsoleRedirection *spcr; 482 const MemMapEntry *uart_memmap = &vms->memmap[VIRT_UART]; 483 int irq = vms->irqmap[VIRT_UART] + ARM_SPI_BASE; 484 int spcr_start = table_data->len; 485 486 spcr = acpi_data_push(table_data, sizeof(*spcr)); 487 488 spcr->interface_type = 0x3; /* ARM PL011 UART */ 489 490 spcr->base_address.space_id = AML_SYSTEM_MEMORY; 491 spcr->base_address.bit_width = 8; 492 spcr->base_address.bit_offset = 0; 493 spcr->base_address.access_width = 1; 494 spcr->base_address.address = cpu_to_le64(uart_memmap->base); 495 496 spcr->interrupt_types = (1 << 3); /* Bit[3] ARMH GIC interrupt */ 497 spcr->gsi = cpu_to_le32(irq); /* Global System Interrupt */ 498 499 spcr->baud = 3; /* Baud Rate: 3 = 9600 */ 500 spcr->parity = 0; /* No Parity */ 501 spcr->stopbits = 1; /* 1 Stop bit */ 502 spcr->flowctrl = (1 << 1); /* Bit[1] = RTS/CTS hardware flow control */ 503 spcr->term_type = 0; /* Terminal Type: 0 = VT100 */ 504 505 spcr->pci_device_id = 0xffff; /* PCI Device ID: not a PCI device */ 506 spcr->pci_vendor_id = 0xffff; /* PCI Vendor ID: not a PCI device */ 507 508 build_header(linker, table_data, (void *)(table_data->data + spcr_start), 509 "SPCR", table_data->len - spcr_start, 2, NULL, NULL); 510 } 511 512 static void 513 build_srat(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 514 { 515 AcpiSystemResourceAffinityTable *srat; 516 AcpiSratProcessorGiccAffinity *core; 517 AcpiSratMemoryAffinity *numamem; 518 int i, srat_start; 519 uint64_t mem_base; 520 MachineClass *mc = MACHINE_GET_CLASS(vms); 521 const CPUArchIdList *cpu_list = mc->possible_cpu_arch_ids(MACHINE(vms)); 522 523 srat_start = table_data->len; 524 srat = acpi_data_push(table_data, sizeof(*srat)); 525 srat->reserved1 = cpu_to_le32(1); 526 527 for (i = 0; i < cpu_list->len; ++i) { 528 core = acpi_data_push(table_data, sizeof(*core)); 529 core->type = ACPI_SRAT_PROCESSOR_GICC; 530 core->length = sizeof(*core); 531 core->proximity = cpu_to_le32(cpu_list->cpus[i].props.node_id); 532 core->acpi_processor_uid = cpu_to_le32(i); 533 core->flags = cpu_to_le32(1); 534 } 535 536 mem_base = vms->memmap[VIRT_MEM].base; 537 for (i = 0; i < nb_numa_nodes; ++i) { 538 if (numa_info[i].node_mem > 0) { 539 numamem = acpi_data_push(table_data, sizeof(*numamem)); 540 build_srat_memory(numamem, mem_base, numa_info[i].node_mem, i, 541 MEM_AFFINITY_ENABLED); 542 mem_base += numa_info[i].node_mem; 543 } 544 } 545 546 build_header(linker, table_data, (void *)(table_data->data + srat_start), 547 "SRAT", table_data->len - srat_start, 3, NULL, NULL); 548 } 549 550 /* GTDT */ 551 static void 552 build_gtdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 553 { 554 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 555 int gtdt_start = table_data->len; 556 AcpiGenericTimerTable *gtdt; 557 uint32_t irqflags; 558 559 if (vmc->claim_edge_triggered_timers) { 560 irqflags = ACPI_GTDT_INTERRUPT_MODE_EDGE; 561 } else { 562 irqflags = ACPI_GTDT_INTERRUPT_MODE_LEVEL; 563 } 564 565 gtdt = acpi_data_push(table_data, sizeof *gtdt); 566 /* The interrupt values are the same with the device tree when adding 16 */ 567 gtdt->secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_S_EL1_IRQ + 16); 568 gtdt->secure_el1_flags = cpu_to_le32(irqflags); 569 570 gtdt->non_secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL1_IRQ + 16); 571 gtdt->non_secure_el1_flags = cpu_to_le32(irqflags | 572 ACPI_GTDT_CAP_ALWAYS_ON); 573 574 gtdt->virtual_timer_interrupt = cpu_to_le32(ARCH_TIMER_VIRT_IRQ + 16); 575 gtdt->virtual_timer_flags = cpu_to_le32(irqflags); 576 577 gtdt->non_secure_el2_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL2_IRQ + 16); 578 gtdt->non_secure_el2_flags = cpu_to_le32(irqflags); 579 580 build_header(linker, table_data, 581 (void *)(table_data->data + gtdt_start), "GTDT", 582 table_data->len - gtdt_start, 2, NULL, NULL); 583 } 584 585 /* MADT */ 586 static void 587 build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 588 { 589 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 590 int madt_start = table_data->len; 591 const MemMapEntry *memmap = vms->memmap; 592 const int *irqmap = vms->irqmap; 593 AcpiMultipleApicTable *madt; 594 AcpiMadtGenericDistributor *gicd; 595 AcpiMadtGenericMsiFrame *gic_msi; 596 int i; 597 598 madt = acpi_data_push(table_data, sizeof *madt); 599 600 gicd = acpi_data_push(table_data, sizeof *gicd); 601 gicd->type = ACPI_APIC_GENERIC_DISTRIBUTOR; 602 gicd->length = sizeof(*gicd); 603 gicd->base_address = cpu_to_le64(memmap[VIRT_GIC_DIST].base); 604 gicd->version = vms->gic_version; 605 606 for (i = 0; i < vms->smp_cpus; i++) { 607 AcpiMadtGenericCpuInterface *gicc = acpi_data_push(table_data, 608 sizeof(*gicc)); 609 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i)); 610 611 gicc->type = ACPI_APIC_GENERIC_CPU_INTERFACE; 612 gicc->length = sizeof(*gicc); 613 if (vms->gic_version == 2) { 614 gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base); 615 gicc->gich_base_address = cpu_to_le64(memmap[VIRT_GIC_HYP].base); 616 gicc->gicv_base_address = cpu_to_le64(memmap[VIRT_GIC_VCPU].base); 617 } 618 gicc->cpu_interface_number = cpu_to_le32(i); 619 gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity); 620 gicc->uid = cpu_to_le32(i); 621 gicc->flags = cpu_to_le32(ACPI_MADT_GICC_ENABLED); 622 623 if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 624 gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ)); 625 } 626 if (vms->virt) { 627 gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GIC_MAINT_IRQ)); 628 } 629 } 630 631 if (vms->gic_version == 3) { 632 AcpiMadtGenericTranslator *gic_its; 633 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 634 AcpiMadtGenericRedistributor *gicr = acpi_data_push(table_data, 635 sizeof *gicr); 636 637 gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR; 638 gicr->length = sizeof(*gicr); 639 gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST].base); 640 gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST].size); 641 642 if (nb_redist_regions == 2) { 643 gicr = acpi_data_push(table_data, sizeof(*gicr)); 644 gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR; 645 gicr->length = sizeof(*gicr); 646 gicr->base_address = 647 cpu_to_le64(memmap[VIRT_HIGH_GIC_REDIST2].base); 648 gicr->range_length = 649 cpu_to_le32(memmap[VIRT_HIGH_GIC_REDIST2].size); 650 } 651 652 if (its_class_name() && !vmc->no_its) { 653 gic_its = acpi_data_push(table_data, sizeof *gic_its); 654 gic_its->type = ACPI_APIC_GENERIC_TRANSLATOR; 655 gic_its->length = sizeof(*gic_its); 656 gic_its->translation_id = 0; 657 gic_its->base_address = cpu_to_le64(memmap[VIRT_GIC_ITS].base); 658 } 659 } else { 660 gic_msi = acpi_data_push(table_data, sizeof *gic_msi); 661 gic_msi->type = ACPI_APIC_GENERIC_MSI_FRAME; 662 gic_msi->length = sizeof(*gic_msi); 663 gic_msi->gic_msi_frame_id = 0; 664 gic_msi->base_address = cpu_to_le64(memmap[VIRT_GIC_V2M].base); 665 gic_msi->flags = cpu_to_le32(1); 666 gic_msi->spi_count = cpu_to_le16(NUM_GICV2M_SPIS); 667 gic_msi->spi_base = cpu_to_le16(irqmap[VIRT_GIC_V2M] + ARM_SPI_BASE); 668 } 669 670 build_header(linker, table_data, 671 (void *)(table_data->data + madt_start), "APIC", 672 table_data->len - madt_start, 3, NULL, NULL); 673 } 674 675 /* FADT */ 676 static void build_fadt_rev5(GArray *table_data, BIOSLinker *linker, 677 VirtMachineState *vms, unsigned dsdt_tbl_offset) 678 { 679 /* ACPI v5.1 */ 680 AcpiFadtData fadt = { 681 .rev = 5, 682 .minor_ver = 1, 683 .flags = 1 << ACPI_FADT_F_HW_REDUCED_ACPI, 684 .xdsdt_tbl_offset = &dsdt_tbl_offset, 685 }; 686 687 switch (vms->psci_conduit) { 688 case QEMU_PSCI_CONDUIT_DISABLED: 689 fadt.arm_boot_arch = 0; 690 break; 691 case QEMU_PSCI_CONDUIT_HVC: 692 fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT | 693 ACPI_FADT_ARM_PSCI_USE_HVC; 694 break; 695 case QEMU_PSCI_CONDUIT_SMC: 696 fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT; 697 break; 698 default: 699 g_assert_not_reached(); 700 } 701 702 build_fadt(table_data, linker, &fadt, NULL, NULL); 703 } 704 705 /* DSDT */ 706 static void 707 build_dsdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 708 { 709 Aml *scope, *dsdt; 710 const MemMapEntry *memmap = vms->memmap; 711 const int *irqmap = vms->irqmap; 712 713 dsdt = init_aml_allocator(); 714 /* Reserve space for header */ 715 acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader)); 716 717 /* When booting the VM with UEFI, UEFI takes ownership of the RTC hardware. 718 * While UEFI can use libfdt to disable the RTC device node in the DTB that 719 * it passes to the OS, it cannot modify AML. Therefore, we won't generate 720 * the RTC ACPI device at all when using UEFI. 721 */ 722 scope = aml_scope("\\_SB"); 723 acpi_dsdt_add_cpus(scope, vms->smp_cpus); 724 acpi_dsdt_add_uart(scope, &memmap[VIRT_UART], 725 (irqmap[VIRT_UART] + ARM_SPI_BASE)); 726 acpi_dsdt_add_flash(scope, &memmap[VIRT_FLASH]); 727 acpi_dsdt_add_fw_cfg(scope, &memmap[VIRT_FW_CFG]); 728 acpi_dsdt_add_virtio(scope, &memmap[VIRT_MMIO], 729 (irqmap[VIRT_MMIO] + ARM_SPI_BASE), NUM_VIRTIO_TRANSPORTS); 730 acpi_dsdt_add_pci(scope, memmap, (irqmap[VIRT_PCIE] + ARM_SPI_BASE), 731 vms->highmem, vms->highmem_ecam); 732 acpi_dsdt_add_gpio(scope, &memmap[VIRT_GPIO], 733 (irqmap[VIRT_GPIO] + ARM_SPI_BASE)); 734 acpi_dsdt_add_power_button(scope); 735 736 aml_append(dsdt, scope); 737 738 /* copy AML table into ACPI tables blob and patch header there */ 739 g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len); 740 build_header(linker, table_data, 741 (void *)(table_data->data + table_data->len - dsdt->buf->len), 742 "DSDT", dsdt->buf->len, 2, NULL, NULL); 743 free_aml_allocator(); 744 } 745 746 typedef 747 struct AcpiBuildState { 748 /* Copy of table in RAM (for patching). */ 749 MemoryRegion *table_mr; 750 MemoryRegion *rsdp_mr; 751 MemoryRegion *linker_mr; 752 /* Is table patched? */ 753 bool patched; 754 } AcpiBuildState; 755 756 static 757 void virt_acpi_build(VirtMachineState *vms, AcpiBuildTables *tables) 758 { 759 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 760 GArray *table_offsets; 761 unsigned dsdt, xsdt; 762 GArray *tables_blob = tables->table_data; 763 764 table_offsets = g_array_new(false, true /* clear */, 765 sizeof(uint32_t)); 766 767 bios_linker_loader_alloc(tables->linker, 768 ACPI_BUILD_TABLE_FILE, tables_blob, 769 64, false /* high memory */); 770 771 /* DSDT is pointed to by FADT */ 772 dsdt = tables_blob->len; 773 build_dsdt(tables_blob, tables->linker, vms); 774 775 /* FADT MADT GTDT MCFG SPCR pointed to by RSDT */ 776 acpi_add_table(table_offsets, tables_blob); 777 build_fadt_rev5(tables_blob, tables->linker, vms, dsdt); 778 779 acpi_add_table(table_offsets, tables_blob); 780 build_madt(tables_blob, tables->linker, vms); 781 782 acpi_add_table(table_offsets, tables_blob); 783 build_gtdt(tables_blob, tables->linker, vms); 784 785 acpi_add_table(table_offsets, tables_blob); 786 { 787 AcpiMcfgInfo mcfg = { 788 .base = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].base, 789 .size = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].size, 790 }; 791 build_mcfg(tables_blob, tables->linker, &mcfg); 792 } 793 794 acpi_add_table(table_offsets, tables_blob); 795 build_spcr(tables_blob, tables->linker, vms); 796 797 if (nb_numa_nodes > 0) { 798 acpi_add_table(table_offsets, tables_blob); 799 build_srat(tables_blob, tables->linker, vms); 800 if (have_numa_distance) { 801 acpi_add_table(table_offsets, tables_blob); 802 build_slit(tables_blob, tables->linker); 803 } 804 } 805 806 if (its_class_name() && !vmc->no_its) { 807 acpi_add_table(table_offsets, tables_blob); 808 build_iort(tables_blob, tables->linker, vms); 809 } 810 811 /* XSDT is pointed to by RSDP */ 812 xsdt = tables_blob->len; 813 build_xsdt(tables_blob, tables->linker, table_offsets, NULL, NULL); 814 815 /* RSDP is in FSEG memory, so allocate it separately */ 816 { 817 AcpiRsdpData rsdp_data = { 818 .revision = 2, 819 .oem_id = ACPI_BUILD_APPNAME6, 820 .xsdt_tbl_offset = &xsdt, 821 .rsdt_tbl_offset = NULL, 822 }; 823 build_rsdp(tables->rsdp, tables->linker, &rsdp_data); 824 } 825 826 /* Cleanup memory that's no longer used. */ 827 g_array_free(table_offsets, true); 828 } 829 830 static void acpi_ram_update(MemoryRegion *mr, GArray *data) 831 { 832 uint32_t size = acpi_data_len(data); 833 834 /* Make sure RAM size is correct - in case it got changed 835 * e.g. by migration */ 836 memory_region_ram_resize(mr, size, &error_abort); 837 838 memcpy(memory_region_get_ram_ptr(mr), data->data, size); 839 memory_region_set_dirty(mr, 0, size); 840 } 841 842 static void virt_acpi_build_update(void *build_opaque) 843 { 844 AcpiBuildState *build_state = build_opaque; 845 AcpiBuildTables tables; 846 847 /* No state to update or already patched? Nothing to do. */ 848 if (!build_state || build_state->patched) { 849 return; 850 } 851 build_state->patched = true; 852 853 acpi_build_tables_init(&tables); 854 855 virt_acpi_build(VIRT_MACHINE(qdev_get_machine()), &tables); 856 857 acpi_ram_update(build_state->table_mr, tables.table_data); 858 acpi_ram_update(build_state->rsdp_mr, tables.rsdp); 859 acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob); 860 861 acpi_build_tables_cleanup(&tables, true); 862 } 863 864 static void virt_acpi_build_reset(void *build_opaque) 865 { 866 AcpiBuildState *build_state = build_opaque; 867 build_state->patched = false; 868 } 869 870 static const VMStateDescription vmstate_virt_acpi_build = { 871 .name = "virt_acpi_build", 872 .version_id = 1, 873 .minimum_version_id = 1, 874 .fields = (VMStateField[]) { 875 VMSTATE_BOOL(patched, AcpiBuildState), 876 VMSTATE_END_OF_LIST() 877 }, 878 }; 879 880 void virt_acpi_setup(VirtMachineState *vms) 881 { 882 AcpiBuildTables tables; 883 AcpiBuildState *build_state; 884 885 if (!vms->fw_cfg) { 886 trace_virt_acpi_setup(); 887 return; 888 } 889 890 if (!acpi_enabled) { 891 trace_virt_acpi_setup(); 892 return; 893 } 894 895 build_state = g_malloc0(sizeof *build_state); 896 897 acpi_build_tables_init(&tables); 898 virt_acpi_build(vms, &tables); 899 900 /* Now expose it all to Guest */ 901 build_state->table_mr = acpi_add_rom_blob(virt_acpi_build_update, 902 build_state, tables.table_data, 903 ACPI_BUILD_TABLE_FILE, 904 ACPI_BUILD_TABLE_MAX_SIZE); 905 assert(build_state->table_mr != NULL); 906 907 build_state->linker_mr = 908 acpi_add_rom_blob(virt_acpi_build_update, build_state, 909 tables.linker->cmd_blob, "etc/table-loader", 0); 910 911 fw_cfg_add_file(vms->fw_cfg, ACPI_BUILD_TPMLOG_FILE, tables.tcpalog->data, 912 acpi_data_len(tables.tcpalog)); 913 914 build_state->rsdp_mr = acpi_add_rom_blob(virt_acpi_build_update, 915 build_state, tables.rsdp, 916 ACPI_BUILD_RSDP_FILE, 0); 917 918 qemu_register_reset(virt_acpi_build_reset, build_state); 919 virt_acpi_build_reset(build_state); 920 vmstate_register(NULL, 0, &vmstate_virt_acpi_build, build_state); 921 922 /* Cleanup tables but don't free the memory: we track it 923 * in build_state. 924 */ 925 acpi_build_tables_cleanup(&tables, false); 926 } 927