xref: /openbmc/qemu/hw/arm/virt-acpi-build.c (revision 10df8ff1)
1 /* Support for generating ACPI tables and passing them to Guests
2  *
3  * ARM virt ACPI generation
4  *
5  * Copyright (C) 2008-2010  Kevin O'Connor <kevin@koconnor.net>
6  * Copyright (C) 2006 Fabrice Bellard
7  * Copyright (C) 2013 Red Hat Inc
8  *
9  * Author: Michael S. Tsirkin <mst@redhat.com>
10  *
11  * Copyright (c) 2015 HUAWEI TECHNOLOGIES CO.,LTD.
12  *
13  * Author: Shannon Zhao <zhaoshenglong@huawei.com>
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19 
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24 
25  * You should have received a copy of the GNU General Public License along
26  * with this program; if not, see <http://www.gnu.org/licenses/>.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qapi/error.h"
31 #include "qemu-common.h"
32 #include "qemu/bitmap.h"
33 #include "trace.h"
34 #include "qom/cpu.h"
35 #include "target/arm/cpu.h"
36 #include "hw/acpi/acpi-defs.h"
37 #include "hw/acpi/acpi.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/acpi/bios-linker-loader.h"
40 #include "hw/loader.h"
41 #include "hw/hw.h"
42 #include "hw/acpi/aml-build.h"
43 #include "hw/pci/pcie_host.h"
44 #include "hw/pci/pci.h"
45 #include "hw/arm/virt.h"
46 #include "sysemu/numa.h"
47 #include "kvm_arm.h"
48 
49 #define ARM_SPI_BASE 32
50 #define ACPI_POWER_BUTTON_DEVICE "PWRB"
51 
52 static void acpi_dsdt_add_cpus(Aml *scope, int smp_cpus)
53 {
54     uint16_t i;
55 
56     for (i = 0; i < smp_cpus; i++) {
57         Aml *dev = aml_device("C%.03X", i);
58         aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007")));
59         aml_append(dev, aml_name_decl("_UID", aml_int(i)));
60         aml_append(scope, dev);
61     }
62 }
63 
64 static void acpi_dsdt_add_uart(Aml *scope, const MemMapEntry *uart_memmap,
65                                            uint32_t uart_irq)
66 {
67     Aml *dev = aml_device("COM0");
68     aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0011")));
69     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
70 
71     Aml *crs = aml_resource_template();
72     aml_append(crs, aml_memory32_fixed(uart_memmap->base,
73                                        uart_memmap->size, AML_READ_WRITE));
74     aml_append(crs,
75                aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
76                              AML_EXCLUSIVE, &uart_irq, 1));
77     aml_append(dev, aml_name_decl("_CRS", crs));
78 
79     /* The _ADR entry is used to link this device to the UART described
80      * in the SPCR table, i.e. SPCR.base_address.address == _ADR.
81      */
82     aml_append(dev, aml_name_decl("_ADR", aml_int(uart_memmap->base)));
83 
84     aml_append(scope, dev);
85 }
86 
87 static void acpi_dsdt_add_fw_cfg(Aml *scope, const MemMapEntry *fw_cfg_memmap)
88 {
89     Aml *dev = aml_device("FWCF");
90     aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002")));
91     /* device present, functioning, decoding, not shown in UI */
92     aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
93     aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
94 
95     Aml *crs = aml_resource_template();
96     aml_append(crs, aml_memory32_fixed(fw_cfg_memmap->base,
97                                        fw_cfg_memmap->size, AML_READ_WRITE));
98     aml_append(dev, aml_name_decl("_CRS", crs));
99     aml_append(scope, dev);
100 }
101 
102 static void acpi_dsdt_add_flash(Aml *scope, const MemMapEntry *flash_memmap)
103 {
104     Aml *dev, *crs;
105     hwaddr base = flash_memmap->base;
106     hwaddr size = flash_memmap->size / 2;
107 
108     dev = aml_device("FLS0");
109     aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
110     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
111 
112     crs = aml_resource_template();
113     aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
114     aml_append(dev, aml_name_decl("_CRS", crs));
115     aml_append(scope, dev);
116 
117     dev = aml_device("FLS1");
118     aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
119     aml_append(dev, aml_name_decl("_UID", aml_int(1)));
120     crs = aml_resource_template();
121     aml_append(crs, aml_memory32_fixed(base + size, size, AML_READ_WRITE));
122     aml_append(dev, aml_name_decl("_CRS", crs));
123     aml_append(scope, dev);
124 }
125 
126 static void acpi_dsdt_add_virtio(Aml *scope,
127                                  const MemMapEntry *virtio_mmio_memmap,
128                                  uint32_t mmio_irq, int num)
129 {
130     hwaddr base = virtio_mmio_memmap->base;
131     hwaddr size = virtio_mmio_memmap->size;
132     int i;
133 
134     for (i = 0; i < num; i++) {
135         uint32_t irq = mmio_irq + i;
136         Aml *dev = aml_device("VR%02u", i);
137         aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0005")));
138         aml_append(dev, aml_name_decl("_UID", aml_int(i)));
139         aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
140 
141         Aml *crs = aml_resource_template();
142         aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
143         aml_append(crs,
144                    aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
145                                  AML_EXCLUSIVE, &irq, 1));
146         aml_append(dev, aml_name_decl("_CRS", crs));
147         aml_append(scope, dev);
148         base += size;
149     }
150 }
151 
152 static void acpi_dsdt_add_pci(Aml *scope, const MemMapEntry *memmap,
153                               uint32_t irq, bool use_highmem, bool highmem_ecam)
154 {
155     int ecam_id = VIRT_ECAM_ID(highmem_ecam);
156     Aml *method, *crs, *ifctx, *UUID, *ifctx1, *elsectx, *buf;
157     int i, bus_no;
158     hwaddr base_mmio = memmap[VIRT_PCIE_MMIO].base;
159     hwaddr size_mmio = memmap[VIRT_PCIE_MMIO].size;
160     hwaddr base_pio = memmap[VIRT_PCIE_PIO].base;
161     hwaddr size_pio = memmap[VIRT_PCIE_PIO].size;
162     hwaddr base_ecam = memmap[ecam_id].base;
163     hwaddr size_ecam = memmap[ecam_id].size;
164     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
165 
166     Aml *dev = aml_device("%s", "PCI0");
167     aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A08")));
168     aml_append(dev, aml_name_decl("_CID", aml_string("PNP0A03")));
169     aml_append(dev, aml_name_decl("_SEG", aml_int(0)));
170     aml_append(dev, aml_name_decl("_BBN", aml_int(0)));
171     aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
172     aml_append(dev, aml_name_decl("_UID", aml_string("PCI0")));
173     aml_append(dev, aml_name_decl("_STR", aml_unicode("PCIe 0 Device")));
174     aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
175 
176     /* Declare the PCI Routing Table. */
177     Aml *rt_pkg = aml_varpackage(nr_pcie_buses * PCI_NUM_PINS);
178     for (bus_no = 0; bus_no < nr_pcie_buses; bus_no++) {
179         for (i = 0; i < PCI_NUM_PINS; i++) {
180             int gsi = (i + bus_no) % PCI_NUM_PINS;
181             Aml *pkg = aml_package(4);
182             aml_append(pkg, aml_int((bus_no << 16) | 0xFFFF));
183             aml_append(pkg, aml_int(i));
184             aml_append(pkg, aml_name("GSI%d", gsi));
185             aml_append(pkg, aml_int(0));
186             aml_append(rt_pkg, pkg);
187         }
188     }
189     aml_append(dev, aml_name_decl("_PRT", rt_pkg));
190 
191     /* Create GSI link device */
192     for (i = 0; i < PCI_NUM_PINS; i++) {
193         uint32_t irqs =  irq + i;
194         Aml *dev_gsi = aml_device("GSI%d", i);
195         aml_append(dev_gsi, aml_name_decl("_HID", aml_string("PNP0C0F")));
196         aml_append(dev_gsi, aml_name_decl("_UID", aml_int(0)));
197         crs = aml_resource_template();
198         aml_append(crs,
199                    aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
200                                  AML_EXCLUSIVE, &irqs, 1));
201         aml_append(dev_gsi, aml_name_decl("_PRS", crs));
202         crs = aml_resource_template();
203         aml_append(crs,
204                    aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
205                                  AML_EXCLUSIVE, &irqs, 1));
206         aml_append(dev_gsi, aml_name_decl("_CRS", crs));
207         method = aml_method("_SRS", 1, AML_NOTSERIALIZED);
208         aml_append(dev_gsi, method);
209         aml_append(dev, dev_gsi);
210     }
211 
212     method = aml_method("_CBA", 0, AML_NOTSERIALIZED);
213     aml_append(method, aml_return(aml_int(base_ecam)));
214     aml_append(dev, method);
215 
216     method = aml_method("_CRS", 0, AML_NOTSERIALIZED);
217     Aml *rbuf = aml_resource_template();
218     aml_append(rbuf,
219         aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
220                             0x0000, 0x0000, nr_pcie_buses - 1, 0x0000,
221                             nr_pcie_buses));
222     aml_append(rbuf,
223         aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
224                          AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_mmio,
225                          base_mmio + size_mmio - 1, 0x0000, size_mmio));
226     aml_append(rbuf,
227         aml_dword_io(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
228                      AML_ENTIRE_RANGE, 0x0000, 0x0000, size_pio - 1, base_pio,
229                      size_pio));
230 
231     if (use_highmem) {
232         hwaddr base_mmio_high = memmap[VIRT_PCIE_MMIO_HIGH].base;
233         hwaddr size_mmio_high = memmap[VIRT_PCIE_MMIO_HIGH].size;
234 
235         aml_append(rbuf,
236             aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
237                              AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000,
238                              base_mmio_high,
239                              base_mmio_high + size_mmio_high - 1, 0x0000,
240                              size_mmio_high));
241     }
242 
243     aml_append(method, aml_name_decl("RBUF", rbuf));
244     aml_append(method, aml_return(rbuf));
245     aml_append(dev, method);
246 
247     /* Declare an _OSC (OS Control Handoff) method */
248     aml_append(dev, aml_name_decl("SUPP", aml_int(0)));
249     aml_append(dev, aml_name_decl("CTRL", aml_int(0)));
250     method = aml_method("_OSC", 4, AML_NOTSERIALIZED);
251     aml_append(method,
252         aml_create_dword_field(aml_arg(3), aml_int(0), "CDW1"));
253 
254     /* PCI Firmware Specification 3.0
255      * 4.5.1. _OSC Interface for PCI Host Bridge Devices
256      * The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is
257      * identified by the Universal Unique IDentifier (UUID)
258      * 33DB4D5B-1FF7-401C-9657-7441C03DD766
259      */
260     UUID = aml_touuid("33DB4D5B-1FF7-401C-9657-7441C03DD766");
261     ifctx = aml_if(aml_equal(aml_arg(0), UUID));
262     aml_append(ifctx,
263         aml_create_dword_field(aml_arg(3), aml_int(4), "CDW2"));
264     aml_append(ifctx,
265         aml_create_dword_field(aml_arg(3), aml_int(8), "CDW3"));
266     aml_append(ifctx, aml_store(aml_name("CDW2"), aml_name("SUPP")));
267     aml_append(ifctx, aml_store(aml_name("CDW3"), aml_name("CTRL")));
268     aml_append(ifctx, aml_store(aml_and(aml_name("CTRL"), aml_int(0x1D), NULL),
269                                 aml_name("CTRL")));
270 
271     ifctx1 = aml_if(aml_lnot(aml_equal(aml_arg(1), aml_int(0x1))));
272     aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x08), NULL),
273                                  aml_name("CDW1")));
274     aml_append(ifctx, ifctx1);
275 
276     ifctx1 = aml_if(aml_lnot(aml_equal(aml_name("CDW3"), aml_name("CTRL"))));
277     aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x10), NULL),
278                                  aml_name("CDW1")));
279     aml_append(ifctx, ifctx1);
280 
281     aml_append(ifctx, aml_store(aml_name("CTRL"), aml_name("CDW3")));
282     aml_append(ifctx, aml_return(aml_arg(3)));
283     aml_append(method, ifctx);
284 
285     elsectx = aml_else();
286     aml_append(elsectx, aml_store(aml_or(aml_name("CDW1"), aml_int(4), NULL),
287                                   aml_name("CDW1")));
288     aml_append(elsectx, aml_return(aml_arg(3)));
289     aml_append(method, elsectx);
290     aml_append(dev, method);
291 
292     method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
293 
294     /* PCI Firmware Specification 3.0
295      * 4.6.1. _DSM for PCI Express Slot Information
296      * The UUID in _DSM in this context is
297      * {E5C937D0-3553-4D7A-9117-EA4D19C3434D}
298      */
299     UUID = aml_touuid("E5C937D0-3553-4D7A-9117-EA4D19C3434D");
300     ifctx = aml_if(aml_equal(aml_arg(0), UUID));
301     ifctx1 = aml_if(aml_equal(aml_arg(2), aml_int(0)));
302     uint8_t byte_list[1] = {1};
303     buf = aml_buffer(1, byte_list);
304     aml_append(ifctx1, aml_return(buf));
305     aml_append(ifctx, ifctx1);
306     aml_append(method, ifctx);
307 
308     byte_list[0] = 0;
309     buf = aml_buffer(1, byte_list);
310     aml_append(method, aml_return(buf));
311     aml_append(dev, method);
312 
313     Aml *dev_rp0 = aml_device("%s", "RP0");
314     aml_append(dev_rp0, aml_name_decl("_ADR", aml_int(0)));
315     aml_append(dev, dev_rp0);
316 
317     Aml *dev_res0 = aml_device("%s", "RES0");
318     aml_append(dev_res0, aml_name_decl("_HID", aml_string("PNP0C02")));
319     crs = aml_resource_template();
320     aml_append(crs,
321         aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
322                          AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_ecam,
323                          base_ecam + size_ecam - 1, 0x0000, size_ecam));
324     aml_append(dev_res0, aml_name_decl("_CRS", crs));
325     aml_append(dev, dev_res0);
326     aml_append(scope, dev);
327 }
328 
329 static void acpi_dsdt_add_gpio(Aml *scope, const MemMapEntry *gpio_memmap,
330                                            uint32_t gpio_irq)
331 {
332     Aml *dev = aml_device("GPO0");
333     aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0061")));
334     aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
335     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
336 
337     Aml *crs = aml_resource_template();
338     aml_append(crs, aml_memory32_fixed(gpio_memmap->base, gpio_memmap->size,
339                                        AML_READ_WRITE));
340     aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
341                                   AML_EXCLUSIVE, &gpio_irq, 1));
342     aml_append(dev, aml_name_decl("_CRS", crs));
343 
344     Aml *aei = aml_resource_template();
345     /* Pin 3 for power button */
346     const uint32_t pin_list[1] = {3};
347     aml_append(aei, aml_gpio_int(AML_CONSUMER, AML_EDGE, AML_ACTIVE_HIGH,
348                                  AML_EXCLUSIVE, AML_PULL_UP, 0, pin_list, 1,
349                                  "GPO0", NULL, 0));
350     aml_append(dev, aml_name_decl("_AEI", aei));
351 
352     /* _E03 is handle for power button */
353     Aml *method = aml_method("_E03", 0, AML_NOTSERIALIZED);
354     aml_append(method, aml_notify(aml_name(ACPI_POWER_BUTTON_DEVICE),
355                                   aml_int(0x80)));
356     aml_append(dev, method);
357     aml_append(scope, dev);
358 }
359 
360 static void acpi_dsdt_add_power_button(Aml *scope)
361 {
362     Aml *dev = aml_device(ACPI_POWER_BUTTON_DEVICE);
363     aml_append(dev, aml_name_decl("_HID", aml_string("PNP0C0C")));
364     aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
365     aml_append(dev, aml_name_decl("_UID", aml_int(0)));
366     aml_append(scope, dev);
367 }
368 
369 static void
370 build_iort(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
371 {
372     int nb_nodes, iort_start = table_data->len;
373     AcpiIortIdMapping *idmap;
374     AcpiIortItsGroup *its;
375     AcpiIortTable *iort;
376     AcpiIortSmmu3 *smmu;
377     size_t node_size, iort_node_offset, iort_length, smmu_offset = 0;
378     AcpiIortRC *rc;
379 
380     iort = acpi_data_push(table_data, sizeof(*iort));
381 
382     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
383         nb_nodes = 3; /* RC, ITS, SMMUv3 */
384     } else {
385         nb_nodes = 2; /* RC, ITS */
386     }
387 
388     iort_length = sizeof(*iort);
389     iort->node_count = cpu_to_le32(nb_nodes);
390     /*
391      * Use a copy in case table_data->data moves during acpi_data_push
392      * operations.
393      */
394     iort_node_offset = sizeof(*iort);
395     iort->node_offset = cpu_to_le32(iort_node_offset);
396 
397     /* ITS group node */
398     node_size =  sizeof(*its) + sizeof(uint32_t);
399     iort_length += node_size;
400     its = acpi_data_push(table_data, node_size);
401 
402     its->type = ACPI_IORT_NODE_ITS_GROUP;
403     its->length = cpu_to_le16(node_size);
404     its->its_count = cpu_to_le32(1);
405     its->identifiers[0] = 0; /* MADT translation_id */
406 
407     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
408         int irq =  vms->irqmap[VIRT_SMMU];
409 
410         /* SMMUv3 node */
411         smmu_offset = iort_node_offset + node_size;
412         node_size = sizeof(*smmu) + sizeof(*idmap);
413         iort_length += node_size;
414         smmu = acpi_data_push(table_data, node_size);
415 
416         smmu->type = ACPI_IORT_NODE_SMMU_V3;
417         smmu->length = cpu_to_le16(node_size);
418         smmu->mapping_count = cpu_to_le32(1);
419         smmu->mapping_offset = cpu_to_le32(sizeof(*smmu));
420         smmu->base_address = cpu_to_le64(vms->memmap[VIRT_SMMU].base);
421         smmu->flags = cpu_to_le32(ACPI_IORT_SMMU_V3_COHACC_OVERRIDE);
422         smmu->event_gsiv = cpu_to_le32(irq);
423         smmu->pri_gsiv = cpu_to_le32(irq + 1);
424         smmu->gerr_gsiv = cpu_to_le32(irq + 2);
425         smmu->sync_gsiv = cpu_to_le32(irq + 3);
426 
427         /* Identity RID mapping covering the whole input RID range */
428         idmap = &smmu->id_mapping_array[0];
429         idmap->input_base = 0;
430         idmap->id_count = cpu_to_le32(0xFFFF);
431         idmap->output_base = 0;
432         /* output IORT node is the ITS group node (the first node) */
433         idmap->output_reference = cpu_to_le32(iort_node_offset);
434     }
435 
436     /* Root Complex Node */
437     node_size = sizeof(*rc) + sizeof(*idmap);
438     iort_length += node_size;
439     rc = acpi_data_push(table_data, node_size);
440 
441     rc->type = ACPI_IORT_NODE_PCI_ROOT_COMPLEX;
442     rc->length = cpu_to_le16(node_size);
443     rc->mapping_count = cpu_to_le32(1);
444     rc->mapping_offset = cpu_to_le32(sizeof(*rc));
445 
446     /* fully coherent device */
447     rc->memory_properties.cache_coherency = cpu_to_le32(1);
448     rc->memory_properties.memory_flags = 0x3; /* CCA = CPM = DCAS = 1 */
449     rc->pci_segment_number = 0; /* MCFG pci_segment */
450 
451     /* Identity RID mapping covering the whole input RID range */
452     idmap = &rc->id_mapping_array[0];
453     idmap->input_base = 0;
454     idmap->id_count = cpu_to_le32(0xFFFF);
455     idmap->output_base = 0;
456 
457     if (vms->iommu == VIRT_IOMMU_SMMUV3) {
458         /* output IORT node is the smmuv3 node */
459         idmap->output_reference = cpu_to_le32(smmu_offset);
460     } else {
461         /* output IORT node is the ITS group node (the first node) */
462         idmap->output_reference = cpu_to_le32(iort_node_offset);
463     }
464 
465     /*
466      * Update the pointer address in case table_data->data moves during above
467      * acpi_data_push operations.
468      */
469     iort = (AcpiIortTable *)(table_data->data + iort_start);
470     iort->length = cpu_to_le32(iort_length);
471 
472     build_header(linker, table_data, (void *)(table_data->data + iort_start),
473                  "IORT", table_data->len - iort_start, 0, NULL, NULL);
474 }
475 
476 static void
477 build_spcr(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
478 {
479     AcpiSerialPortConsoleRedirection *spcr;
480     const MemMapEntry *uart_memmap = &vms->memmap[VIRT_UART];
481     int irq = vms->irqmap[VIRT_UART] + ARM_SPI_BASE;
482     int spcr_start = table_data->len;
483 
484     spcr = acpi_data_push(table_data, sizeof(*spcr));
485 
486     spcr->interface_type = 0x3;    /* ARM PL011 UART */
487 
488     spcr->base_address.space_id = AML_SYSTEM_MEMORY;
489     spcr->base_address.bit_width = 8;
490     spcr->base_address.bit_offset = 0;
491     spcr->base_address.access_width = 1;
492     spcr->base_address.address = cpu_to_le64(uart_memmap->base);
493 
494     spcr->interrupt_types = (1 << 3); /* Bit[3] ARMH GIC interrupt */
495     spcr->gsi = cpu_to_le32(irq);  /* Global System Interrupt */
496 
497     spcr->baud = 3;                /* Baud Rate: 3 = 9600 */
498     spcr->parity = 0;              /* No Parity */
499     spcr->stopbits = 1;            /* 1 Stop bit */
500     spcr->flowctrl = (1 << 1);     /* Bit[1] = RTS/CTS hardware flow control */
501     spcr->term_type = 0;           /* Terminal Type: 0 = VT100 */
502 
503     spcr->pci_device_id = 0xffff;  /* PCI Device ID: not a PCI device */
504     spcr->pci_vendor_id = 0xffff;  /* PCI Vendor ID: not a PCI device */
505 
506     build_header(linker, table_data, (void *)(table_data->data + spcr_start),
507                  "SPCR", table_data->len - spcr_start, 2, NULL, NULL);
508 }
509 
510 static void
511 build_srat(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
512 {
513     AcpiSystemResourceAffinityTable *srat;
514     AcpiSratProcessorGiccAffinity *core;
515     AcpiSratMemoryAffinity *numamem;
516     int i, srat_start;
517     uint64_t mem_base;
518     MachineClass *mc = MACHINE_GET_CLASS(vms);
519     const CPUArchIdList *cpu_list = mc->possible_cpu_arch_ids(MACHINE(vms));
520 
521     srat_start = table_data->len;
522     srat = acpi_data_push(table_data, sizeof(*srat));
523     srat->reserved1 = cpu_to_le32(1);
524 
525     for (i = 0; i < cpu_list->len; ++i) {
526         core = acpi_data_push(table_data, sizeof(*core));
527         core->type = ACPI_SRAT_PROCESSOR_GICC;
528         core->length = sizeof(*core);
529         core->proximity = cpu_to_le32(cpu_list->cpus[i].props.node_id);
530         core->acpi_processor_uid = cpu_to_le32(i);
531         core->flags = cpu_to_le32(1);
532     }
533 
534     mem_base = vms->memmap[VIRT_MEM].base;
535     for (i = 0; i < nb_numa_nodes; ++i) {
536         if (numa_info[i].node_mem > 0) {
537             numamem = acpi_data_push(table_data, sizeof(*numamem));
538             build_srat_memory(numamem, mem_base, numa_info[i].node_mem, i,
539                               MEM_AFFINITY_ENABLED);
540             mem_base += numa_info[i].node_mem;
541         }
542     }
543 
544     build_header(linker, table_data, (void *)(table_data->data + srat_start),
545                  "SRAT", table_data->len - srat_start, 3, NULL, NULL);
546 }
547 
548 static void
549 build_mcfg(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
550 {
551     AcpiTableMcfg *mcfg;
552     const MemMapEntry *memmap = vms->memmap;
553     int ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
554     int len = sizeof(*mcfg) + sizeof(mcfg->allocation[0]);
555     int mcfg_start = table_data->len;
556 
557     mcfg = acpi_data_push(table_data, len);
558     mcfg->allocation[0].address = cpu_to_le64(memmap[ecam_id].base);
559 
560     /* Only a single allocation so no need to play with segments */
561     mcfg->allocation[0].pci_segment = cpu_to_le16(0);
562     mcfg->allocation[0].start_bus_number = 0;
563     mcfg->allocation[0].end_bus_number = (memmap[ecam_id].size
564                                           / PCIE_MMCFG_SIZE_MIN) - 1;
565 
566     build_header(linker, table_data, (void *)(table_data->data + mcfg_start),
567                  "MCFG", table_data->len - mcfg_start, 1, NULL, NULL);
568 }
569 
570 /* GTDT */
571 static void
572 build_gtdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
573 {
574     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
575     int gtdt_start = table_data->len;
576     AcpiGenericTimerTable *gtdt;
577     uint32_t irqflags;
578 
579     if (vmc->claim_edge_triggered_timers) {
580         irqflags = ACPI_GTDT_INTERRUPT_MODE_EDGE;
581     } else {
582         irqflags = ACPI_GTDT_INTERRUPT_MODE_LEVEL;
583     }
584 
585     gtdt = acpi_data_push(table_data, sizeof *gtdt);
586     /* The interrupt values are the same with the device tree when adding 16 */
587     gtdt->secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_S_EL1_IRQ + 16);
588     gtdt->secure_el1_flags = cpu_to_le32(irqflags);
589 
590     gtdt->non_secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL1_IRQ + 16);
591     gtdt->non_secure_el1_flags = cpu_to_le32(irqflags |
592                                              ACPI_GTDT_CAP_ALWAYS_ON);
593 
594     gtdt->virtual_timer_interrupt = cpu_to_le32(ARCH_TIMER_VIRT_IRQ + 16);
595     gtdt->virtual_timer_flags = cpu_to_le32(irqflags);
596 
597     gtdt->non_secure_el2_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL2_IRQ + 16);
598     gtdt->non_secure_el2_flags = cpu_to_le32(irqflags);
599 
600     build_header(linker, table_data,
601                  (void *)(table_data->data + gtdt_start), "GTDT",
602                  table_data->len - gtdt_start, 2, NULL, NULL);
603 }
604 
605 /* MADT */
606 static void
607 build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
608 {
609     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
610     int madt_start = table_data->len;
611     const MemMapEntry *memmap = vms->memmap;
612     const int *irqmap = vms->irqmap;
613     AcpiMultipleApicTable *madt;
614     AcpiMadtGenericDistributor *gicd;
615     AcpiMadtGenericMsiFrame *gic_msi;
616     int i;
617 
618     madt = acpi_data_push(table_data, sizeof *madt);
619 
620     gicd = acpi_data_push(table_data, sizeof *gicd);
621     gicd->type = ACPI_APIC_GENERIC_DISTRIBUTOR;
622     gicd->length = sizeof(*gicd);
623     gicd->base_address = cpu_to_le64(memmap[VIRT_GIC_DIST].base);
624     gicd->version = vms->gic_version;
625 
626     for (i = 0; i < vms->smp_cpus; i++) {
627         AcpiMadtGenericCpuInterface *gicc = acpi_data_push(table_data,
628                                                            sizeof(*gicc));
629         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));
630 
631         gicc->type = ACPI_APIC_GENERIC_CPU_INTERFACE;
632         gicc->length = sizeof(*gicc);
633         if (vms->gic_version == 2) {
634             gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base);
635             gicc->gich_base_address = cpu_to_le64(memmap[VIRT_GIC_HYP].base);
636             gicc->gicv_base_address = cpu_to_le64(memmap[VIRT_GIC_VCPU].base);
637         }
638         gicc->cpu_interface_number = cpu_to_le32(i);
639         gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity);
640         gicc->uid = cpu_to_le32(i);
641         gicc->flags = cpu_to_le32(ACPI_MADT_GICC_ENABLED);
642 
643         if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
644             gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ));
645         }
646         if (vms->virt) {
647             gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GIC_MAINT_IRQ));
648         }
649     }
650 
651     if (vms->gic_version == 3) {
652         AcpiMadtGenericTranslator *gic_its;
653         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
654         AcpiMadtGenericRedistributor *gicr = acpi_data_push(table_data,
655                                                          sizeof *gicr);
656 
657         gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
658         gicr->length = sizeof(*gicr);
659         gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST].base);
660         gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST].size);
661 
662         if (nb_redist_regions == 2) {
663             gicr = acpi_data_push(table_data, sizeof(*gicr));
664             gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
665             gicr->length = sizeof(*gicr);
666             gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST2].base);
667             gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST2].size);
668         }
669 
670         if (its_class_name() && !vmc->no_its) {
671             gic_its = acpi_data_push(table_data, sizeof *gic_its);
672             gic_its->type = ACPI_APIC_GENERIC_TRANSLATOR;
673             gic_its->length = sizeof(*gic_its);
674             gic_its->translation_id = 0;
675             gic_its->base_address = cpu_to_le64(memmap[VIRT_GIC_ITS].base);
676         }
677     } else {
678         gic_msi = acpi_data_push(table_data, sizeof *gic_msi);
679         gic_msi->type = ACPI_APIC_GENERIC_MSI_FRAME;
680         gic_msi->length = sizeof(*gic_msi);
681         gic_msi->gic_msi_frame_id = 0;
682         gic_msi->base_address = cpu_to_le64(memmap[VIRT_GIC_V2M].base);
683         gic_msi->flags = cpu_to_le32(1);
684         gic_msi->spi_count = cpu_to_le16(NUM_GICV2M_SPIS);
685         gic_msi->spi_base = cpu_to_le16(irqmap[VIRT_GIC_V2M] + ARM_SPI_BASE);
686     }
687 
688     build_header(linker, table_data,
689                  (void *)(table_data->data + madt_start), "APIC",
690                  table_data->len - madt_start, 3, NULL, NULL);
691 }
692 
693 /* FADT */
694 static void build_fadt_rev5(GArray *table_data, BIOSLinker *linker,
695                             VirtMachineState *vms, unsigned dsdt_tbl_offset)
696 {
697     /* ACPI v5.1 */
698     AcpiFadtData fadt = {
699         .rev = 5,
700         .minor_ver = 1,
701         .flags = 1 << ACPI_FADT_F_HW_REDUCED_ACPI,
702         .xdsdt_tbl_offset = &dsdt_tbl_offset,
703     };
704 
705     switch (vms->psci_conduit) {
706     case QEMU_PSCI_CONDUIT_DISABLED:
707         fadt.arm_boot_arch = 0;
708         break;
709     case QEMU_PSCI_CONDUIT_HVC:
710         fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT |
711                              ACPI_FADT_ARM_PSCI_USE_HVC;
712         break;
713     case QEMU_PSCI_CONDUIT_SMC:
714         fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT;
715         break;
716     default:
717         g_assert_not_reached();
718     }
719 
720     build_fadt(table_data, linker, &fadt, NULL, NULL);
721 }
722 
723 /* DSDT */
724 static void
725 build_dsdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
726 {
727     Aml *scope, *dsdt;
728     const MemMapEntry *memmap = vms->memmap;
729     const int *irqmap = vms->irqmap;
730 
731     dsdt = init_aml_allocator();
732     /* Reserve space for header */
733     acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader));
734 
735     /* When booting the VM with UEFI, UEFI takes ownership of the RTC hardware.
736      * While UEFI can use libfdt to disable the RTC device node in the DTB that
737      * it passes to the OS, it cannot modify AML. Therefore, we won't generate
738      * the RTC ACPI device at all when using UEFI.
739      */
740     scope = aml_scope("\\_SB");
741     acpi_dsdt_add_cpus(scope, vms->smp_cpus);
742     acpi_dsdt_add_uart(scope, &memmap[VIRT_UART],
743                        (irqmap[VIRT_UART] + ARM_SPI_BASE));
744     acpi_dsdt_add_flash(scope, &memmap[VIRT_FLASH]);
745     acpi_dsdt_add_fw_cfg(scope, &memmap[VIRT_FW_CFG]);
746     acpi_dsdt_add_virtio(scope, &memmap[VIRT_MMIO],
747                     (irqmap[VIRT_MMIO] + ARM_SPI_BASE), NUM_VIRTIO_TRANSPORTS);
748     acpi_dsdt_add_pci(scope, memmap, (irqmap[VIRT_PCIE] + ARM_SPI_BASE),
749                       vms->highmem, vms->highmem_ecam);
750     acpi_dsdt_add_gpio(scope, &memmap[VIRT_GPIO],
751                        (irqmap[VIRT_GPIO] + ARM_SPI_BASE));
752     acpi_dsdt_add_power_button(scope);
753 
754     aml_append(dsdt, scope);
755 
756     /* copy AML table into ACPI tables blob and patch header there */
757     g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len);
758     build_header(linker, table_data,
759         (void *)(table_data->data + table_data->len - dsdt->buf->len),
760         "DSDT", dsdt->buf->len, 2, NULL, NULL);
761     free_aml_allocator();
762 }
763 
764 typedef
765 struct AcpiBuildState {
766     /* Copy of table in RAM (for patching). */
767     MemoryRegion *table_mr;
768     MemoryRegion *rsdp_mr;
769     MemoryRegion *linker_mr;
770     /* Is table patched? */
771     bool patched;
772 } AcpiBuildState;
773 
774 static
775 void virt_acpi_build(VirtMachineState *vms, AcpiBuildTables *tables)
776 {
777     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
778     GArray *table_offsets;
779     unsigned dsdt, xsdt;
780     GArray *tables_blob = tables->table_data;
781 
782     table_offsets = g_array_new(false, true /* clear */,
783                                         sizeof(uint32_t));
784 
785     bios_linker_loader_alloc(tables->linker,
786                              ACPI_BUILD_TABLE_FILE, tables_blob,
787                              64, false /* high memory */);
788 
789     /* DSDT is pointed to by FADT */
790     dsdt = tables_blob->len;
791     build_dsdt(tables_blob, tables->linker, vms);
792 
793     /* FADT MADT GTDT MCFG SPCR pointed to by RSDT */
794     acpi_add_table(table_offsets, tables_blob);
795     build_fadt_rev5(tables_blob, tables->linker, vms, dsdt);
796 
797     acpi_add_table(table_offsets, tables_blob);
798     build_madt(tables_blob, tables->linker, vms);
799 
800     acpi_add_table(table_offsets, tables_blob);
801     build_gtdt(tables_blob, tables->linker, vms);
802 
803     acpi_add_table(table_offsets, tables_blob);
804     build_mcfg(tables_blob, tables->linker, vms);
805 
806     acpi_add_table(table_offsets, tables_blob);
807     build_spcr(tables_blob, tables->linker, vms);
808 
809     if (nb_numa_nodes > 0) {
810         acpi_add_table(table_offsets, tables_blob);
811         build_srat(tables_blob, tables->linker, vms);
812         if (have_numa_distance) {
813             acpi_add_table(table_offsets, tables_blob);
814             build_slit(tables_blob, tables->linker);
815         }
816     }
817 
818     if (its_class_name() && !vmc->no_its) {
819         acpi_add_table(table_offsets, tables_blob);
820         build_iort(tables_blob, tables->linker, vms);
821     }
822 
823     /* XSDT is pointed to by RSDP */
824     xsdt = tables_blob->len;
825     build_xsdt(tables_blob, tables->linker, table_offsets, NULL, NULL);
826 
827     /* RSDP is in FSEG memory, so allocate it separately */
828     {
829         AcpiRsdpData rsdp_data = {
830             .revision = 2,
831             .oem_id = ACPI_BUILD_APPNAME6,
832             .xsdt_tbl_offset = &xsdt,
833             .rsdt_tbl_offset = NULL,
834         };
835         build_rsdp(tables->rsdp, tables->linker, &rsdp_data);
836     }
837 
838     /* Cleanup memory that's no longer used. */
839     g_array_free(table_offsets, true);
840 }
841 
842 static void acpi_ram_update(MemoryRegion *mr, GArray *data)
843 {
844     uint32_t size = acpi_data_len(data);
845 
846     /* Make sure RAM size is correct - in case it got changed
847      * e.g. by migration */
848     memory_region_ram_resize(mr, size, &error_abort);
849 
850     memcpy(memory_region_get_ram_ptr(mr), data->data, size);
851     memory_region_set_dirty(mr, 0, size);
852 }
853 
854 static void virt_acpi_build_update(void *build_opaque)
855 {
856     AcpiBuildState *build_state = build_opaque;
857     AcpiBuildTables tables;
858 
859     /* No state to update or already patched? Nothing to do. */
860     if (!build_state || build_state->patched) {
861         return;
862     }
863     build_state->patched = true;
864 
865     acpi_build_tables_init(&tables);
866 
867     virt_acpi_build(VIRT_MACHINE(qdev_get_machine()), &tables);
868 
869     acpi_ram_update(build_state->table_mr, tables.table_data);
870     acpi_ram_update(build_state->rsdp_mr, tables.rsdp);
871     acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob);
872 
873     acpi_build_tables_cleanup(&tables, true);
874 }
875 
876 static void virt_acpi_build_reset(void *build_opaque)
877 {
878     AcpiBuildState *build_state = build_opaque;
879     build_state->patched = false;
880 }
881 
882 static MemoryRegion *acpi_add_rom_blob(AcpiBuildState *build_state,
883                                        GArray *blob, const char *name,
884                                        uint64_t max_size)
885 {
886     return rom_add_blob(name, blob->data, acpi_data_len(blob), max_size, -1,
887                         name, virt_acpi_build_update, build_state, NULL, true);
888 }
889 
890 static const VMStateDescription vmstate_virt_acpi_build = {
891     .name = "virt_acpi_build",
892     .version_id = 1,
893     .minimum_version_id = 1,
894     .fields = (VMStateField[]) {
895         VMSTATE_BOOL(patched, AcpiBuildState),
896         VMSTATE_END_OF_LIST()
897     },
898 };
899 
900 void virt_acpi_setup(VirtMachineState *vms)
901 {
902     AcpiBuildTables tables;
903     AcpiBuildState *build_state;
904 
905     if (!vms->fw_cfg) {
906         trace_virt_acpi_setup();
907         return;
908     }
909 
910     if (!acpi_enabled) {
911         trace_virt_acpi_setup();
912         return;
913     }
914 
915     build_state = g_malloc0(sizeof *build_state);
916 
917     acpi_build_tables_init(&tables);
918     virt_acpi_build(vms, &tables);
919 
920     /* Now expose it all to Guest */
921     build_state->table_mr = acpi_add_rom_blob(build_state, tables.table_data,
922                                                ACPI_BUILD_TABLE_FILE,
923                                                ACPI_BUILD_TABLE_MAX_SIZE);
924     assert(build_state->table_mr != NULL);
925 
926     build_state->linker_mr =
927         acpi_add_rom_blob(build_state, tables.linker->cmd_blob,
928                           "etc/table-loader", 0);
929 
930     fw_cfg_add_file(vms->fw_cfg, ACPI_BUILD_TPMLOG_FILE, tables.tcpalog->data,
931                     acpi_data_len(tables.tcpalog));
932 
933     build_state->rsdp_mr = acpi_add_rom_blob(build_state, tables.rsdp,
934                                               ACPI_BUILD_RSDP_FILE, 0);
935 
936     qemu_register_reset(virt_acpi_build_reset, build_state);
937     virt_acpi_build_reset(build_state);
938     vmstate_register(NULL, 0, &vmstate_virt_acpi_build, build_state);
939 
940     /* Cleanup tables but don't free the memory: we track it
941      * in build_state.
942      */
943     acpi_build_tables_cleanup(&tables, false);
944 }
945