1 /* Support for generating ACPI tables and passing them to Guests 2 * 3 * ARM virt ACPI generation 4 * 5 * Copyright (C) 2008-2010 Kevin O'Connor <kevin@koconnor.net> 6 * Copyright (C) 2006 Fabrice Bellard 7 * Copyright (C) 2013 Red Hat Inc 8 * 9 * Author: Michael S. Tsirkin <mst@redhat.com> 10 * 11 * Copyright (c) 2015 HUAWEI TECHNOLOGIES CO.,LTD. 12 * 13 * Author: Shannon Zhao <zhaoshenglong@huawei.com> 14 * 15 * This program is free software; you can redistribute it and/or modify 16 * it under the terms of the GNU General Public License as published by 17 * the Free Software Foundation; either version 2 of the License, or 18 * (at your option) any later version. 19 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 23 * GNU General Public License for more details. 24 25 * You should have received a copy of the GNU General Public License along 26 * with this program; if not, see <http://www.gnu.org/licenses/>. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qapi/error.h" 31 #include "qemu-common.h" 32 #include "qemu/bitmap.h" 33 #include "trace.h" 34 #include "qom/cpu.h" 35 #include "target/arm/cpu.h" 36 #include "hw/acpi/acpi-defs.h" 37 #include "hw/acpi/acpi.h" 38 #include "hw/nvram/fw_cfg.h" 39 #include "hw/acpi/bios-linker-loader.h" 40 #include "hw/loader.h" 41 #include "hw/hw.h" 42 #include "hw/acpi/aml-build.h" 43 #include "hw/pci/pcie_host.h" 44 #include "hw/pci/pci.h" 45 #include "hw/arm/virt.h" 46 #include "sysemu/numa.h" 47 #include "kvm_arm.h" 48 49 #define ARM_SPI_BASE 32 50 #define ACPI_POWER_BUTTON_DEVICE "PWRB" 51 52 static void acpi_dsdt_add_cpus(Aml *scope, int smp_cpus) 53 { 54 uint16_t i; 55 56 for (i = 0; i < smp_cpus; i++) { 57 Aml *dev = aml_device("C%.03X", i); 58 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007"))); 59 aml_append(dev, aml_name_decl("_UID", aml_int(i))); 60 aml_append(scope, dev); 61 } 62 } 63 64 static void acpi_dsdt_add_uart(Aml *scope, const MemMapEntry *uart_memmap, 65 uint32_t uart_irq) 66 { 67 Aml *dev = aml_device("COM0"); 68 aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0011"))); 69 aml_append(dev, aml_name_decl("_UID", aml_int(0))); 70 71 Aml *crs = aml_resource_template(); 72 aml_append(crs, aml_memory32_fixed(uart_memmap->base, 73 uart_memmap->size, AML_READ_WRITE)); 74 aml_append(crs, 75 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 76 AML_EXCLUSIVE, &uart_irq, 1)); 77 aml_append(dev, aml_name_decl("_CRS", crs)); 78 79 /* The _ADR entry is used to link this device to the UART described 80 * in the SPCR table, i.e. SPCR.base_address.address == _ADR. 81 */ 82 aml_append(dev, aml_name_decl("_ADR", aml_int(uart_memmap->base))); 83 84 aml_append(scope, dev); 85 } 86 87 static void acpi_dsdt_add_fw_cfg(Aml *scope, const MemMapEntry *fw_cfg_memmap) 88 { 89 Aml *dev = aml_device("FWCF"); 90 aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002"))); 91 /* device present, functioning, decoding, not shown in UI */ 92 aml_append(dev, aml_name_decl("_STA", aml_int(0xB))); 93 aml_append(dev, aml_name_decl("_CCA", aml_int(1))); 94 95 Aml *crs = aml_resource_template(); 96 aml_append(crs, aml_memory32_fixed(fw_cfg_memmap->base, 97 fw_cfg_memmap->size, AML_READ_WRITE)); 98 aml_append(dev, aml_name_decl("_CRS", crs)); 99 aml_append(scope, dev); 100 } 101 102 static void acpi_dsdt_add_flash(Aml *scope, const MemMapEntry *flash_memmap) 103 { 104 Aml *dev, *crs; 105 hwaddr base = flash_memmap->base; 106 hwaddr size = flash_memmap->size / 2; 107 108 dev = aml_device("FLS0"); 109 aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015"))); 110 aml_append(dev, aml_name_decl("_UID", aml_int(0))); 111 112 crs = aml_resource_template(); 113 aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE)); 114 aml_append(dev, aml_name_decl("_CRS", crs)); 115 aml_append(scope, dev); 116 117 dev = aml_device("FLS1"); 118 aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015"))); 119 aml_append(dev, aml_name_decl("_UID", aml_int(1))); 120 crs = aml_resource_template(); 121 aml_append(crs, aml_memory32_fixed(base + size, size, AML_READ_WRITE)); 122 aml_append(dev, aml_name_decl("_CRS", crs)); 123 aml_append(scope, dev); 124 } 125 126 static void acpi_dsdt_add_virtio(Aml *scope, 127 const MemMapEntry *virtio_mmio_memmap, 128 uint32_t mmio_irq, int num) 129 { 130 hwaddr base = virtio_mmio_memmap->base; 131 hwaddr size = virtio_mmio_memmap->size; 132 int i; 133 134 for (i = 0; i < num; i++) { 135 uint32_t irq = mmio_irq + i; 136 Aml *dev = aml_device("VR%02u", i); 137 aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0005"))); 138 aml_append(dev, aml_name_decl("_UID", aml_int(i))); 139 aml_append(dev, aml_name_decl("_CCA", aml_int(1))); 140 141 Aml *crs = aml_resource_template(); 142 aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE)); 143 aml_append(crs, 144 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 145 AML_EXCLUSIVE, &irq, 1)); 146 aml_append(dev, aml_name_decl("_CRS", crs)); 147 aml_append(scope, dev); 148 base += size; 149 } 150 } 151 152 static void acpi_dsdt_add_pci(Aml *scope, const MemMapEntry *memmap, 153 uint32_t irq, bool use_highmem) 154 { 155 Aml *method, *crs, *ifctx, *UUID, *ifctx1, *elsectx, *buf; 156 int i, bus_no; 157 hwaddr base_mmio = memmap[VIRT_PCIE_MMIO].base; 158 hwaddr size_mmio = memmap[VIRT_PCIE_MMIO].size; 159 hwaddr base_pio = memmap[VIRT_PCIE_PIO].base; 160 hwaddr size_pio = memmap[VIRT_PCIE_PIO].size; 161 hwaddr base_ecam = memmap[VIRT_PCIE_ECAM].base; 162 hwaddr size_ecam = memmap[VIRT_PCIE_ECAM].size; 163 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 164 165 Aml *dev = aml_device("%s", "PCI0"); 166 aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A08"))); 167 aml_append(dev, aml_name_decl("_CID", aml_string("PNP0A03"))); 168 aml_append(dev, aml_name_decl("_SEG", aml_int(0))); 169 aml_append(dev, aml_name_decl("_BBN", aml_int(0))); 170 aml_append(dev, aml_name_decl("_ADR", aml_int(0))); 171 aml_append(dev, aml_name_decl("_UID", aml_string("PCI0"))); 172 aml_append(dev, aml_name_decl("_STR", aml_unicode("PCIe 0 Device"))); 173 aml_append(dev, aml_name_decl("_CCA", aml_int(1))); 174 175 /* Declare the PCI Routing Table. */ 176 Aml *rt_pkg = aml_package(nr_pcie_buses * PCI_NUM_PINS); 177 for (bus_no = 0; bus_no < nr_pcie_buses; bus_no++) { 178 for (i = 0; i < PCI_NUM_PINS; i++) { 179 int gsi = (i + bus_no) % PCI_NUM_PINS; 180 Aml *pkg = aml_package(4); 181 aml_append(pkg, aml_int((bus_no << 16) | 0xFFFF)); 182 aml_append(pkg, aml_int(i)); 183 aml_append(pkg, aml_name("GSI%d", gsi)); 184 aml_append(pkg, aml_int(0)); 185 aml_append(rt_pkg, pkg); 186 } 187 } 188 aml_append(dev, aml_name_decl("_PRT", rt_pkg)); 189 190 /* Create GSI link device */ 191 for (i = 0; i < PCI_NUM_PINS; i++) { 192 uint32_t irqs = irq + i; 193 Aml *dev_gsi = aml_device("GSI%d", i); 194 aml_append(dev_gsi, aml_name_decl("_HID", aml_string("PNP0C0F"))); 195 aml_append(dev_gsi, aml_name_decl("_UID", aml_int(0))); 196 crs = aml_resource_template(); 197 aml_append(crs, 198 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 199 AML_EXCLUSIVE, &irqs, 1)); 200 aml_append(dev_gsi, aml_name_decl("_PRS", crs)); 201 crs = aml_resource_template(); 202 aml_append(crs, 203 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 204 AML_EXCLUSIVE, &irqs, 1)); 205 aml_append(dev_gsi, aml_name_decl("_CRS", crs)); 206 method = aml_method("_SRS", 1, AML_NOTSERIALIZED); 207 aml_append(dev_gsi, method); 208 aml_append(dev, dev_gsi); 209 } 210 211 method = aml_method("_CBA", 0, AML_NOTSERIALIZED); 212 aml_append(method, aml_return(aml_int(base_ecam))); 213 aml_append(dev, method); 214 215 method = aml_method("_CRS", 0, AML_NOTSERIALIZED); 216 Aml *rbuf = aml_resource_template(); 217 aml_append(rbuf, 218 aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE, 219 0x0000, 0x0000, nr_pcie_buses - 1, 0x0000, 220 nr_pcie_buses)); 221 aml_append(rbuf, 222 aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED, 223 AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_mmio, 224 base_mmio + size_mmio - 1, 0x0000, size_mmio)); 225 aml_append(rbuf, 226 aml_dword_io(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE, 227 AML_ENTIRE_RANGE, 0x0000, 0x0000, size_pio - 1, base_pio, 228 size_pio)); 229 230 if (use_highmem) { 231 hwaddr base_mmio_high = memmap[VIRT_PCIE_MMIO_HIGH].base; 232 hwaddr size_mmio_high = memmap[VIRT_PCIE_MMIO_HIGH].size; 233 234 aml_append(rbuf, 235 aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED, 236 AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, 237 base_mmio_high, 238 base_mmio_high + size_mmio_high - 1, 0x0000, 239 size_mmio_high)); 240 } 241 242 aml_append(method, aml_name_decl("RBUF", rbuf)); 243 aml_append(method, aml_return(rbuf)); 244 aml_append(dev, method); 245 246 /* Declare an _OSC (OS Control Handoff) method */ 247 aml_append(dev, aml_name_decl("SUPP", aml_int(0))); 248 aml_append(dev, aml_name_decl("CTRL", aml_int(0))); 249 method = aml_method("_OSC", 4, AML_NOTSERIALIZED); 250 aml_append(method, 251 aml_create_dword_field(aml_arg(3), aml_int(0), "CDW1")); 252 253 /* PCI Firmware Specification 3.0 254 * 4.5.1. _OSC Interface for PCI Host Bridge Devices 255 * The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is 256 * identified by the Universal Unique IDentifier (UUID) 257 * 33DB4D5B-1FF7-401C-9657-7441C03DD766 258 */ 259 UUID = aml_touuid("33DB4D5B-1FF7-401C-9657-7441C03DD766"); 260 ifctx = aml_if(aml_equal(aml_arg(0), UUID)); 261 aml_append(ifctx, 262 aml_create_dword_field(aml_arg(3), aml_int(4), "CDW2")); 263 aml_append(ifctx, 264 aml_create_dword_field(aml_arg(3), aml_int(8), "CDW3")); 265 aml_append(ifctx, aml_store(aml_name("CDW2"), aml_name("SUPP"))); 266 aml_append(ifctx, aml_store(aml_name("CDW3"), aml_name("CTRL"))); 267 aml_append(ifctx, aml_store(aml_and(aml_name("CTRL"), aml_int(0x1D), NULL), 268 aml_name("CTRL"))); 269 270 ifctx1 = aml_if(aml_lnot(aml_equal(aml_arg(1), aml_int(0x1)))); 271 aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x08), NULL), 272 aml_name("CDW1"))); 273 aml_append(ifctx, ifctx1); 274 275 ifctx1 = aml_if(aml_lnot(aml_equal(aml_name("CDW3"), aml_name("CTRL")))); 276 aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x10), NULL), 277 aml_name("CDW1"))); 278 aml_append(ifctx, ifctx1); 279 280 aml_append(ifctx, aml_store(aml_name("CTRL"), aml_name("CDW3"))); 281 aml_append(ifctx, aml_return(aml_arg(3))); 282 aml_append(method, ifctx); 283 284 elsectx = aml_else(); 285 aml_append(elsectx, aml_store(aml_or(aml_name("CDW1"), aml_int(4), NULL), 286 aml_name("CDW1"))); 287 aml_append(elsectx, aml_return(aml_arg(3))); 288 aml_append(method, elsectx); 289 aml_append(dev, method); 290 291 method = aml_method("_DSM", 4, AML_NOTSERIALIZED); 292 293 /* PCI Firmware Specification 3.0 294 * 4.6.1. _DSM for PCI Express Slot Information 295 * The UUID in _DSM in this context is 296 * {E5C937D0-3553-4D7A-9117-EA4D19C3434D} 297 */ 298 UUID = aml_touuid("E5C937D0-3553-4D7A-9117-EA4D19C3434D"); 299 ifctx = aml_if(aml_equal(aml_arg(0), UUID)); 300 ifctx1 = aml_if(aml_equal(aml_arg(2), aml_int(0))); 301 uint8_t byte_list[1] = {1}; 302 buf = aml_buffer(1, byte_list); 303 aml_append(ifctx1, aml_return(buf)); 304 aml_append(ifctx, ifctx1); 305 aml_append(method, ifctx); 306 307 byte_list[0] = 0; 308 buf = aml_buffer(1, byte_list); 309 aml_append(method, aml_return(buf)); 310 aml_append(dev, method); 311 312 Aml *dev_rp0 = aml_device("%s", "RP0"); 313 aml_append(dev_rp0, aml_name_decl("_ADR", aml_int(0))); 314 aml_append(dev, dev_rp0); 315 316 Aml *dev_res0 = aml_device("%s", "RES0"); 317 aml_append(dev_res0, aml_name_decl("_HID", aml_string("PNP0C02"))); 318 crs = aml_resource_template(); 319 aml_append(crs, aml_memory32_fixed(base_ecam, size_ecam, AML_READ_WRITE)); 320 aml_append(dev_res0, aml_name_decl("_CRS", crs)); 321 aml_append(dev, dev_res0); 322 aml_append(scope, dev); 323 } 324 325 static void acpi_dsdt_add_gpio(Aml *scope, const MemMapEntry *gpio_memmap, 326 uint32_t gpio_irq) 327 { 328 Aml *dev = aml_device("GPO0"); 329 aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0061"))); 330 aml_append(dev, aml_name_decl("_ADR", aml_int(0))); 331 aml_append(dev, aml_name_decl("_UID", aml_int(0))); 332 333 Aml *crs = aml_resource_template(); 334 aml_append(crs, aml_memory32_fixed(gpio_memmap->base, gpio_memmap->size, 335 AML_READ_WRITE)); 336 aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 337 AML_EXCLUSIVE, &gpio_irq, 1)); 338 aml_append(dev, aml_name_decl("_CRS", crs)); 339 340 Aml *aei = aml_resource_template(); 341 /* Pin 3 for power button */ 342 const uint32_t pin_list[1] = {3}; 343 aml_append(aei, aml_gpio_int(AML_CONSUMER, AML_EDGE, AML_ACTIVE_HIGH, 344 AML_EXCLUSIVE, AML_PULL_UP, 0, pin_list, 1, 345 "GPO0", NULL, 0)); 346 aml_append(dev, aml_name_decl("_AEI", aei)); 347 348 /* _E03 is handle for power button */ 349 Aml *method = aml_method("_E03", 0, AML_NOTSERIALIZED); 350 aml_append(method, aml_notify(aml_name(ACPI_POWER_BUTTON_DEVICE), 351 aml_int(0x80))); 352 aml_append(dev, method); 353 aml_append(scope, dev); 354 } 355 356 static void acpi_dsdt_add_power_button(Aml *scope) 357 { 358 Aml *dev = aml_device(ACPI_POWER_BUTTON_DEVICE); 359 aml_append(dev, aml_name_decl("_HID", aml_string("PNP0C0C"))); 360 aml_append(dev, aml_name_decl("_ADR", aml_int(0))); 361 aml_append(dev, aml_name_decl("_UID", aml_int(0))); 362 aml_append(scope, dev); 363 } 364 365 /* RSDP */ 366 static GArray * 367 build_rsdp(GArray *rsdp_table, BIOSLinker *linker, unsigned rsdt_tbl_offset) 368 { 369 AcpiRsdpDescriptor *rsdp = acpi_data_push(rsdp_table, sizeof *rsdp); 370 unsigned rsdt_pa_size = sizeof(rsdp->rsdt_physical_address); 371 unsigned rsdt_pa_offset = 372 (char *)&rsdp->rsdt_physical_address - rsdp_table->data; 373 374 bios_linker_loader_alloc(linker, ACPI_BUILD_RSDP_FILE, rsdp_table, 16, 375 true /* fseg memory */); 376 377 memcpy(&rsdp->signature, "RSD PTR ", sizeof(rsdp->signature)); 378 memcpy(rsdp->oem_id, ACPI_BUILD_APPNAME6, sizeof(rsdp->oem_id)); 379 rsdp->length = cpu_to_le32(sizeof(*rsdp)); 380 rsdp->revision = 0x02; 381 382 /* Address to be filled by Guest linker */ 383 bios_linker_loader_add_pointer(linker, 384 ACPI_BUILD_RSDP_FILE, rsdt_pa_offset, rsdt_pa_size, 385 ACPI_BUILD_TABLE_FILE, rsdt_tbl_offset); 386 387 /* Checksum to be filled by Guest linker */ 388 bios_linker_loader_add_checksum(linker, ACPI_BUILD_RSDP_FILE, 389 (char *)rsdp - rsdp_table->data, sizeof *rsdp, 390 (char *)&rsdp->checksum - rsdp_table->data); 391 392 return rsdp_table; 393 } 394 395 static void 396 build_iort(GArray *table_data, BIOSLinker *linker) 397 { 398 int iort_start = table_data->len; 399 AcpiIortIdMapping *idmap; 400 AcpiIortItsGroup *its; 401 AcpiIortTable *iort; 402 size_t node_size, iort_length; 403 AcpiIortRC *rc; 404 405 iort = acpi_data_push(table_data, sizeof(*iort)); 406 407 iort_length = sizeof(*iort); 408 iort->node_count = cpu_to_le32(2); /* RC and ITS nodes */ 409 iort->node_offset = cpu_to_le32(sizeof(*iort)); 410 411 /* ITS group node */ 412 node_size = sizeof(*its) + sizeof(uint32_t); 413 iort_length += node_size; 414 its = acpi_data_push(table_data, node_size); 415 416 its->type = ACPI_IORT_NODE_ITS_GROUP; 417 its->length = cpu_to_le16(node_size); 418 its->its_count = cpu_to_le32(1); 419 its->identifiers[0] = 0; /* MADT translation_id */ 420 421 /* Root Complex Node */ 422 node_size = sizeof(*rc) + sizeof(*idmap); 423 iort_length += node_size; 424 rc = acpi_data_push(table_data, node_size); 425 426 rc->type = ACPI_IORT_NODE_PCI_ROOT_COMPLEX; 427 rc->length = cpu_to_le16(node_size); 428 rc->mapping_count = cpu_to_le32(1); 429 rc->mapping_offset = cpu_to_le32(sizeof(*rc)); 430 431 /* fully coherent device */ 432 rc->memory_properties.cache_coherency = cpu_to_le32(1); 433 rc->memory_properties.memory_flags = 0x3; /* CCA = CPM = DCAS = 1 */ 434 rc->pci_segment_number = 0; /* MCFG pci_segment */ 435 436 /* Identity RID mapping covering the whole input RID range */ 437 idmap = &rc->id_mapping_array[0]; 438 idmap->input_base = 0; 439 idmap->id_count = cpu_to_le32(0xFFFF); 440 idmap->output_base = 0; 441 /* output IORT node is the ITS group node (the first node) */ 442 idmap->output_reference = cpu_to_le32(iort->node_offset); 443 444 iort->length = cpu_to_le32(iort_length); 445 446 build_header(linker, table_data, (void *)(table_data->data + iort_start), 447 "IORT", table_data->len - iort_start, 0, NULL, NULL); 448 } 449 450 static void 451 build_spcr(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 452 { 453 AcpiSerialPortConsoleRedirection *spcr; 454 const MemMapEntry *uart_memmap = &vms->memmap[VIRT_UART]; 455 int irq = vms->irqmap[VIRT_UART] + ARM_SPI_BASE; 456 457 spcr = acpi_data_push(table_data, sizeof(*spcr)); 458 459 spcr->interface_type = 0x3; /* ARM PL011 UART */ 460 461 spcr->base_address.space_id = AML_SYSTEM_MEMORY; 462 spcr->base_address.bit_width = 8; 463 spcr->base_address.bit_offset = 0; 464 spcr->base_address.access_width = 1; 465 spcr->base_address.address = cpu_to_le64(uart_memmap->base); 466 467 spcr->interrupt_types = (1 << 3); /* Bit[3] ARMH GIC interrupt */ 468 spcr->gsi = cpu_to_le32(irq); /* Global System Interrupt */ 469 470 spcr->baud = 3; /* Baud Rate: 3 = 9600 */ 471 spcr->parity = 0; /* No Parity */ 472 spcr->stopbits = 1; /* 1 Stop bit */ 473 spcr->flowctrl = (1 << 1); /* Bit[1] = RTS/CTS hardware flow control */ 474 spcr->term_type = 0; /* Terminal Type: 0 = VT100 */ 475 476 spcr->pci_device_id = 0xffff; /* PCI Device ID: not a PCI device */ 477 spcr->pci_vendor_id = 0xffff; /* PCI Vendor ID: not a PCI device */ 478 479 build_header(linker, table_data, (void *)spcr, "SPCR", sizeof(*spcr), 2, 480 NULL, NULL); 481 } 482 483 static void 484 build_srat(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 485 { 486 AcpiSystemResourceAffinityTable *srat; 487 AcpiSratProcessorGiccAffinity *core; 488 AcpiSratMemoryAffinity *numamem; 489 int i, j, srat_start; 490 uint64_t mem_base; 491 uint32_t *cpu_node = g_malloc0(vms->smp_cpus * sizeof(uint32_t)); 492 493 for (i = 0; i < vms->smp_cpus; i++) { 494 j = numa_get_node_for_cpu(i); 495 if (j < nb_numa_nodes) { 496 cpu_node[i] = j; 497 } 498 } 499 500 srat_start = table_data->len; 501 srat = acpi_data_push(table_data, sizeof(*srat)); 502 srat->reserved1 = cpu_to_le32(1); 503 504 for (i = 0; i < vms->smp_cpus; ++i) { 505 core = acpi_data_push(table_data, sizeof(*core)); 506 core->type = ACPI_SRAT_PROCESSOR_GICC; 507 core->length = sizeof(*core); 508 core->proximity = cpu_to_le32(cpu_node[i]); 509 core->acpi_processor_uid = cpu_to_le32(i); 510 core->flags = cpu_to_le32(1); 511 } 512 g_free(cpu_node); 513 514 mem_base = vms->memmap[VIRT_MEM].base; 515 for (i = 0; i < nb_numa_nodes; ++i) { 516 numamem = acpi_data_push(table_data, sizeof(*numamem)); 517 build_srat_memory(numamem, mem_base, numa_info[i].node_mem, i, 518 MEM_AFFINITY_ENABLED); 519 mem_base += numa_info[i].node_mem; 520 } 521 522 build_header(linker, table_data, (void *)srat, "SRAT", 523 table_data->len - srat_start, 3, NULL, NULL); 524 } 525 526 static void 527 build_mcfg(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 528 { 529 AcpiTableMcfg *mcfg; 530 const MemMapEntry *memmap = vms->memmap; 531 int len = sizeof(*mcfg) + sizeof(mcfg->allocation[0]); 532 533 mcfg = acpi_data_push(table_data, len); 534 mcfg->allocation[0].address = cpu_to_le64(memmap[VIRT_PCIE_ECAM].base); 535 536 /* Only a single allocation so no need to play with segments */ 537 mcfg->allocation[0].pci_segment = cpu_to_le16(0); 538 mcfg->allocation[0].start_bus_number = 0; 539 mcfg->allocation[0].end_bus_number = (memmap[VIRT_PCIE_ECAM].size 540 / PCIE_MMCFG_SIZE_MIN) - 1; 541 542 build_header(linker, table_data, (void *)mcfg, "MCFG", len, 1, NULL, NULL); 543 } 544 545 /* GTDT */ 546 static void 547 build_gtdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 548 { 549 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 550 int gtdt_start = table_data->len; 551 AcpiGenericTimerTable *gtdt; 552 uint32_t irqflags; 553 554 if (vmc->claim_edge_triggered_timers) { 555 irqflags = ACPI_GTDT_INTERRUPT_MODE_EDGE; 556 } else { 557 irqflags = ACPI_GTDT_INTERRUPT_MODE_LEVEL; 558 } 559 560 gtdt = acpi_data_push(table_data, sizeof *gtdt); 561 /* The interrupt values are the same with the device tree when adding 16 */ 562 gtdt->secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_S_EL1_IRQ + 16); 563 gtdt->secure_el1_flags = cpu_to_le32(irqflags); 564 565 gtdt->non_secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL1_IRQ + 16); 566 gtdt->non_secure_el1_flags = cpu_to_le32(irqflags | 567 ACPI_GTDT_CAP_ALWAYS_ON); 568 569 gtdt->virtual_timer_interrupt = cpu_to_le32(ARCH_TIMER_VIRT_IRQ + 16); 570 gtdt->virtual_timer_flags = cpu_to_le32(irqflags); 571 572 gtdt->non_secure_el2_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL2_IRQ + 16); 573 gtdt->non_secure_el2_flags = cpu_to_le32(irqflags); 574 575 build_header(linker, table_data, 576 (void *)(table_data->data + gtdt_start), "GTDT", 577 table_data->len - gtdt_start, 2, NULL, NULL); 578 } 579 580 /* MADT */ 581 static void 582 build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 583 { 584 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 585 int madt_start = table_data->len; 586 const MemMapEntry *memmap = vms->memmap; 587 const int *irqmap = vms->irqmap; 588 AcpiMultipleApicTable *madt; 589 AcpiMadtGenericDistributor *gicd; 590 AcpiMadtGenericMsiFrame *gic_msi; 591 int i; 592 593 madt = acpi_data_push(table_data, sizeof *madt); 594 595 gicd = acpi_data_push(table_data, sizeof *gicd); 596 gicd->type = ACPI_APIC_GENERIC_DISTRIBUTOR; 597 gicd->length = sizeof(*gicd); 598 gicd->base_address = cpu_to_le64(memmap[VIRT_GIC_DIST].base); 599 gicd->version = vms->gic_version; 600 601 for (i = 0; i < vms->smp_cpus; i++) { 602 AcpiMadtGenericCpuInterface *gicc = acpi_data_push(table_data, 603 sizeof(*gicc)); 604 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i)); 605 606 gicc->type = ACPI_APIC_GENERIC_CPU_INTERFACE; 607 gicc->length = sizeof(*gicc); 608 if (vms->gic_version == 2) { 609 gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base); 610 } 611 gicc->cpu_interface_number = cpu_to_le32(i); 612 gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity); 613 gicc->uid = cpu_to_le32(i); 614 gicc->flags = cpu_to_le32(ACPI_MADT_GICC_ENABLED); 615 616 if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 617 gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ)); 618 } 619 if (vms->virt && vms->gic_version == 3) { 620 gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GICV3_MAINT_IRQ)); 621 } 622 } 623 624 if (vms->gic_version == 3) { 625 AcpiMadtGenericTranslator *gic_its; 626 AcpiMadtGenericRedistributor *gicr = acpi_data_push(table_data, 627 sizeof *gicr); 628 629 gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR; 630 gicr->length = sizeof(*gicr); 631 gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST].base); 632 gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST].size); 633 634 if (its_class_name() && !vmc->no_its) { 635 gic_its = acpi_data_push(table_data, sizeof *gic_its); 636 gic_its->type = ACPI_APIC_GENERIC_TRANSLATOR; 637 gic_its->length = sizeof(*gic_its); 638 gic_its->translation_id = 0; 639 gic_its->base_address = cpu_to_le64(memmap[VIRT_GIC_ITS].base); 640 } 641 } else { 642 gic_msi = acpi_data_push(table_data, sizeof *gic_msi); 643 gic_msi->type = ACPI_APIC_GENERIC_MSI_FRAME; 644 gic_msi->length = sizeof(*gic_msi); 645 gic_msi->gic_msi_frame_id = 0; 646 gic_msi->base_address = cpu_to_le64(memmap[VIRT_GIC_V2M].base); 647 gic_msi->flags = cpu_to_le32(1); 648 gic_msi->spi_count = cpu_to_le16(NUM_GICV2M_SPIS); 649 gic_msi->spi_base = cpu_to_le16(irqmap[VIRT_GIC_V2M] + ARM_SPI_BASE); 650 } 651 652 build_header(linker, table_data, 653 (void *)(table_data->data + madt_start), "APIC", 654 table_data->len - madt_start, 3, NULL, NULL); 655 } 656 657 /* FADT */ 658 static void build_fadt(GArray *table_data, BIOSLinker *linker, 659 VirtMachineState *vms, unsigned dsdt_tbl_offset) 660 { 661 AcpiFadtDescriptorRev5_1 *fadt = acpi_data_push(table_data, sizeof(*fadt)); 662 unsigned dsdt_entry_offset = (char *)&fadt->dsdt - table_data->data; 663 uint16_t bootflags; 664 665 switch (vms->psci_conduit) { 666 case QEMU_PSCI_CONDUIT_DISABLED: 667 bootflags = 0; 668 break; 669 case QEMU_PSCI_CONDUIT_HVC: 670 bootflags = ACPI_FADT_ARM_PSCI_COMPLIANT | ACPI_FADT_ARM_PSCI_USE_HVC; 671 break; 672 case QEMU_PSCI_CONDUIT_SMC: 673 bootflags = ACPI_FADT_ARM_PSCI_COMPLIANT; 674 break; 675 default: 676 g_assert_not_reached(); 677 } 678 679 /* Hardware Reduced = 1 and use PSCI 0.2+ */ 680 fadt->flags = cpu_to_le32(1 << ACPI_FADT_F_HW_REDUCED_ACPI); 681 fadt->arm_boot_flags = cpu_to_le16(bootflags); 682 683 /* ACPI v5.1 (fadt->revision.fadt->minor_revision) */ 684 fadt->minor_revision = 0x1; 685 686 /* DSDT address to be filled by Guest linker */ 687 bios_linker_loader_add_pointer(linker, 688 ACPI_BUILD_TABLE_FILE, dsdt_entry_offset, sizeof(fadt->dsdt), 689 ACPI_BUILD_TABLE_FILE, dsdt_tbl_offset); 690 691 build_header(linker, table_data, 692 (void *)fadt, "FACP", sizeof(*fadt), 5, NULL, NULL); 693 } 694 695 /* DSDT */ 696 static void 697 build_dsdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 698 { 699 Aml *scope, *dsdt; 700 const MemMapEntry *memmap = vms->memmap; 701 const int *irqmap = vms->irqmap; 702 703 dsdt = init_aml_allocator(); 704 /* Reserve space for header */ 705 acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader)); 706 707 /* When booting the VM with UEFI, UEFI takes ownership of the RTC hardware. 708 * While UEFI can use libfdt to disable the RTC device node in the DTB that 709 * it passes to the OS, it cannot modify AML. Therefore, we won't generate 710 * the RTC ACPI device at all when using UEFI. 711 */ 712 scope = aml_scope("\\_SB"); 713 acpi_dsdt_add_cpus(scope, vms->smp_cpus); 714 acpi_dsdt_add_uart(scope, &memmap[VIRT_UART], 715 (irqmap[VIRT_UART] + ARM_SPI_BASE)); 716 acpi_dsdt_add_flash(scope, &memmap[VIRT_FLASH]); 717 acpi_dsdt_add_fw_cfg(scope, &memmap[VIRT_FW_CFG]); 718 acpi_dsdt_add_virtio(scope, &memmap[VIRT_MMIO], 719 (irqmap[VIRT_MMIO] + ARM_SPI_BASE), NUM_VIRTIO_TRANSPORTS); 720 acpi_dsdt_add_pci(scope, memmap, (irqmap[VIRT_PCIE] + ARM_SPI_BASE), 721 vms->highmem); 722 acpi_dsdt_add_gpio(scope, &memmap[VIRT_GPIO], 723 (irqmap[VIRT_GPIO] + ARM_SPI_BASE)); 724 acpi_dsdt_add_power_button(scope); 725 726 aml_append(dsdt, scope); 727 728 /* copy AML table into ACPI tables blob and patch header there */ 729 g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len); 730 build_header(linker, table_data, 731 (void *)(table_data->data + table_data->len - dsdt->buf->len), 732 "DSDT", dsdt->buf->len, 2, NULL, NULL); 733 free_aml_allocator(); 734 } 735 736 typedef 737 struct AcpiBuildState { 738 /* Copy of table in RAM (for patching). */ 739 MemoryRegion *table_mr; 740 MemoryRegion *rsdp_mr; 741 MemoryRegion *linker_mr; 742 /* Is table patched? */ 743 bool patched; 744 } AcpiBuildState; 745 746 static 747 void virt_acpi_build(VirtMachineState *vms, AcpiBuildTables *tables) 748 { 749 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 750 GArray *table_offsets; 751 unsigned dsdt, rsdt; 752 GArray *tables_blob = tables->table_data; 753 754 table_offsets = g_array_new(false, true /* clear */, 755 sizeof(uint32_t)); 756 757 bios_linker_loader_alloc(tables->linker, 758 ACPI_BUILD_TABLE_FILE, tables_blob, 759 64, false /* high memory */); 760 761 /* DSDT is pointed to by FADT */ 762 dsdt = tables_blob->len; 763 build_dsdt(tables_blob, tables->linker, vms); 764 765 /* FADT MADT GTDT MCFG SPCR pointed to by RSDT */ 766 acpi_add_table(table_offsets, tables_blob); 767 build_fadt(tables_blob, tables->linker, vms, dsdt); 768 769 acpi_add_table(table_offsets, tables_blob); 770 build_madt(tables_blob, tables->linker, vms); 771 772 acpi_add_table(table_offsets, tables_blob); 773 build_gtdt(tables_blob, tables->linker, vms); 774 775 acpi_add_table(table_offsets, tables_blob); 776 build_mcfg(tables_blob, tables->linker, vms); 777 778 acpi_add_table(table_offsets, tables_blob); 779 build_spcr(tables_blob, tables->linker, vms); 780 781 if (nb_numa_nodes > 0) { 782 acpi_add_table(table_offsets, tables_blob); 783 build_srat(tables_blob, tables->linker, vms); 784 } 785 786 if (its_class_name() && !vmc->no_its) { 787 acpi_add_table(table_offsets, tables_blob); 788 build_iort(tables_blob, tables->linker); 789 } 790 791 /* RSDT is pointed to by RSDP */ 792 rsdt = tables_blob->len; 793 build_rsdt(tables_blob, tables->linker, table_offsets, NULL, NULL); 794 795 /* RSDP is in FSEG memory, so allocate it separately */ 796 build_rsdp(tables->rsdp, tables->linker, rsdt); 797 798 /* Cleanup memory that's no longer used. */ 799 g_array_free(table_offsets, true); 800 } 801 802 static void acpi_ram_update(MemoryRegion *mr, GArray *data) 803 { 804 uint32_t size = acpi_data_len(data); 805 806 /* Make sure RAM size is correct - in case it got changed 807 * e.g. by migration */ 808 memory_region_ram_resize(mr, size, &error_abort); 809 810 memcpy(memory_region_get_ram_ptr(mr), data->data, size); 811 memory_region_set_dirty(mr, 0, size); 812 } 813 814 static void virt_acpi_build_update(void *build_opaque) 815 { 816 AcpiBuildState *build_state = build_opaque; 817 AcpiBuildTables tables; 818 819 /* No state to update or already patched? Nothing to do. */ 820 if (!build_state || build_state->patched) { 821 return; 822 } 823 build_state->patched = true; 824 825 acpi_build_tables_init(&tables); 826 827 virt_acpi_build(VIRT_MACHINE(qdev_get_machine()), &tables); 828 829 acpi_ram_update(build_state->table_mr, tables.table_data); 830 acpi_ram_update(build_state->rsdp_mr, tables.rsdp); 831 acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob); 832 833 acpi_build_tables_cleanup(&tables, true); 834 } 835 836 static void virt_acpi_build_reset(void *build_opaque) 837 { 838 AcpiBuildState *build_state = build_opaque; 839 build_state->patched = false; 840 } 841 842 static MemoryRegion *acpi_add_rom_blob(AcpiBuildState *build_state, 843 GArray *blob, const char *name, 844 uint64_t max_size) 845 { 846 return rom_add_blob(name, blob->data, acpi_data_len(blob), max_size, -1, 847 name, virt_acpi_build_update, build_state, NULL, true); 848 } 849 850 static const VMStateDescription vmstate_virt_acpi_build = { 851 .name = "virt_acpi_build", 852 .version_id = 1, 853 .minimum_version_id = 1, 854 .fields = (VMStateField[]) { 855 VMSTATE_BOOL(patched, AcpiBuildState), 856 VMSTATE_END_OF_LIST() 857 }, 858 }; 859 860 void virt_acpi_setup(VirtMachineState *vms) 861 { 862 AcpiBuildTables tables; 863 AcpiBuildState *build_state; 864 865 if (!vms->fw_cfg) { 866 trace_virt_acpi_setup(); 867 return; 868 } 869 870 if (!acpi_enabled) { 871 trace_virt_acpi_setup(); 872 return; 873 } 874 875 build_state = g_malloc0(sizeof *build_state); 876 877 acpi_build_tables_init(&tables); 878 virt_acpi_build(vms, &tables); 879 880 /* Now expose it all to Guest */ 881 build_state->table_mr = acpi_add_rom_blob(build_state, tables.table_data, 882 ACPI_BUILD_TABLE_FILE, 883 ACPI_BUILD_TABLE_MAX_SIZE); 884 assert(build_state->table_mr != NULL); 885 886 build_state->linker_mr = 887 acpi_add_rom_blob(build_state, tables.linker->cmd_blob, 888 "etc/table-loader", 0); 889 890 fw_cfg_add_file(vms->fw_cfg, ACPI_BUILD_TPMLOG_FILE, tables.tcpalog->data, 891 acpi_data_len(tables.tcpalog)); 892 893 build_state->rsdp_mr = acpi_add_rom_blob(build_state, tables.rsdp, 894 ACPI_BUILD_RSDP_FILE, 0); 895 896 qemu_register_reset(virt_acpi_build_reset, build_state); 897 virt_acpi_build_reset(build_state); 898 vmstate_register(NULL, 0, &vmstate_virt_acpi_build, build_state); 899 900 /* Cleanup tables but don't free the memory: we track it 901 * in build_state. 902 */ 903 acpi_build_tables_cleanup(&tables, false); 904 } 905