1 /* Support for generating ACPI tables and passing them to Guests 2 * 3 * ARM virt ACPI generation 4 * 5 * Copyright (C) 2008-2010 Kevin O'Connor <kevin@koconnor.net> 6 * Copyright (C) 2006 Fabrice Bellard 7 * Copyright (C) 2013 Red Hat Inc 8 * 9 * Author: Michael S. Tsirkin <mst@redhat.com> 10 * 11 * Copyright (c) 2015 HUAWEI TECHNOLOGIES CO.,LTD. 12 * 13 * Author: Shannon Zhao <zhaoshenglong@huawei.com> 14 * 15 * This program is free software; you can redistribute it and/or modify 16 * it under the terms of the GNU General Public License as published by 17 * the Free Software Foundation; either version 2 of the License, or 18 * (at your option) any later version. 19 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 23 * GNU General Public License for more details. 24 25 * You should have received a copy of the GNU General Public License along 26 * with this program; if not, see <http://www.gnu.org/licenses/>. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qapi/error.h" 31 #include "qemu/bitmap.h" 32 #include "trace.h" 33 #include "hw/core/cpu.h" 34 #include "target/arm/cpu.h" 35 #include "hw/acpi/acpi-defs.h" 36 #include "hw/acpi/acpi.h" 37 #include "hw/nvram/fw_cfg.h" 38 #include "hw/acpi/bios-linker-loader.h" 39 #include "hw/acpi/aml-build.h" 40 #include "hw/acpi/utils.h" 41 #include "hw/acpi/pci.h" 42 #include "hw/acpi/memory_hotplug.h" 43 #include "hw/acpi/generic_event_device.h" 44 #include "hw/pci/pcie_host.h" 45 #include "hw/pci/pci.h" 46 #include "hw/arm/virt.h" 47 #include "sysemu/numa.h" 48 #include "sysemu/reset.h" 49 #include "kvm_arm.h" 50 #include "migration/vmstate.h" 51 52 #define ARM_SPI_BASE 32 53 54 static void acpi_dsdt_add_cpus(Aml *scope, int smp_cpus) 55 { 56 uint16_t i; 57 58 for (i = 0; i < smp_cpus; i++) { 59 Aml *dev = aml_device("C%.03X", i); 60 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007"))); 61 aml_append(dev, aml_name_decl("_UID", aml_int(i))); 62 aml_append(scope, dev); 63 } 64 } 65 66 static void acpi_dsdt_add_uart(Aml *scope, const MemMapEntry *uart_memmap, 67 uint32_t uart_irq) 68 { 69 Aml *dev = aml_device("COM0"); 70 aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0011"))); 71 aml_append(dev, aml_name_decl("_UID", aml_int(0))); 72 73 Aml *crs = aml_resource_template(); 74 aml_append(crs, aml_memory32_fixed(uart_memmap->base, 75 uart_memmap->size, AML_READ_WRITE)); 76 aml_append(crs, 77 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 78 AML_EXCLUSIVE, &uart_irq, 1)); 79 aml_append(dev, aml_name_decl("_CRS", crs)); 80 81 /* The _ADR entry is used to link this device to the UART described 82 * in the SPCR table, i.e. SPCR.base_address.address == _ADR. 83 */ 84 aml_append(dev, aml_name_decl("_ADR", aml_int(uart_memmap->base))); 85 86 aml_append(scope, dev); 87 } 88 89 static void acpi_dsdt_add_fw_cfg(Aml *scope, const MemMapEntry *fw_cfg_memmap) 90 { 91 Aml *dev = aml_device("FWCF"); 92 aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002"))); 93 /* device present, functioning, decoding, not shown in UI */ 94 aml_append(dev, aml_name_decl("_STA", aml_int(0xB))); 95 aml_append(dev, aml_name_decl("_CCA", aml_int(1))); 96 97 Aml *crs = aml_resource_template(); 98 aml_append(crs, aml_memory32_fixed(fw_cfg_memmap->base, 99 fw_cfg_memmap->size, AML_READ_WRITE)); 100 aml_append(dev, aml_name_decl("_CRS", crs)); 101 aml_append(scope, dev); 102 } 103 104 static void acpi_dsdt_add_flash(Aml *scope, const MemMapEntry *flash_memmap) 105 { 106 Aml *dev, *crs; 107 hwaddr base = flash_memmap->base; 108 hwaddr size = flash_memmap->size / 2; 109 110 dev = aml_device("FLS0"); 111 aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015"))); 112 aml_append(dev, aml_name_decl("_UID", aml_int(0))); 113 114 crs = aml_resource_template(); 115 aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE)); 116 aml_append(dev, aml_name_decl("_CRS", crs)); 117 aml_append(scope, dev); 118 119 dev = aml_device("FLS1"); 120 aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015"))); 121 aml_append(dev, aml_name_decl("_UID", aml_int(1))); 122 crs = aml_resource_template(); 123 aml_append(crs, aml_memory32_fixed(base + size, size, AML_READ_WRITE)); 124 aml_append(dev, aml_name_decl("_CRS", crs)); 125 aml_append(scope, dev); 126 } 127 128 static void acpi_dsdt_add_virtio(Aml *scope, 129 const MemMapEntry *virtio_mmio_memmap, 130 uint32_t mmio_irq, int num) 131 { 132 hwaddr base = virtio_mmio_memmap->base; 133 hwaddr size = virtio_mmio_memmap->size; 134 int i; 135 136 for (i = 0; i < num; i++) { 137 uint32_t irq = mmio_irq + i; 138 Aml *dev = aml_device("VR%02u", i); 139 aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0005"))); 140 aml_append(dev, aml_name_decl("_UID", aml_int(i))); 141 aml_append(dev, aml_name_decl("_CCA", aml_int(1))); 142 143 Aml *crs = aml_resource_template(); 144 aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE)); 145 aml_append(crs, 146 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 147 AML_EXCLUSIVE, &irq, 1)); 148 aml_append(dev, aml_name_decl("_CRS", crs)); 149 aml_append(scope, dev); 150 base += size; 151 } 152 } 153 154 static void acpi_dsdt_add_pci(Aml *scope, const MemMapEntry *memmap, 155 uint32_t irq, bool use_highmem, bool highmem_ecam) 156 { 157 int ecam_id = VIRT_ECAM_ID(highmem_ecam); 158 Aml *method, *crs, *ifctx, *UUID, *ifctx1, *elsectx, *buf; 159 int i, bus_no; 160 hwaddr base_mmio = memmap[VIRT_PCIE_MMIO].base; 161 hwaddr size_mmio = memmap[VIRT_PCIE_MMIO].size; 162 hwaddr base_pio = memmap[VIRT_PCIE_PIO].base; 163 hwaddr size_pio = memmap[VIRT_PCIE_PIO].size; 164 hwaddr base_ecam = memmap[ecam_id].base; 165 hwaddr size_ecam = memmap[ecam_id].size; 166 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 167 168 Aml *dev = aml_device("%s", "PCI0"); 169 aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A08"))); 170 aml_append(dev, aml_name_decl("_CID", aml_string("PNP0A03"))); 171 aml_append(dev, aml_name_decl("_SEG", aml_int(0))); 172 aml_append(dev, aml_name_decl("_BBN", aml_int(0))); 173 aml_append(dev, aml_name_decl("_ADR", aml_int(0))); 174 aml_append(dev, aml_name_decl("_UID", aml_string("PCI0"))); 175 aml_append(dev, aml_name_decl("_STR", aml_unicode("PCIe 0 Device"))); 176 aml_append(dev, aml_name_decl("_CCA", aml_int(1))); 177 178 /* Declare the PCI Routing Table. */ 179 Aml *rt_pkg = aml_varpackage(nr_pcie_buses * PCI_NUM_PINS); 180 for (bus_no = 0; bus_no < nr_pcie_buses; bus_no++) { 181 for (i = 0; i < PCI_NUM_PINS; i++) { 182 int gsi = (i + bus_no) % PCI_NUM_PINS; 183 Aml *pkg = aml_package(4); 184 aml_append(pkg, aml_int((bus_no << 16) | 0xFFFF)); 185 aml_append(pkg, aml_int(i)); 186 aml_append(pkg, aml_name("GSI%d", gsi)); 187 aml_append(pkg, aml_int(0)); 188 aml_append(rt_pkg, pkg); 189 } 190 } 191 aml_append(dev, aml_name_decl("_PRT", rt_pkg)); 192 193 /* Create GSI link device */ 194 for (i = 0; i < PCI_NUM_PINS; i++) { 195 uint32_t irqs = irq + i; 196 Aml *dev_gsi = aml_device("GSI%d", i); 197 aml_append(dev_gsi, aml_name_decl("_HID", aml_string("PNP0C0F"))); 198 aml_append(dev_gsi, aml_name_decl("_UID", aml_int(0))); 199 crs = aml_resource_template(); 200 aml_append(crs, 201 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 202 AML_EXCLUSIVE, &irqs, 1)); 203 aml_append(dev_gsi, aml_name_decl("_PRS", crs)); 204 crs = aml_resource_template(); 205 aml_append(crs, 206 aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 207 AML_EXCLUSIVE, &irqs, 1)); 208 aml_append(dev_gsi, aml_name_decl("_CRS", crs)); 209 method = aml_method("_SRS", 1, AML_NOTSERIALIZED); 210 aml_append(dev_gsi, method); 211 aml_append(dev, dev_gsi); 212 } 213 214 method = aml_method("_CBA", 0, AML_NOTSERIALIZED); 215 aml_append(method, aml_return(aml_int(base_ecam))); 216 aml_append(dev, method); 217 218 method = aml_method("_CRS", 0, AML_NOTSERIALIZED); 219 Aml *rbuf = aml_resource_template(); 220 aml_append(rbuf, 221 aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE, 222 0x0000, 0x0000, nr_pcie_buses - 1, 0x0000, 223 nr_pcie_buses)); 224 aml_append(rbuf, 225 aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED, 226 AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_mmio, 227 base_mmio + size_mmio - 1, 0x0000, size_mmio)); 228 aml_append(rbuf, 229 aml_dword_io(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE, 230 AML_ENTIRE_RANGE, 0x0000, 0x0000, size_pio - 1, base_pio, 231 size_pio)); 232 233 if (use_highmem) { 234 hwaddr base_mmio_high = memmap[VIRT_HIGH_PCIE_MMIO].base; 235 hwaddr size_mmio_high = memmap[VIRT_HIGH_PCIE_MMIO].size; 236 237 aml_append(rbuf, 238 aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED, 239 AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, 240 base_mmio_high, 241 base_mmio_high + size_mmio_high - 1, 0x0000, 242 size_mmio_high)); 243 } 244 245 aml_append(method, aml_name_decl("RBUF", rbuf)); 246 aml_append(method, aml_return(rbuf)); 247 aml_append(dev, method); 248 249 /* Declare an _OSC (OS Control Handoff) method */ 250 aml_append(dev, aml_name_decl("SUPP", aml_int(0))); 251 aml_append(dev, aml_name_decl("CTRL", aml_int(0))); 252 method = aml_method("_OSC", 4, AML_NOTSERIALIZED); 253 aml_append(method, 254 aml_create_dword_field(aml_arg(3), aml_int(0), "CDW1")); 255 256 /* PCI Firmware Specification 3.0 257 * 4.5.1. _OSC Interface for PCI Host Bridge Devices 258 * The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is 259 * identified by the Universal Unique IDentifier (UUID) 260 * 33DB4D5B-1FF7-401C-9657-7441C03DD766 261 */ 262 UUID = aml_touuid("33DB4D5B-1FF7-401C-9657-7441C03DD766"); 263 ifctx = aml_if(aml_equal(aml_arg(0), UUID)); 264 aml_append(ifctx, 265 aml_create_dword_field(aml_arg(3), aml_int(4), "CDW2")); 266 aml_append(ifctx, 267 aml_create_dword_field(aml_arg(3), aml_int(8), "CDW3")); 268 aml_append(ifctx, aml_store(aml_name("CDW2"), aml_name("SUPP"))); 269 aml_append(ifctx, aml_store(aml_name("CDW3"), aml_name("CTRL"))); 270 271 /* 272 * Allow OS control for all 5 features: 273 * PCIeHotplug SHPCHotplug PME AER PCIeCapability. 274 */ 275 aml_append(ifctx, aml_and(aml_name("CTRL"), aml_int(0x1F), 276 aml_name("CTRL"))); 277 278 ifctx1 = aml_if(aml_lnot(aml_equal(aml_arg(1), aml_int(0x1)))); 279 aml_append(ifctx1, aml_or(aml_name("CDW1"), aml_int(0x08), 280 aml_name("CDW1"))); 281 aml_append(ifctx, ifctx1); 282 283 ifctx1 = aml_if(aml_lnot(aml_equal(aml_name("CDW3"), aml_name("CTRL")))); 284 aml_append(ifctx1, aml_or(aml_name("CDW1"), aml_int(0x10), 285 aml_name("CDW1"))); 286 aml_append(ifctx, ifctx1); 287 288 aml_append(ifctx, aml_store(aml_name("CTRL"), aml_name("CDW3"))); 289 aml_append(ifctx, aml_return(aml_arg(3))); 290 aml_append(method, ifctx); 291 292 elsectx = aml_else(); 293 aml_append(elsectx, aml_or(aml_name("CDW1"), aml_int(4), 294 aml_name("CDW1"))); 295 aml_append(elsectx, aml_return(aml_arg(3))); 296 aml_append(method, elsectx); 297 aml_append(dev, method); 298 299 method = aml_method("_DSM", 4, AML_NOTSERIALIZED); 300 301 /* PCI Firmware Specification 3.0 302 * 4.6.1. _DSM for PCI Express Slot Information 303 * The UUID in _DSM in this context is 304 * {E5C937D0-3553-4D7A-9117-EA4D19C3434D} 305 */ 306 UUID = aml_touuid("E5C937D0-3553-4D7A-9117-EA4D19C3434D"); 307 ifctx = aml_if(aml_equal(aml_arg(0), UUID)); 308 ifctx1 = aml_if(aml_equal(aml_arg(2), aml_int(0))); 309 uint8_t byte_list[1] = {1}; 310 buf = aml_buffer(1, byte_list); 311 aml_append(ifctx1, aml_return(buf)); 312 aml_append(ifctx, ifctx1); 313 aml_append(method, ifctx); 314 315 byte_list[0] = 0; 316 buf = aml_buffer(1, byte_list); 317 aml_append(method, aml_return(buf)); 318 aml_append(dev, method); 319 320 Aml *dev_rp0 = aml_device("%s", "RP0"); 321 aml_append(dev_rp0, aml_name_decl("_ADR", aml_int(0))); 322 aml_append(dev, dev_rp0); 323 324 Aml *dev_res0 = aml_device("%s", "RES0"); 325 aml_append(dev_res0, aml_name_decl("_HID", aml_string("PNP0C02"))); 326 crs = aml_resource_template(); 327 aml_append(crs, 328 aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED, 329 AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_ecam, 330 base_ecam + size_ecam - 1, 0x0000, size_ecam)); 331 aml_append(dev_res0, aml_name_decl("_CRS", crs)); 332 aml_append(dev, dev_res0); 333 aml_append(scope, dev); 334 } 335 336 static void acpi_dsdt_add_gpio(Aml *scope, const MemMapEntry *gpio_memmap, 337 uint32_t gpio_irq) 338 { 339 Aml *dev = aml_device("GPO0"); 340 aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0061"))); 341 aml_append(dev, aml_name_decl("_ADR", aml_int(0))); 342 aml_append(dev, aml_name_decl("_UID", aml_int(0))); 343 344 Aml *crs = aml_resource_template(); 345 aml_append(crs, aml_memory32_fixed(gpio_memmap->base, gpio_memmap->size, 346 AML_READ_WRITE)); 347 aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, 348 AML_EXCLUSIVE, &gpio_irq, 1)); 349 aml_append(dev, aml_name_decl("_CRS", crs)); 350 351 Aml *aei = aml_resource_template(); 352 /* Pin 3 for power button */ 353 const uint32_t pin_list[1] = {3}; 354 aml_append(aei, aml_gpio_int(AML_CONSUMER, AML_EDGE, AML_ACTIVE_HIGH, 355 AML_EXCLUSIVE, AML_PULL_UP, 0, pin_list, 1, 356 "GPO0", NULL, 0)); 357 aml_append(dev, aml_name_decl("_AEI", aei)); 358 359 /* _E03 is handle for power button */ 360 Aml *method = aml_method("_E03", 0, AML_NOTSERIALIZED); 361 aml_append(method, aml_notify(aml_name(ACPI_POWER_BUTTON_DEVICE), 362 aml_int(0x80))); 363 aml_append(dev, method); 364 aml_append(scope, dev); 365 } 366 367 static void acpi_dsdt_add_power_button(Aml *scope) 368 { 369 Aml *dev = aml_device(ACPI_POWER_BUTTON_DEVICE); 370 aml_append(dev, aml_name_decl("_HID", aml_string("PNP0C0C"))); 371 aml_append(dev, aml_name_decl("_ADR", aml_int(0))); 372 aml_append(dev, aml_name_decl("_UID", aml_int(0))); 373 aml_append(scope, dev); 374 } 375 376 static void 377 build_iort(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 378 { 379 int nb_nodes, iort_start = table_data->len; 380 AcpiIortIdMapping *idmap; 381 AcpiIortItsGroup *its; 382 AcpiIortTable *iort; 383 AcpiIortSmmu3 *smmu; 384 size_t node_size, iort_node_offset, iort_length, smmu_offset = 0; 385 AcpiIortRC *rc; 386 387 iort = acpi_data_push(table_data, sizeof(*iort)); 388 389 if (vms->iommu == VIRT_IOMMU_SMMUV3) { 390 nb_nodes = 3; /* RC, ITS, SMMUv3 */ 391 } else { 392 nb_nodes = 2; /* RC, ITS */ 393 } 394 395 iort_length = sizeof(*iort); 396 iort->node_count = cpu_to_le32(nb_nodes); 397 /* 398 * Use a copy in case table_data->data moves during acpi_data_push 399 * operations. 400 */ 401 iort_node_offset = sizeof(*iort); 402 iort->node_offset = cpu_to_le32(iort_node_offset); 403 404 /* ITS group node */ 405 node_size = sizeof(*its) + sizeof(uint32_t); 406 iort_length += node_size; 407 its = acpi_data_push(table_data, node_size); 408 409 its->type = ACPI_IORT_NODE_ITS_GROUP; 410 its->length = cpu_to_le16(node_size); 411 its->its_count = cpu_to_le32(1); 412 its->identifiers[0] = 0; /* MADT translation_id */ 413 414 if (vms->iommu == VIRT_IOMMU_SMMUV3) { 415 int irq = vms->irqmap[VIRT_SMMU] + ARM_SPI_BASE; 416 417 /* SMMUv3 node */ 418 smmu_offset = iort_node_offset + node_size; 419 node_size = sizeof(*smmu) + sizeof(*idmap); 420 iort_length += node_size; 421 smmu = acpi_data_push(table_data, node_size); 422 423 smmu->type = ACPI_IORT_NODE_SMMU_V3; 424 smmu->length = cpu_to_le16(node_size); 425 smmu->mapping_count = cpu_to_le32(1); 426 smmu->mapping_offset = cpu_to_le32(sizeof(*smmu)); 427 smmu->base_address = cpu_to_le64(vms->memmap[VIRT_SMMU].base); 428 smmu->flags = cpu_to_le32(ACPI_IORT_SMMU_V3_COHACC_OVERRIDE); 429 smmu->event_gsiv = cpu_to_le32(irq); 430 smmu->pri_gsiv = cpu_to_le32(irq + 1); 431 smmu->gerr_gsiv = cpu_to_le32(irq + 2); 432 smmu->sync_gsiv = cpu_to_le32(irq + 3); 433 434 /* Identity RID mapping covering the whole input RID range */ 435 idmap = &smmu->id_mapping_array[0]; 436 idmap->input_base = 0; 437 idmap->id_count = cpu_to_le32(0xFFFF); 438 idmap->output_base = 0; 439 /* output IORT node is the ITS group node (the first node) */ 440 idmap->output_reference = cpu_to_le32(iort_node_offset); 441 } 442 443 /* Root Complex Node */ 444 node_size = sizeof(*rc) + sizeof(*idmap); 445 iort_length += node_size; 446 rc = acpi_data_push(table_data, node_size); 447 448 rc->type = ACPI_IORT_NODE_PCI_ROOT_COMPLEX; 449 rc->length = cpu_to_le16(node_size); 450 rc->mapping_count = cpu_to_le32(1); 451 rc->mapping_offset = cpu_to_le32(sizeof(*rc)); 452 453 /* fully coherent device */ 454 rc->memory_properties.cache_coherency = cpu_to_le32(1); 455 rc->memory_properties.memory_flags = 0x3; /* CCA = CPM = DCAS = 1 */ 456 rc->pci_segment_number = 0; /* MCFG pci_segment */ 457 458 /* Identity RID mapping covering the whole input RID range */ 459 idmap = &rc->id_mapping_array[0]; 460 idmap->input_base = 0; 461 idmap->id_count = cpu_to_le32(0xFFFF); 462 idmap->output_base = 0; 463 464 if (vms->iommu == VIRT_IOMMU_SMMUV3) { 465 /* output IORT node is the smmuv3 node */ 466 idmap->output_reference = cpu_to_le32(smmu_offset); 467 } else { 468 /* output IORT node is the ITS group node (the first node) */ 469 idmap->output_reference = cpu_to_le32(iort_node_offset); 470 } 471 472 /* 473 * Update the pointer address in case table_data->data moves during above 474 * acpi_data_push operations. 475 */ 476 iort = (AcpiIortTable *)(table_data->data + iort_start); 477 iort->length = cpu_to_le32(iort_length); 478 479 build_header(linker, table_data, (void *)(table_data->data + iort_start), 480 "IORT", table_data->len - iort_start, 0, NULL, NULL); 481 } 482 483 static void 484 build_spcr(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 485 { 486 AcpiSerialPortConsoleRedirection *spcr; 487 const MemMapEntry *uart_memmap = &vms->memmap[VIRT_UART]; 488 int irq = vms->irqmap[VIRT_UART] + ARM_SPI_BASE; 489 int spcr_start = table_data->len; 490 491 spcr = acpi_data_push(table_data, sizeof(*spcr)); 492 493 spcr->interface_type = 0x3; /* ARM PL011 UART */ 494 495 spcr->base_address.space_id = AML_SYSTEM_MEMORY; 496 spcr->base_address.bit_width = 8; 497 spcr->base_address.bit_offset = 0; 498 spcr->base_address.access_width = 1; 499 spcr->base_address.address = cpu_to_le64(uart_memmap->base); 500 501 spcr->interrupt_types = (1 << 3); /* Bit[3] ARMH GIC interrupt */ 502 spcr->gsi = cpu_to_le32(irq); /* Global System Interrupt */ 503 504 spcr->baud = 3; /* Baud Rate: 3 = 9600 */ 505 spcr->parity = 0; /* No Parity */ 506 spcr->stopbits = 1; /* 1 Stop bit */ 507 spcr->flowctrl = (1 << 1); /* Bit[1] = RTS/CTS hardware flow control */ 508 spcr->term_type = 0; /* Terminal Type: 0 = VT100 */ 509 510 spcr->pci_device_id = 0xffff; /* PCI Device ID: not a PCI device */ 511 spcr->pci_vendor_id = 0xffff; /* PCI Vendor ID: not a PCI device */ 512 513 build_header(linker, table_data, (void *)(table_data->data + spcr_start), 514 "SPCR", table_data->len - spcr_start, 2, NULL, NULL); 515 } 516 517 static void 518 build_srat(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 519 { 520 AcpiSystemResourceAffinityTable *srat; 521 AcpiSratProcessorGiccAffinity *core; 522 AcpiSratMemoryAffinity *numamem; 523 int i, srat_start; 524 uint64_t mem_base; 525 MachineClass *mc = MACHINE_GET_CLASS(vms); 526 MachineState *ms = MACHINE(vms); 527 const CPUArchIdList *cpu_list = mc->possible_cpu_arch_ids(ms); 528 529 srat_start = table_data->len; 530 srat = acpi_data_push(table_data, sizeof(*srat)); 531 srat->reserved1 = cpu_to_le32(1); 532 533 for (i = 0; i < cpu_list->len; ++i) { 534 core = acpi_data_push(table_data, sizeof(*core)); 535 core->type = ACPI_SRAT_PROCESSOR_GICC; 536 core->length = sizeof(*core); 537 core->proximity = cpu_to_le32(cpu_list->cpus[i].props.node_id); 538 core->acpi_processor_uid = cpu_to_le32(i); 539 core->flags = cpu_to_le32(1); 540 } 541 542 mem_base = vms->memmap[VIRT_MEM].base; 543 for (i = 0; i < ms->numa_state->num_nodes; ++i) { 544 if (ms->numa_state->nodes[i].node_mem > 0) { 545 numamem = acpi_data_push(table_data, sizeof(*numamem)); 546 build_srat_memory(numamem, mem_base, 547 ms->numa_state->nodes[i].node_mem, i, 548 MEM_AFFINITY_ENABLED); 549 mem_base += ms->numa_state->nodes[i].node_mem; 550 } 551 } 552 553 if (ms->device_memory) { 554 numamem = acpi_data_push(table_data, sizeof *numamem); 555 build_srat_memory(numamem, ms->device_memory->base, 556 memory_region_size(&ms->device_memory->mr), 557 ms->numa_state->num_nodes - 1, 558 MEM_AFFINITY_HOTPLUGGABLE | MEM_AFFINITY_ENABLED); 559 } 560 561 build_header(linker, table_data, (void *)(table_data->data + srat_start), 562 "SRAT", table_data->len - srat_start, 3, NULL, NULL); 563 } 564 565 /* GTDT */ 566 static void 567 build_gtdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 568 { 569 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 570 int gtdt_start = table_data->len; 571 AcpiGenericTimerTable *gtdt; 572 uint32_t irqflags; 573 574 if (vmc->claim_edge_triggered_timers) { 575 irqflags = ACPI_GTDT_INTERRUPT_MODE_EDGE; 576 } else { 577 irqflags = ACPI_GTDT_INTERRUPT_MODE_LEVEL; 578 } 579 580 gtdt = acpi_data_push(table_data, sizeof *gtdt); 581 /* The interrupt values are the same with the device tree when adding 16 */ 582 gtdt->secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_S_EL1_IRQ + 16); 583 gtdt->secure_el1_flags = cpu_to_le32(irqflags); 584 585 gtdt->non_secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL1_IRQ + 16); 586 gtdt->non_secure_el1_flags = cpu_to_le32(irqflags | 587 ACPI_GTDT_CAP_ALWAYS_ON); 588 589 gtdt->virtual_timer_interrupt = cpu_to_le32(ARCH_TIMER_VIRT_IRQ + 16); 590 gtdt->virtual_timer_flags = cpu_to_le32(irqflags); 591 592 gtdt->non_secure_el2_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL2_IRQ + 16); 593 gtdt->non_secure_el2_flags = cpu_to_le32(irqflags); 594 595 build_header(linker, table_data, 596 (void *)(table_data->data + gtdt_start), "GTDT", 597 table_data->len - gtdt_start, 2, NULL, NULL); 598 } 599 600 /* MADT */ 601 static void 602 build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 603 { 604 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 605 int madt_start = table_data->len; 606 const MemMapEntry *memmap = vms->memmap; 607 const int *irqmap = vms->irqmap; 608 AcpiMultipleApicTable *madt; 609 AcpiMadtGenericDistributor *gicd; 610 AcpiMadtGenericMsiFrame *gic_msi; 611 int i; 612 613 madt = acpi_data_push(table_data, sizeof *madt); 614 615 gicd = acpi_data_push(table_data, sizeof *gicd); 616 gicd->type = ACPI_APIC_GENERIC_DISTRIBUTOR; 617 gicd->length = sizeof(*gicd); 618 gicd->base_address = cpu_to_le64(memmap[VIRT_GIC_DIST].base); 619 gicd->version = vms->gic_version; 620 621 for (i = 0; i < vms->smp_cpus; i++) { 622 AcpiMadtGenericCpuInterface *gicc = acpi_data_push(table_data, 623 sizeof(*gicc)); 624 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i)); 625 626 gicc->type = ACPI_APIC_GENERIC_CPU_INTERFACE; 627 gicc->length = sizeof(*gicc); 628 if (vms->gic_version == 2) { 629 gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base); 630 gicc->gich_base_address = cpu_to_le64(memmap[VIRT_GIC_HYP].base); 631 gicc->gicv_base_address = cpu_to_le64(memmap[VIRT_GIC_VCPU].base); 632 } 633 gicc->cpu_interface_number = cpu_to_le32(i); 634 gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity); 635 gicc->uid = cpu_to_le32(i); 636 gicc->flags = cpu_to_le32(ACPI_MADT_GICC_ENABLED); 637 638 if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 639 gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ)); 640 } 641 if (vms->virt) { 642 gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GIC_MAINT_IRQ)); 643 } 644 } 645 646 if (vms->gic_version == 3) { 647 AcpiMadtGenericTranslator *gic_its; 648 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 649 AcpiMadtGenericRedistributor *gicr = acpi_data_push(table_data, 650 sizeof *gicr); 651 652 gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR; 653 gicr->length = sizeof(*gicr); 654 gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST].base); 655 gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST].size); 656 657 if (nb_redist_regions == 2) { 658 gicr = acpi_data_push(table_data, sizeof(*gicr)); 659 gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR; 660 gicr->length = sizeof(*gicr); 661 gicr->base_address = 662 cpu_to_le64(memmap[VIRT_HIGH_GIC_REDIST2].base); 663 gicr->range_length = 664 cpu_to_le32(memmap[VIRT_HIGH_GIC_REDIST2].size); 665 } 666 667 if (its_class_name() && !vmc->no_its) { 668 gic_its = acpi_data_push(table_data, sizeof *gic_its); 669 gic_its->type = ACPI_APIC_GENERIC_TRANSLATOR; 670 gic_its->length = sizeof(*gic_its); 671 gic_its->translation_id = 0; 672 gic_its->base_address = cpu_to_le64(memmap[VIRT_GIC_ITS].base); 673 } 674 } else { 675 gic_msi = acpi_data_push(table_data, sizeof *gic_msi); 676 gic_msi->type = ACPI_APIC_GENERIC_MSI_FRAME; 677 gic_msi->length = sizeof(*gic_msi); 678 gic_msi->gic_msi_frame_id = 0; 679 gic_msi->base_address = cpu_to_le64(memmap[VIRT_GIC_V2M].base); 680 gic_msi->flags = cpu_to_le32(1); 681 gic_msi->spi_count = cpu_to_le16(NUM_GICV2M_SPIS); 682 gic_msi->spi_base = cpu_to_le16(irqmap[VIRT_GIC_V2M] + ARM_SPI_BASE); 683 } 684 685 build_header(linker, table_data, 686 (void *)(table_data->data + madt_start), "APIC", 687 table_data->len - madt_start, 3, NULL, NULL); 688 } 689 690 /* FADT */ 691 static void build_fadt_rev5(GArray *table_data, BIOSLinker *linker, 692 VirtMachineState *vms, unsigned dsdt_tbl_offset) 693 { 694 /* ACPI v5.1 */ 695 AcpiFadtData fadt = { 696 .rev = 5, 697 .minor_ver = 1, 698 .flags = 1 << ACPI_FADT_F_HW_REDUCED_ACPI, 699 .xdsdt_tbl_offset = &dsdt_tbl_offset, 700 }; 701 702 switch (vms->psci_conduit) { 703 case QEMU_PSCI_CONDUIT_DISABLED: 704 fadt.arm_boot_arch = 0; 705 break; 706 case QEMU_PSCI_CONDUIT_HVC: 707 fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT | 708 ACPI_FADT_ARM_PSCI_USE_HVC; 709 break; 710 case QEMU_PSCI_CONDUIT_SMC: 711 fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT; 712 break; 713 default: 714 g_assert_not_reached(); 715 } 716 717 build_fadt(table_data, linker, &fadt, NULL, NULL); 718 } 719 720 /* DSDT */ 721 static void 722 build_dsdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms) 723 { 724 Aml *scope, *dsdt; 725 MachineState *ms = MACHINE(vms); 726 const MemMapEntry *memmap = vms->memmap; 727 const int *irqmap = vms->irqmap; 728 729 dsdt = init_aml_allocator(); 730 /* Reserve space for header */ 731 acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader)); 732 733 /* When booting the VM with UEFI, UEFI takes ownership of the RTC hardware. 734 * While UEFI can use libfdt to disable the RTC device node in the DTB that 735 * it passes to the OS, it cannot modify AML. Therefore, we won't generate 736 * the RTC ACPI device at all when using UEFI. 737 */ 738 scope = aml_scope("\\_SB"); 739 acpi_dsdt_add_cpus(scope, vms->smp_cpus); 740 acpi_dsdt_add_uart(scope, &memmap[VIRT_UART], 741 (irqmap[VIRT_UART] + ARM_SPI_BASE)); 742 acpi_dsdt_add_flash(scope, &memmap[VIRT_FLASH]); 743 acpi_dsdt_add_fw_cfg(scope, &memmap[VIRT_FW_CFG]); 744 acpi_dsdt_add_virtio(scope, &memmap[VIRT_MMIO], 745 (irqmap[VIRT_MMIO] + ARM_SPI_BASE), NUM_VIRTIO_TRANSPORTS); 746 acpi_dsdt_add_pci(scope, memmap, (irqmap[VIRT_PCIE] + ARM_SPI_BASE), 747 vms->highmem, vms->highmem_ecam); 748 if (vms->acpi_dev) { 749 build_ged_aml(scope, "\\_SB."GED_DEVICE, 750 HOTPLUG_HANDLER(vms->acpi_dev), 751 irqmap[VIRT_ACPI_GED] + ARM_SPI_BASE, AML_SYSTEM_MEMORY, 752 memmap[VIRT_ACPI_GED].base); 753 } else { 754 acpi_dsdt_add_gpio(scope, &memmap[VIRT_GPIO], 755 (irqmap[VIRT_GPIO] + ARM_SPI_BASE)); 756 } 757 758 if (vms->acpi_dev) { 759 uint32_t event = object_property_get_uint(OBJECT(vms->acpi_dev), 760 "ged-event", &error_abort); 761 762 if (event & ACPI_GED_MEM_HOTPLUG_EVT) { 763 build_memory_hotplug_aml(scope, ms->ram_slots, "\\_SB", NULL, 764 AML_SYSTEM_MEMORY, 765 memmap[VIRT_PCDIMM_ACPI].base); 766 } 767 } 768 769 acpi_dsdt_add_power_button(scope); 770 771 aml_append(dsdt, scope); 772 773 /* copy AML table into ACPI tables blob and patch header there */ 774 g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len); 775 build_header(linker, table_data, 776 (void *)(table_data->data + table_data->len - dsdt->buf->len), 777 "DSDT", dsdt->buf->len, 2, NULL, NULL); 778 free_aml_allocator(); 779 } 780 781 typedef 782 struct AcpiBuildState { 783 /* Copy of table in RAM (for patching). */ 784 MemoryRegion *table_mr; 785 MemoryRegion *rsdp_mr; 786 MemoryRegion *linker_mr; 787 /* Is table patched? */ 788 bool patched; 789 } AcpiBuildState; 790 791 static 792 void virt_acpi_build(VirtMachineState *vms, AcpiBuildTables *tables) 793 { 794 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 795 GArray *table_offsets; 796 unsigned dsdt, xsdt; 797 GArray *tables_blob = tables->table_data; 798 MachineState *ms = MACHINE(vms); 799 800 table_offsets = g_array_new(false, true /* clear */, 801 sizeof(uint32_t)); 802 803 bios_linker_loader_alloc(tables->linker, 804 ACPI_BUILD_TABLE_FILE, tables_blob, 805 64, false /* high memory */); 806 807 /* DSDT is pointed to by FADT */ 808 dsdt = tables_blob->len; 809 build_dsdt(tables_blob, tables->linker, vms); 810 811 /* FADT MADT GTDT MCFG SPCR pointed to by RSDT */ 812 acpi_add_table(table_offsets, tables_blob); 813 build_fadt_rev5(tables_blob, tables->linker, vms, dsdt); 814 815 acpi_add_table(table_offsets, tables_blob); 816 build_madt(tables_blob, tables->linker, vms); 817 818 acpi_add_table(table_offsets, tables_blob); 819 build_gtdt(tables_blob, tables->linker, vms); 820 821 acpi_add_table(table_offsets, tables_blob); 822 { 823 AcpiMcfgInfo mcfg = { 824 .base = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].base, 825 .size = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].size, 826 }; 827 build_mcfg(tables_blob, tables->linker, &mcfg); 828 } 829 830 acpi_add_table(table_offsets, tables_blob); 831 build_spcr(tables_blob, tables->linker, vms); 832 833 if (ms->numa_state->num_nodes > 0) { 834 acpi_add_table(table_offsets, tables_blob); 835 build_srat(tables_blob, tables->linker, vms); 836 if (ms->numa_state->have_numa_distance) { 837 acpi_add_table(table_offsets, tables_blob); 838 build_slit(tables_blob, tables->linker, ms); 839 } 840 } 841 842 if (its_class_name() && !vmc->no_its) { 843 acpi_add_table(table_offsets, tables_blob); 844 build_iort(tables_blob, tables->linker, vms); 845 } 846 847 /* XSDT is pointed to by RSDP */ 848 xsdt = tables_blob->len; 849 build_xsdt(tables_blob, tables->linker, table_offsets, NULL, NULL); 850 851 /* RSDP is in FSEG memory, so allocate it separately */ 852 { 853 AcpiRsdpData rsdp_data = { 854 .revision = 2, 855 .oem_id = ACPI_BUILD_APPNAME6, 856 .xsdt_tbl_offset = &xsdt, 857 .rsdt_tbl_offset = NULL, 858 }; 859 build_rsdp(tables->rsdp, tables->linker, &rsdp_data); 860 } 861 862 /* Cleanup memory that's no longer used. */ 863 g_array_free(table_offsets, true); 864 } 865 866 static void acpi_ram_update(MemoryRegion *mr, GArray *data) 867 { 868 uint32_t size = acpi_data_len(data); 869 870 /* Make sure RAM size is correct - in case it got changed 871 * e.g. by migration */ 872 memory_region_ram_resize(mr, size, &error_abort); 873 874 memcpy(memory_region_get_ram_ptr(mr), data->data, size); 875 memory_region_set_dirty(mr, 0, size); 876 } 877 878 static void virt_acpi_build_update(void *build_opaque) 879 { 880 AcpiBuildState *build_state = build_opaque; 881 AcpiBuildTables tables; 882 883 /* No state to update or already patched? Nothing to do. */ 884 if (!build_state || build_state->patched) { 885 return; 886 } 887 build_state->patched = true; 888 889 acpi_build_tables_init(&tables); 890 891 virt_acpi_build(VIRT_MACHINE(qdev_get_machine()), &tables); 892 893 acpi_ram_update(build_state->table_mr, tables.table_data); 894 acpi_ram_update(build_state->rsdp_mr, tables.rsdp); 895 acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob); 896 897 acpi_build_tables_cleanup(&tables, true); 898 } 899 900 static void virt_acpi_build_reset(void *build_opaque) 901 { 902 AcpiBuildState *build_state = build_opaque; 903 build_state->patched = false; 904 } 905 906 static const VMStateDescription vmstate_virt_acpi_build = { 907 .name = "virt_acpi_build", 908 .version_id = 1, 909 .minimum_version_id = 1, 910 .fields = (VMStateField[]) { 911 VMSTATE_BOOL(patched, AcpiBuildState), 912 VMSTATE_END_OF_LIST() 913 }, 914 }; 915 916 void virt_acpi_setup(VirtMachineState *vms) 917 { 918 AcpiBuildTables tables; 919 AcpiBuildState *build_state; 920 921 if (!vms->fw_cfg) { 922 trace_virt_acpi_setup(); 923 return; 924 } 925 926 if (!acpi_enabled) { 927 trace_virt_acpi_setup(); 928 return; 929 } 930 931 build_state = g_malloc0(sizeof *build_state); 932 933 acpi_build_tables_init(&tables); 934 virt_acpi_build(vms, &tables); 935 936 /* Now expose it all to Guest */ 937 build_state->table_mr = acpi_add_rom_blob(virt_acpi_build_update, 938 build_state, tables.table_data, 939 ACPI_BUILD_TABLE_FILE, 940 ACPI_BUILD_TABLE_MAX_SIZE); 941 assert(build_state->table_mr != NULL); 942 943 build_state->linker_mr = 944 acpi_add_rom_blob(virt_acpi_build_update, build_state, 945 tables.linker->cmd_blob, "etc/table-loader", 0); 946 947 fw_cfg_add_file(vms->fw_cfg, ACPI_BUILD_TPMLOG_FILE, tables.tcpalog->data, 948 acpi_data_len(tables.tcpalog)); 949 950 build_state->rsdp_mr = acpi_add_rom_blob(virt_acpi_build_update, 951 build_state, tables.rsdp, 952 ACPI_BUILD_RSDP_FILE, 0); 953 954 qemu_register_reset(virt_acpi_build_reset, build_state); 955 virt_acpi_build_reset(build_state); 956 vmstate_register(NULL, 0, &vmstate_virt_acpi_build, build_state); 957 958 /* Cleanup tables but don't free the memory: we track it 959 * in build_state. 960 */ 961 acpi_build_tables_cleanup(&tables, false); 962 } 963