xref: /openbmc/qemu/hw/arm/virt-acpi-build.c (revision c63ca4ff)
1 /* Support for generating ACPI tables and passing them to Guests
2  *
3  * ARM virt ACPI generation
4  *
5  * Copyright (C) 2008-2010  Kevin O'Connor <kevin@koconnor.net>
6  * Copyright (C) 2006 Fabrice Bellard
7  * Copyright (C) 2013 Red Hat Inc
8  *
9  * Author: Michael S. Tsirkin <mst@redhat.com>
10  *
11  * Copyright (c) 2015 HUAWEI TECHNOLOGIES CO.,LTD.
12  *
13  * Author: Shannon Zhao <zhaoshenglong@huawei.com>
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19 
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24 
25  * You should have received a copy of the GNU General Public License along
26  * with this program; if not, see <http://www.gnu.org/licenses/>.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qapi/error.h"
31 #include "qemu/bitmap.h"
32 #include "trace.h"
33 #include "hw/core/cpu.h"
34 #include "target/arm/cpu.h"
35 #include "hw/acpi/acpi-defs.h"
36 #include "hw/acpi/acpi.h"
37 #include "hw/nvram/fw_cfg.h"
38 #include "hw/acpi/bios-linker-loader.h"
39 #include "hw/acpi/aml-build.h"
40 #include "hw/acpi/utils.h"
41 #include "hw/acpi/pci.h"
42 #include "hw/acpi/memory_hotplug.h"
43 #include "hw/acpi/generic_event_device.h"
44 #include "hw/acpi/tpm.h"
45 #include "hw/pci/pcie_host.h"
46 #include "hw/pci/pci.h"
47 #include "hw/pci-host/gpex.h"
48 #include "hw/arm/virt.h"
49 #include "hw/mem/nvdimm.h"
50 #include "hw/platform-bus.h"
51 #include "sysemu/numa.h"
52 #include "sysemu/reset.h"
53 #include "sysemu/tpm.h"
54 #include "kvm_arm.h"
55 #include "migration/vmstate.h"
56 #include "hw/acpi/ghes.h"
57 
58 #define ARM_SPI_BASE 32
59 
60 #define ACPI_BUILD_TABLE_SIZE             0x20000
61 
62 static void acpi_dsdt_add_cpus(Aml *scope, int smp_cpus)
63 {
64     uint16_t i;
65 
66     for (i = 0; i < smp_cpus; i++) {
67         Aml *dev = aml_device("C%.03X", i);
68         aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007")));
69         aml_append(dev, aml_name_decl("_UID", aml_int(i)));
70         aml_append(scope, dev);
71     }
72 }
73 
74 static void acpi_dsdt_add_uart(Aml *scope, const MemMapEntry *uart_memmap,
75                                            uint32_t uart_irq)
76 {
77     Aml *dev = aml_device("COM0");
78     aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0011")));
79     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
80 
81     Aml *crs = aml_resource_template();
82     aml_append(crs, aml_memory32_fixed(uart_memmap->base,
83                                        uart_memmap->size, AML_READ_WRITE));
84     aml_append(crs,
85                aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
86                              AML_EXCLUSIVE, &uart_irq, 1));
87     aml_append(dev, aml_name_decl("_CRS", crs));
88 
89     aml_append(scope, dev);
90 }
91 
92 static void acpi_dsdt_add_fw_cfg(Aml *scope, const MemMapEntry *fw_cfg_memmap)
93 {
94     Aml *dev = aml_device("FWCF");
95     aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002")));
96     /* device present, functioning, decoding, not shown in UI */
97     aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
98     aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
99 
100     Aml *crs = aml_resource_template();
101     aml_append(crs, aml_memory32_fixed(fw_cfg_memmap->base,
102                                        fw_cfg_memmap->size, AML_READ_WRITE));
103     aml_append(dev, aml_name_decl("_CRS", crs));
104     aml_append(scope, dev);
105 }
106 
107 static void acpi_dsdt_add_flash(Aml *scope, const MemMapEntry *flash_memmap)
108 {
109     Aml *dev, *crs;
110     hwaddr base = flash_memmap->base;
111     hwaddr size = flash_memmap->size / 2;
112 
113     dev = aml_device("FLS0");
114     aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
115     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
116 
117     crs = aml_resource_template();
118     aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
119     aml_append(dev, aml_name_decl("_CRS", crs));
120     aml_append(scope, dev);
121 
122     dev = aml_device("FLS1");
123     aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
124     aml_append(dev, aml_name_decl("_UID", aml_int(1)));
125     crs = aml_resource_template();
126     aml_append(crs, aml_memory32_fixed(base + size, size, AML_READ_WRITE));
127     aml_append(dev, aml_name_decl("_CRS", crs));
128     aml_append(scope, dev);
129 }
130 
131 static void acpi_dsdt_add_virtio(Aml *scope,
132                                  const MemMapEntry *virtio_mmio_memmap,
133                                  uint32_t mmio_irq, int num)
134 {
135     hwaddr base = virtio_mmio_memmap->base;
136     hwaddr size = virtio_mmio_memmap->size;
137     int i;
138 
139     for (i = 0; i < num; i++) {
140         uint32_t irq = mmio_irq + i;
141         Aml *dev = aml_device("VR%02u", i);
142         aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0005")));
143         aml_append(dev, aml_name_decl("_UID", aml_int(i)));
144         aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
145 
146         Aml *crs = aml_resource_template();
147         aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
148         aml_append(crs,
149                    aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
150                                  AML_EXCLUSIVE, &irq, 1));
151         aml_append(dev, aml_name_decl("_CRS", crs));
152         aml_append(scope, dev);
153         base += size;
154     }
155 }
156 
157 static void acpi_dsdt_add_pci(Aml *scope, const MemMapEntry *memmap,
158                               uint32_t irq, bool use_highmem, bool highmem_ecam,
159                               VirtMachineState *vms)
160 {
161     int ecam_id = VIRT_ECAM_ID(highmem_ecam);
162     struct GPEXConfig cfg = {
163         .mmio32 = memmap[VIRT_PCIE_MMIO],
164         .pio    = memmap[VIRT_PCIE_PIO],
165         .ecam   = memmap[ecam_id],
166         .irq    = irq,
167         .bus    = vms->bus,
168     };
169 
170     if (use_highmem) {
171         cfg.mmio64 = memmap[VIRT_HIGH_PCIE_MMIO];
172     }
173 
174     acpi_dsdt_add_gpex(scope, &cfg);
175 }
176 
177 static void acpi_dsdt_add_gpio(Aml *scope, const MemMapEntry *gpio_memmap,
178                                            uint32_t gpio_irq)
179 {
180     Aml *dev = aml_device("GPO0");
181     aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0061")));
182     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
183 
184     Aml *crs = aml_resource_template();
185     aml_append(crs, aml_memory32_fixed(gpio_memmap->base, gpio_memmap->size,
186                                        AML_READ_WRITE));
187     aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
188                                   AML_EXCLUSIVE, &gpio_irq, 1));
189     aml_append(dev, aml_name_decl("_CRS", crs));
190 
191     Aml *aei = aml_resource_template();
192     /* Pin 3 for power button */
193     const uint32_t pin_list[1] = {3};
194     aml_append(aei, aml_gpio_int(AML_CONSUMER, AML_EDGE, AML_ACTIVE_HIGH,
195                                  AML_EXCLUSIVE, AML_PULL_UP, 0, pin_list, 1,
196                                  "GPO0", NULL, 0));
197     aml_append(dev, aml_name_decl("_AEI", aei));
198 
199     /* _E03 is handle for power button */
200     Aml *method = aml_method("_E03", 0, AML_NOTSERIALIZED);
201     aml_append(method, aml_notify(aml_name(ACPI_POWER_BUTTON_DEVICE),
202                                   aml_int(0x80)));
203     aml_append(dev, method);
204     aml_append(scope, dev);
205 }
206 
207 static void acpi_dsdt_add_tpm(Aml *scope, VirtMachineState *vms)
208 {
209     PlatformBusDevice *pbus = PLATFORM_BUS_DEVICE(vms->platform_bus_dev);
210     hwaddr pbus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
211     SysBusDevice *sbdev = SYS_BUS_DEVICE(tpm_find());
212     MemoryRegion *sbdev_mr;
213     hwaddr tpm_base;
214 
215     if (!sbdev) {
216         return;
217     }
218 
219     tpm_base = platform_bus_get_mmio_addr(pbus, sbdev, 0);
220     assert(tpm_base != -1);
221 
222     tpm_base += pbus_base;
223 
224     sbdev_mr = sysbus_mmio_get_region(sbdev, 0);
225 
226     Aml *dev = aml_device("TPM0");
227     aml_append(dev, aml_name_decl("_HID", aml_string("MSFT0101")));
228     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
229 
230     Aml *crs = aml_resource_template();
231     aml_append(crs,
232                aml_memory32_fixed(tpm_base,
233                                   (uint32_t)memory_region_size(sbdev_mr),
234                                   AML_READ_WRITE));
235     aml_append(dev, aml_name_decl("_CRS", crs));
236     aml_append(scope, dev);
237 }
238 
239 static void
240 build_iort(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
241 {
242     int nb_nodes, iort_start = table_data->len;
243     AcpiIortIdMapping *idmap;
244     AcpiIortItsGroup *its;
245     AcpiIortTable *iort;
246     AcpiIortSmmu3 *smmu;
247     size_t node_size, iort_node_offset, iort_length, smmu_offset = 0;
248     AcpiIortRC *rc;
249 
250     iort = acpi_data_push(table_data, sizeof(*iort));
251 
252     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
253         nb_nodes = 3; /* RC, ITS, SMMUv3 */
254     } else {
255         nb_nodes = 2; /* RC, ITS */
256     }
257 
258     iort_length = sizeof(*iort);
259     iort->node_count = cpu_to_le32(nb_nodes);
260     /*
261      * Use a copy in case table_data->data moves during acpi_data_push
262      * operations.
263      */
264     iort_node_offset = sizeof(*iort);
265     iort->node_offset = cpu_to_le32(iort_node_offset);
266 
267     /* ITS group node */
268     node_size =  sizeof(*its) + sizeof(uint32_t);
269     iort_length += node_size;
270     its = acpi_data_push(table_data, node_size);
271 
272     its->type = ACPI_IORT_NODE_ITS_GROUP;
273     its->length = cpu_to_le16(node_size);
274     its->its_count = cpu_to_le32(1);
275     its->identifiers[0] = 0; /* MADT translation_id */
276 
277     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
278         int irq =  vms->irqmap[VIRT_SMMU] + ARM_SPI_BASE;
279 
280         /* SMMUv3 node */
281         smmu_offset = iort_node_offset + node_size;
282         node_size = sizeof(*smmu) + sizeof(*idmap);
283         iort_length += node_size;
284         smmu = acpi_data_push(table_data, node_size);
285 
286         smmu->type = ACPI_IORT_NODE_SMMU_V3;
287         smmu->length = cpu_to_le16(node_size);
288         smmu->mapping_count = cpu_to_le32(1);
289         smmu->mapping_offset = cpu_to_le32(sizeof(*smmu));
290         smmu->base_address = cpu_to_le64(vms->memmap[VIRT_SMMU].base);
291         smmu->flags = cpu_to_le32(ACPI_IORT_SMMU_V3_COHACC_OVERRIDE);
292         smmu->event_gsiv = cpu_to_le32(irq);
293         smmu->pri_gsiv = cpu_to_le32(irq + 1);
294         smmu->gerr_gsiv = cpu_to_le32(irq + 2);
295         smmu->sync_gsiv = cpu_to_le32(irq + 3);
296 
297         /* Identity RID mapping covering the whole input RID range */
298         idmap = &smmu->id_mapping_array[0];
299         idmap->input_base = 0;
300         idmap->id_count = cpu_to_le32(0xFFFF);
301         idmap->output_base = 0;
302         /* output IORT node is the ITS group node (the first node) */
303         idmap->output_reference = cpu_to_le32(iort_node_offset);
304     }
305 
306     /* Root Complex Node */
307     node_size = sizeof(*rc) + sizeof(*idmap);
308     iort_length += node_size;
309     rc = acpi_data_push(table_data, node_size);
310 
311     rc->type = ACPI_IORT_NODE_PCI_ROOT_COMPLEX;
312     rc->length = cpu_to_le16(node_size);
313     rc->mapping_count = cpu_to_le32(1);
314     rc->mapping_offset = cpu_to_le32(sizeof(*rc));
315 
316     /* fully coherent device */
317     rc->memory_properties.cache_coherency = cpu_to_le32(1);
318     rc->memory_properties.memory_flags = 0x3; /* CCA = CPM = DCAS = 1 */
319     rc->pci_segment_number = 0; /* MCFG pci_segment */
320 
321     /* Identity RID mapping covering the whole input RID range */
322     idmap = &rc->id_mapping_array[0];
323     idmap->input_base = 0;
324     idmap->id_count = cpu_to_le32(0xFFFF);
325     idmap->output_base = 0;
326 
327     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
328         /* output IORT node is the smmuv3 node */
329         idmap->output_reference = cpu_to_le32(smmu_offset);
330     } else {
331         /* output IORT node is the ITS group node (the first node) */
332         idmap->output_reference = cpu_to_le32(iort_node_offset);
333     }
334 
335     /*
336      * Update the pointer address in case table_data->data moves during above
337      * acpi_data_push operations.
338      */
339     iort = (AcpiIortTable *)(table_data->data + iort_start);
340     iort->length = cpu_to_le32(iort_length);
341 
342     build_header(linker, table_data, (void *)(table_data->data + iort_start),
343                  "IORT", table_data->len - iort_start, 0, NULL, NULL);
344 }
345 
346 static void
347 build_spcr(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
348 {
349     AcpiSerialPortConsoleRedirection *spcr;
350     const MemMapEntry *uart_memmap = &vms->memmap[VIRT_UART];
351     int irq = vms->irqmap[VIRT_UART] + ARM_SPI_BASE;
352     int spcr_start = table_data->len;
353 
354     spcr = acpi_data_push(table_data, sizeof(*spcr));
355 
356     spcr->interface_type = 0x3;    /* ARM PL011 UART */
357 
358     spcr->base_address.space_id = AML_SYSTEM_MEMORY;
359     spcr->base_address.bit_width = 8;
360     spcr->base_address.bit_offset = 0;
361     spcr->base_address.access_width = 1;
362     spcr->base_address.address = cpu_to_le64(uart_memmap->base);
363 
364     spcr->interrupt_types = (1 << 3); /* Bit[3] ARMH GIC interrupt */
365     spcr->gsi = cpu_to_le32(irq);  /* Global System Interrupt */
366 
367     spcr->baud = 3;                /* Baud Rate: 3 = 9600 */
368     spcr->parity = 0;              /* No Parity */
369     spcr->stopbits = 1;            /* 1 Stop bit */
370     spcr->flowctrl = (1 << 1);     /* Bit[1] = RTS/CTS hardware flow control */
371     spcr->term_type = 0;           /* Terminal Type: 0 = VT100 */
372 
373     spcr->pci_device_id = 0xffff;  /* PCI Device ID: not a PCI device */
374     spcr->pci_vendor_id = 0xffff;  /* PCI Vendor ID: not a PCI device */
375 
376     build_header(linker, table_data, (void *)(table_data->data + spcr_start),
377                  "SPCR", table_data->len - spcr_start, 2, NULL, NULL);
378 }
379 
380 static void
381 build_srat(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
382 {
383     AcpiSystemResourceAffinityTable *srat;
384     AcpiSratProcessorGiccAffinity *core;
385     AcpiSratMemoryAffinity *numamem;
386     int i, srat_start;
387     uint64_t mem_base;
388     MachineClass *mc = MACHINE_GET_CLASS(vms);
389     MachineState *ms = MACHINE(vms);
390     const CPUArchIdList *cpu_list = mc->possible_cpu_arch_ids(ms);
391 
392     srat_start = table_data->len;
393     srat = acpi_data_push(table_data, sizeof(*srat));
394     srat->reserved1 = cpu_to_le32(1);
395 
396     for (i = 0; i < cpu_list->len; ++i) {
397         core = acpi_data_push(table_data, sizeof(*core));
398         core->type = ACPI_SRAT_PROCESSOR_GICC;
399         core->length = sizeof(*core);
400         core->proximity = cpu_to_le32(cpu_list->cpus[i].props.node_id);
401         core->acpi_processor_uid = cpu_to_le32(i);
402         core->flags = cpu_to_le32(1);
403     }
404 
405     mem_base = vms->memmap[VIRT_MEM].base;
406     for (i = 0; i < ms->numa_state->num_nodes; ++i) {
407         if (ms->numa_state->nodes[i].node_mem > 0) {
408             numamem = acpi_data_push(table_data, sizeof(*numamem));
409             build_srat_memory(numamem, mem_base,
410                               ms->numa_state->nodes[i].node_mem, i,
411                               MEM_AFFINITY_ENABLED);
412             mem_base += ms->numa_state->nodes[i].node_mem;
413         }
414     }
415 
416     if (ms->nvdimms_state->is_enabled) {
417         nvdimm_build_srat(table_data);
418     }
419 
420     if (ms->device_memory) {
421         numamem = acpi_data_push(table_data, sizeof *numamem);
422         build_srat_memory(numamem, ms->device_memory->base,
423                           memory_region_size(&ms->device_memory->mr),
424                           ms->numa_state->num_nodes - 1,
425                           MEM_AFFINITY_HOTPLUGGABLE | MEM_AFFINITY_ENABLED);
426     }
427 
428     build_header(linker, table_data, (void *)(table_data->data + srat_start),
429                  "SRAT", table_data->len - srat_start, 3, NULL, NULL);
430 }
431 
432 /* GTDT */
433 static void
434 build_gtdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
435 {
436     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
437     int gtdt_start = table_data->len;
438     AcpiGenericTimerTable *gtdt;
439     uint32_t irqflags;
440 
441     if (vmc->claim_edge_triggered_timers) {
442         irqflags = ACPI_GTDT_INTERRUPT_MODE_EDGE;
443     } else {
444         irqflags = ACPI_GTDT_INTERRUPT_MODE_LEVEL;
445     }
446 
447     gtdt = acpi_data_push(table_data, sizeof *gtdt);
448     /* The interrupt values are the same with the device tree when adding 16 */
449     gtdt->secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_S_EL1_IRQ + 16);
450     gtdt->secure_el1_flags = cpu_to_le32(irqflags);
451 
452     gtdt->non_secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL1_IRQ + 16);
453     gtdt->non_secure_el1_flags = cpu_to_le32(irqflags |
454                                              ACPI_GTDT_CAP_ALWAYS_ON);
455 
456     gtdt->virtual_timer_interrupt = cpu_to_le32(ARCH_TIMER_VIRT_IRQ + 16);
457     gtdt->virtual_timer_flags = cpu_to_le32(irqflags);
458 
459     gtdt->non_secure_el2_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL2_IRQ + 16);
460     gtdt->non_secure_el2_flags = cpu_to_le32(irqflags);
461 
462     build_header(linker, table_data,
463                  (void *)(table_data->data + gtdt_start), "GTDT",
464                  table_data->len - gtdt_start, 2, NULL, NULL);
465 }
466 
467 /* MADT */
468 static void
469 build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
470 {
471     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
472     int madt_start = table_data->len;
473     const MemMapEntry *memmap = vms->memmap;
474     const int *irqmap = vms->irqmap;
475     AcpiMadtGenericDistributor *gicd;
476     AcpiMadtGenericMsiFrame *gic_msi;
477     int i;
478 
479     acpi_data_push(table_data, sizeof(AcpiMultipleApicTable));
480 
481     gicd = acpi_data_push(table_data, sizeof *gicd);
482     gicd->type = ACPI_APIC_GENERIC_DISTRIBUTOR;
483     gicd->length = sizeof(*gicd);
484     gicd->base_address = cpu_to_le64(memmap[VIRT_GIC_DIST].base);
485     gicd->version = vms->gic_version;
486 
487     for (i = 0; i < vms->smp_cpus; i++) {
488         AcpiMadtGenericCpuInterface *gicc = acpi_data_push(table_data,
489                                                            sizeof(*gicc));
490         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));
491 
492         gicc->type = ACPI_APIC_GENERIC_CPU_INTERFACE;
493         gicc->length = sizeof(*gicc);
494         if (vms->gic_version == 2) {
495             gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base);
496             gicc->gich_base_address = cpu_to_le64(memmap[VIRT_GIC_HYP].base);
497             gicc->gicv_base_address = cpu_to_le64(memmap[VIRT_GIC_VCPU].base);
498         }
499         gicc->cpu_interface_number = cpu_to_le32(i);
500         gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity);
501         gicc->uid = cpu_to_le32(i);
502         gicc->flags = cpu_to_le32(ACPI_MADT_GICC_ENABLED);
503 
504         if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
505             gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ));
506         }
507         if (vms->virt) {
508             gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GIC_MAINT_IRQ));
509         }
510     }
511 
512     if (vms->gic_version == 3) {
513         AcpiMadtGenericTranslator *gic_its;
514         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
515         AcpiMadtGenericRedistributor *gicr = acpi_data_push(table_data,
516                                                          sizeof *gicr);
517 
518         gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
519         gicr->length = sizeof(*gicr);
520         gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST].base);
521         gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST].size);
522 
523         if (nb_redist_regions == 2) {
524             gicr = acpi_data_push(table_data, sizeof(*gicr));
525             gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
526             gicr->length = sizeof(*gicr);
527             gicr->base_address =
528                 cpu_to_le64(memmap[VIRT_HIGH_GIC_REDIST2].base);
529             gicr->range_length =
530                 cpu_to_le32(memmap[VIRT_HIGH_GIC_REDIST2].size);
531         }
532 
533         if (its_class_name() && !vmc->no_its) {
534             gic_its = acpi_data_push(table_data, sizeof *gic_its);
535             gic_its->type = ACPI_APIC_GENERIC_TRANSLATOR;
536             gic_its->length = sizeof(*gic_its);
537             gic_its->translation_id = 0;
538             gic_its->base_address = cpu_to_le64(memmap[VIRT_GIC_ITS].base);
539         }
540     } else {
541         gic_msi = acpi_data_push(table_data, sizeof *gic_msi);
542         gic_msi->type = ACPI_APIC_GENERIC_MSI_FRAME;
543         gic_msi->length = sizeof(*gic_msi);
544         gic_msi->gic_msi_frame_id = 0;
545         gic_msi->base_address = cpu_to_le64(memmap[VIRT_GIC_V2M].base);
546         gic_msi->flags = cpu_to_le32(1);
547         gic_msi->spi_count = cpu_to_le16(NUM_GICV2M_SPIS);
548         gic_msi->spi_base = cpu_to_le16(irqmap[VIRT_GIC_V2M] + ARM_SPI_BASE);
549     }
550 
551     build_header(linker, table_data,
552                  (void *)(table_data->data + madt_start), "APIC",
553                  table_data->len - madt_start, 3, NULL, NULL);
554 }
555 
556 /* FADT */
557 static void build_fadt_rev5(GArray *table_data, BIOSLinker *linker,
558                             VirtMachineState *vms, unsigned dsdt_tbl_offset)
559 {
560     /* ACPI v5.1 */
561     AcpiFadtData fadt = {
562         .rev = 5,
563         .minor_ver = 1,
564         .flags = 1 << ACPI_FADT_F_HW_REDUCED_ACPI,
565         .xdsdt_tbl_offset = &dsdt_tbl_offset,
566     };
567 
568     switch (vms->psci_conduit) {
569     case QEMU_PSCI_CONDUIT_DISABLED:
570         fadt.arm_boot_arch = 0;
571         break;
572     case QEMU_PSCI_CONDUIT_HVC:
573         fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT |
574                              ACPI_FADT_ARM_PSCI_USE_HVC;
575         break;
576     case QEMU_PSCI_CONDUIT_SMC:
577         fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT;
578         break;
579     default:
580         g_assert_not_reached();
581     }
582 
583     build_fadt(table_data, linker, &fadt, NULL, NULL);
584 }
585 
586 /* DSDT */
587 static void
588 build_dsdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
589 {
590     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
591     Aml *scope, *dsdt;
592     MachineState *ms = MACHINE(vms);
593     const MemMapEntry *memmap = vms->memmap;
594     const int *irqmap = vms->irqmap;
595 
596     dsdt = init_aml_allocator();
597     /* Reserve space for header */
598     acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader));
599 
600     /* When booting the VM with UEFI, UEFI takes ownership of the RTC hardware.
601      * While UEFI can use libfdt to disable the RTC device node in the DTB that
602      * it passes to the OS, it cannot modify AML. Therefore, we won't generate
603      * the RTC ACPI device at all when using UEFI.
604      */
605     scope = aml_scope("\\_SB");
606     acpi_dsdt_add_cpus(scope, vms->smp_cpus);
607     acpi_dsdt_add_uart(scope, &memmap[VIRT_UART],
608                        (irqmap[VIRT_UART] + ARM_SPI_BASE));
609     if (vmc->acpi_expose_flash) {
610         acpi_dsdt_add_flash(scope, &memmap[VIRT_FLASH]);
611     }
612     acpi_dsdt_add_fw_cfg(scope, &memmap[VIRT_FW_CFG]);
613     acpi_dsdt_add_virtio(scope, &memmap[VIRT_MMIO],
614                     (irqmap[VIRT_MMIO] + ARM_SPI_BASE), NUM_VIRTIO_TRANSPORTS);
615     acpi_dsdt_add_pci(scope, memmap, (irqmap[VIRT_PCIE] + ARM_SPI_BASE),
616                       vms->highmem, vms->highmem_ecam, vms);
617     if (vms->acpi_dev) {
618         build_ged_aml(scope, "\\_SB."GED_DEVICE,
619                       HOTPLUG_HANDLER(vms->acpi_dev),
620                       irqmap[VIRT_ACPI_GED] + ARM_SPI_BASE, AML_SYSTEM_MEMORY,
621                       memmap[VIRT_ACPI_GED].base);
622     } else {
623         acpi_dsdt_add_gpio(scope, &memmap[VIRT_GPIO],
624                            (irqmap[VIRT_GPIO] + ARM_SPI_BASE));
625     }
626 
627     if (vms->acpi_dev) {
628         uint32_t event = object_property_get_uint(OBJECT(vms->acpi_dev),
629                                                   "ged-event", &error_abort);
630 
631         if (event & ACPI_GED_MEM_HOTPLUG_EVT) {
632             build_memory_hotplug_aml(scope, ms->ram_slots, "\\_SB", NULL,
633                                      AML_SYSTEM_MEMORY,
634                                      memmap[VIRT_PCDIMM_ACPI].base);
635         }
636     }
637 
638     acpi_dsdt_add_power_button(scope);
639     acpi_dsdt_add_tpm(scope, vms);
640 
641     aml_append(dsdt, scope);
642 
643     /* copy AML table into ACPI tables blob and patch header there */
644     g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len);
645     build_header(linker, table_data,
646         (void *)(table_data->data + table_data->len - dsdt->buf->len),
647         "DSDT", dsdt->buf->len, 2, NULL, NULL);
648     free_aml_allocator();
649 }
650 
651 typedef
652 struct AcpiBuildState {
653     /* Copy of table in RAM (for patching). */
654     MemoryRegion *table_mr;
655     MemoryRegion *rsdp_mr;
656     MemoryRegion *linker_mr;
657     /* Is table patched? */
658     bool patched;
659 } AcpiBuildState;
660 
661 static void acpi_align_size(GArray *blob, unsigned align)
662 {
663     /*
664      * Align size to multiple of given size. This reduces the chance
665      * we need to change size in the future (breaking cross version migration).
666      */
667     g_array_set_size(blob, ROUND_UP(acpi_data_len(blob), align));
668 }
669 
670 static
671 void virt_acpi_build(VirtMachineState *vms, AcpiBuildTables *tables)
672 {
673     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
674     GArray *table_offsets;
675     unsigned dsdt, xsdt;
676     GArray *tables_blob = tables->table_data;
677     MachineState *ms = MACHINE(vms);
678 
679     table_offsets = g_array_new(false, true /* clear */,
680                                         sizeof(uint32_t));
681 
682     bios_linker_loader_alloc(tables->linker,
683                              ACPI_BUILD_TABLE_FILE, tables_blob,
684                              64, false /* high memory */);
685 
686     /* DSDT is pointed to by FADT */
687     dsdt = tables_blob->len;
688     build_dsdt(tables_blob, tables->linker, vms);
689 
690     /* FADT MADT GTDT MCFG SPCR pointed to by RSDT */
691     acpi_add_table(table_offsets, tables_blob);
692     build_fadt_rev5(tables_blob, tables->linker, vms, dsdt);
693 
694     acpi_add_table(table_offsets, tables_blob);
695     build_madt(tables_blob, tables->linker, vms);
696 
697     acpi_add_table(table_offsets, tables_blob);
698     build_gtdt(tables_blob, tables->linker, vms);
699 
700     acpi_add_table(table_offsets, tables_blob);
701     {
702         AcpiMcfgInfo mcfg = {
703            .base = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].base,
704            .size = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].size,
705         };
706         build_mcfg(tables_blob, tables->linker, &mcfg);
707     }
708 
709     acpi_add_table(table_offsets, tables_blob);
710     build_spcr(tables_blob, tables->linker, vms);
711 
712     if (vms->ras) {
713         build_ghes_error_table(tables->hardware_errors, tables->linker);
714         acpi_add_table(table_offsets, tables_blob);
715         acpi_build_hest(tables_blob, tables->linker);
716     }
717 
718     if (ms->numa_state->num_nodes > 0) {
719         acpi_add_table(table_offsets, tables_blob);
720         build_srat(tables_blob, tables->linker, vms);
721         if (ms->numa_state->have_numa_distance) {
722             acpi_add_table(table_offsets, tables_blob);
723             build_slit(tables_blob, tables->linker, ms);
724         }
725     }
726 
727     if (ms->nvdimms_state->is_enabled) {
728         nvdimm_build_acpi(table_offsets, tables_blob, tables->linker,
729                           ms->nvdimms_state, ms->ram_slots);
730     }
731 
732     if (its_class_name() && !vmc->no_its) {
733         acpi_add_table(table_offsets, tables_blob);
734         build_iort(tables_blob, tables->linker, vms);
735     }
736 
737     if (tpm_get_version(tpm_find()) == TPM_VERSION_2_0) {
738         acpi_add_table(table_offsets, tables_blob);
739         build_tpm2(tables_blob, tables->linker, tables->tcpalog);
740     }
741 
742     /* XSDT is pointed to by RSDP */
743     xsdt = tables_blob->len;
744     build_xsdt(tables_blob, tables->linker, table_offsets, NULL, NULL);
745 
746     /* RSDP is in FSEG memory, so allocate it separately */
747     {
748         AcpiRsdpData rsdp_data = {
749             .revision = 2,
750             .oem_id = ACPI_BUILD_APPNAME6,
751             .xsdt_tbl_offset = &xsdt,
752             .rsdt_tbl_offset = NULL,
753         };
754         build_rsdp(tables->rsdp, tables->linker, &rsdp_data);
755     }
756 
757     /*
758      * The align size is 128, warn if 64k is not enough therefore
759      * the align size could be resized.
760      */
761     if (tables_blob->len > ACPI_BUILD_TABLE_SIZE / 2) {
762         warn_report("ACPI table size %u exceeds %d bytes,"
763                     " migration may not work",
764                     tables_blob->len, ACPI_BUILD_TABLE_SIZE / 2);
765         error_printf("Try removing CPUs, NUMA nodes, memory slots"
766                      " or PCI bridges.");
767     }
768     acpi_align_size(tables_blob, ACPI_BUILD_TABLE_SIZE);
769 
770 
771     /* Cleanup memory that's no longer used. */
772     g_array_free(table_offsets, true);
773 }
774 
775 static void acpi_ram_update(MemoryRegion *mr, GArray *data)
776 {
777     uint32_t size = acpi_data_len(data);
778 
779     /* Make sure RAM size is correct - in case it got changed
780      * e.g. by migration */
781     memory_region_ram_resize(mr, size, &error_abort);
782 
783     memcpy(memory_region_get_ram_ptr(mr), data->data, size);
784     memory_region_set_dirty(mr, 0, size);
785 }
786 
787 static void virt_acpi_build_update(void *build_opaque)
788 {
789     AcpiBuildState *build_state = build_opaque;
790     AcpiBuildTables tables;
791 
792     /* No state to update or already patched? Nothing to do. */
793     if (!build_state || build_state->patched) {
794         return;
795     }
796     build_state->patched = true;
797 
798     acpi_build_tables_init(&tables);
799 
800     virt_acpi_build(VIRT_MACHINE(qdev_get_machine()), &tables);
801 
802     acpi_ram_update(build_state->table_mr, tables.table_data);
803     acpi_ram_update(build_state->rsdp_mr, tables.rsdp);
804     acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob);
805 
806     acpi_build_tables_cleanup(&tables, true);
807 }
808 
809 static void virt_acpi_build_reset(void *build_opaque)
810 {
811     AcpiBuildState *build_state = build_opaque;
812     build_state->patched = false;
813 }
814 
815 static const VMStateDescription vmstate_virt_acpi_build = {
816     .name = "virt_acpi_build",
817     .version_id = 1,
818     .minimum_version_id = 1,
819     .fields = (VMStateField[]) {
820         VMSTATE_BOOL(patched, AcpiBuildState),
821         VMSTATE_END_OF_LIST()
822     },
823 };
824 
825 void virt_acpi_setup(VirtMachineState *vms)
826 {
827     AcpiBuildTables tables;
828     AcpiBuildState *build_state;
829     AcpiGedState *acpi_ged_state;
830 
831     if (!vms->fw_cfg) {
832         trace_virt_acpi_setup();
833         return;
834     }
835 
836     if (!virt_is_acpi_enabled(vms)) {
837         trace_virt_acpi_setup();
838         return;
839     }
840 
841     build_state = g_malloc0(sizeof *build_state);
842 
843     acpi_build_tables_init(&tables);
844     virt_acpi_build(vms, &tables);
845 
846     /* Now expose it all to Guest */
847     build_state->table_mr = acpi_add_rom_blob(virt_acpi_build_update,
848                                               build_state, tables.table_data,
849                                               ACPI_BUILD_TABLE_FILE,
850                                               ACPI_BUILD_TABLE_MAX_SIZE);
851     assert(build_state->table_mr != NULL);
852 
853     build_state->linker_mr =
854         acpi_add_rom_blob(virt_acpi_build_update, build_state,
855                           tables.linker->cmd_blob, ACPI_BUILD_LOADER_FILE, 0);
856 
857     fw_cfg_add_file(vms->fw_cfg, ACPI_BUILD_TPMLOG_FILE, tables.tcpalog->data,
858                     acpi_data_len(tables.tcpalog));
859 
860     if (vms->ras) {
861         assert(vms->acpi_dev);
862         acpi_ged_state = ACPI_GED(vms->acpi_dev);
863         acpi_ghes_add_fw_cfg(&acpi_ged_state->ghes_state,
864                              vms->fw_cfg, tables.hardware_errors);
865     }
866 
867     build_state->rsdp_mr = acpi_add_rom_blob(virt_acpi_build_update,
868                                              build_state, tables.rsdp,
869                                              ACPI_BUILD_RSDP_FILE, 0);
870 
871     qemu_register_reset(virt_acpi_build_reset, build_state);
872     virt_acpi_build_reset(build_state);
873     vmstate_register(NULL, 0, &vmstate_virt_acpi_build, build_state);
874 
875     /* Cleanup tables but don't free the memory: we track it
876      * in build_state.
877      */
878     acpi_build_tables_cleanup(&tables, false);
879 }
880