xref: /openbmc/qemu/hw/arm/strongarm.c (revision 56983463)
1 /*
2  * StrongARM SA-1100/SA-1110 emulation
3  *
4  * Copyright (C) 2011 Dmitry Eremin-Solenikov
5  *
6  * Largely based on StrongARM emulation:
7  * Copyright (c) 2006 Openedhand Ltd.
8  * Written by Andrzej Zaborowski <balrog@zabor.org>
9  *
10  * UART code based on QEMU 16550A UART emulation
11  * Copyright (c) 2003-2004 Fabrice Bellard
12  * Copyright (c) 2008 Citrix Systems, Inc.
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License version 2 as
16  *  published by the Free Software Foundation.
17  *
18  *  This program is distributed in the hope that it will be useful,
19  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
20  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  *  GNU General Public License for more details.
22  *
23  *  You should have received a copy of the GNU General Public License along
24  *  with this program; if not, see <http://www.gnu.org/licenses/>.
25  *
26  *  Contributions after 2012-01-13 are licensed under the terms of the
27  *  GNU GPL, version 2 or (at your option) any later version.
28  */
29 #include "hw/sysbus.h"
30 #include "strongarm.h"
31 #include "qemu/error-report.h"
32 #include "hw/arm/arm.h"
33 #include "sysemu/char.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/ssi.h"
36 
37 //#define DEBUG
38 
39 /*
40  TODO
41  - Implement cp15, c14 ?
42  - Implement cp15, c15 !!! (idle used in L)
43  - Implement idle mode handling/DIM
44  - Implement sleep mode/Wake sources
45  - Implement reset control
46  - Implement memory control regs
47  - PCMCIA handling
48  - Maybe support MBGNT/MBREQ
49  - DMA channels
50  - GPCLK
51  - IrDA
52  - MCP
53  - Enhance UART with modem signals
54  */
55 
56 #ifdef DEBUG
57 # define DPRINTF(format, ...) printf(format , ## __VA_ARGS__)
58 #else
59 # define DPRINTF(format, ...) do { } while (0)
60 #endif
61 
62 static struct {
63     hwaddr io_base;
64     int irq;
65 } sa_serial[] = {
66     { 0x80010000, SA_PIC_UART1 },
67     { 0x80030000, SA_PIC_UART2 },
68     { 0x80050000, SA_PIC_UART3 },
69     { 0, 0 }
70 };
71 
72 /* Interrupt Controller */
73 typedef struct {
74     SysBusDevice busdev;
75     MemoryRegion iomem;
76     qemu_irq    irq;
77     qemu_irq    fiq;
78 
79     uint32_t pending;
80     uint32_t enabled;
81     uint32_t is_fiq;
82     uint32_t int_idle;
83 } StrongARMPICState;
84 
85 #define ICIP    0x00
86 #define ICMR    0x04
87 #define ICLR    0x08
88 #define ICFP    0x10
89 #define ICPR    0x20
90 #define ICCR    0x0c
91 
92 #define SA_PIC_SRCS     32
93 
94 
95 static void strongarm_pic_update(void *opaque)
96 {
97     StrongARMPICState *s = opaque;
98 
99     /* FIXME: reflect DIM */
100     qemu_set_irq(s->fiq, s->pending & s->enabled &  s->is_fiq);
101     qemu_set_irq(s->irq, s->pending & s->enabled & ~s->is_fiq);
102 }
103 
104 static void strongarm_pic_set_irq(void *opaque, int irq, int level)
105 {
106     StrongARMPICState *s = opaque;
107 
108     if (level) {
109         s->pending |= 1 << irq;
110     } else {
111         s->pending &= ~(1 << irq);
112     }
113 
114     strongarm_pic_update(s);
115 }
116 
117 static uint64_t strongarm_pic_mem_read(void *opaque, hwaddr offset,
118                                        unsigned size)
119 {
120     StrongARMPICState *s = opaque;
121 
122     switch (offset) {
123     case ICIP:
124         return s->pending & ~s->is_fiq & s->enabled;
125     case ICMR:
126         return s->enabled;
127     case ICLR:
128         return s->is_fiq;
129     case ICCR:
130         return s->int_idle == 0;
131     case ICFP:
132         return s->pending & s->is_fiq & s->enabled;
133     case ICPR:
134         return s->pending;
135     default:
136         printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
137                         __func__, offset);
138         return 0;
139     }
140 }
141 
142 static void strongarm_pic_mem_write(void *opaque, hwaddr offset,
143                                     uint64_t value, unsigned size)
144 {
145     StrongARMPICState *s = opaque;
146 
147     switch (offset) {
148     case ICMR:
149         s->enabled = value;
150         break;
151     case ICLR:
152         s->is_fiq = value;
153         break;
154     case ICCR:
155         s->int_idle = (value & 1) ? 0 : ~0;
156         break;
157     default:
158         printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
159                         __func__, offset);
160         break;
161     }
162     strongarm_pic_update(s);
163 }
164 
165 static const MemoryRegionOps strongarm_pic_ops = {
166     .read = strongarm_pic_mem_read,
167     .write = strongarm_pic_mem_write,
168     .endianness = DEVICE_NATIVE_ENDIAN,
169 };
170 
171 static int strongarm_pic_initfn(SysBusDevice *dev)
172 {
173     StrongARMPICState *s = FROM_SYSBUS(StrongARMPICState, dev);
174 
175     qdev_init_gpio_in(&dev->qdev, strongarm_pic_set_irq, SA_PIC_SRCS);
176     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_pic_ops, s,
177                           "pic", 0x1000);
178     sysbus_init_mmio(dev, &s->iomem);
179     sysbus_init_irq(dev, &s->irq);
180     sysbus_init_irq(dev, &s->fiq);
181 
182     return 0;
183 }
184 
185 static int strongarm_pic_post_load(void *opaque, int version_id)
186 {
187     strongarm_pic_update(opaque);
188     return 0;
189 }
190 
191 static VMStateDescription vmstate_strongarm_pic_regs = {
192     .name = "strongarm_pic",
193     .version_id = 0,
194     .minimum_version_id = 0,
195     .minimum_version_id_old = 0,
196     .post_load = strongarm_pic_post_load,
197     .fields = (VMStateField[]) {
198         VMSTATE_UINT32(pending, StrongARMPICState),
199         VMSTATE_UINT32(enabled, StrongARMPICState),
200         VMSTATE_UINT32(is_fiq, StrongARMPICState),
201         VMSTATE_UINT32(int_idle, StrongARMPICState),
202         VMSTATE_END_OF_LIST(),
203     },
204 };
205 
206 static void strongarm_pic_class_init(ObjectClass *klass, void *data)
207 {
208     DeviceClass *dc = DEVICE_CLASS(klass);
209     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
210 
211     k->init = strongarm_pic_initfn;
212     dc->desc = "StrongARM PIC";
213     dc->vmsd = &vmstate_strongarm_pic_regs;
214 }
215 
216 static const TypeInfo strongarm_pic_info = {
217     .name          = "strongarm_pic",
218     .parent        = TYPE_SYS_BUS_DEVICE,
219     .instance_size = sizeof(StrongARMPICState),
220     .class_init    = strongarm_pic_class_init,
221 };
222 
223 /* Real-Time Clock */
224 #define RTAR 0x00 /* RTC Alarm register */
225 #define RCNR 0x04 /* RTC Counter register */
226 #define RTTR 0x08 /* RTC Timer Trim register */
227 #define RTSR 0x10 /* RTC Status register */
228 
229 #define RTSR_AL (1 << 0) /* RTC Alarm detected */
230 #define RTSR_HZ (1 << 1) /* RTC 1Hz detected */
231 #define RTSR_ALE (1 << 2) /* RTC Alarm enable */
232 #define RTSR_HZE (1 << 3) /* RTC 1Hz enable */
233 
234 /* 16 LSB of RTTR are clockdiv for internal trim logic,
235  * trim delete isn't emulated, so
236  * f = 32 768 / (RTTR_trim + 1) */
237 
238 typedef struct {
239     SysBusDevice busdev;
240     MemoryRegion iomem;
241     uint32_t rttr;
242     uint32_t rtsr;
243     uint32_t rtar;
244     uint32_t last_rcnr;
245     int64_t last_hz;
246     QEMUTimer *rtc_alarm;
247     QEMUTimer *rtc_hz;
248     qemu_irq rtc_irq;
249     qemu_irq rtc_hz_irq;
250 } StrongARMRTCState;
251 
252 static inline void strongarm_rtc_int_update(StrongARMRTCState *s)
253 {
254     qemu_set_irq(s->rtc_irq, s->rtsr & RTSR_AL);
255     qemu_set_irq(s->rtc_hz_irq, s->rtsr & RTSR_HZ);
256 }
257 
258 static void strongarm_rtc_hzupdate(StrongARMRTCState *s)
259 {
260     int64_t rt = qemu_get_clock_ms(rtc_clock);
261     s->last_rcnr += ((rt - s->last_hz) << 15) /
262             (1000 * ((s->rttr & 0xffff) + 1));
263     s->last_hz = rt;
264 }
265 
266 static inline void strongarm_rtc_timer_update(StrongARMRTCState *s)
267 {
268     if ((s->rtsr & RTSR_HZE) && !(s->rtsr & RTSR_HZ)) {
269         qemu_mod_timer(s->rtc_hz, s->last_hz + 1000);
270     } else {
271         qemu_del_timer(s->rtc_hz);
272     }
273 
274     if ((s->rtsr & RTSR_ALE) && !(s->rtsr & RTSR_AL)) {
275         qemu_mod_timer(s->rtc_alarm, s->last_hz +
276                 (((s->rtar - s->last_rcnr) * 1000 *
277                   ((s->rttr & 0xffff) + 1)) >> 15));
278     } else {
279         qemu_del_timer(s->rtc_alarm);
280     }
281 }
282 
283 static inline void strongarm_rtc_alarm_tick(void *opaque)
284 {
285     StrongARMRTCState *s = opaque;
286     s->rtsr |= RTSR_AL;
287     strongarm_rtc_timer_update(s);
288     strongarm_rtc_int_update(s);
289 }
290 
291 static inline void strongarm_rtc_hz_tick(void *opaque)
292 {
293     StrongARMRTCState *s = opaque;
294     s->rtsr |= RTSR_HZ;
295     strongarm_rtc_timer_update(s);
296     strongarm_rtc_int_update(s);
297 }
298 
299 static uint64_t strongarm_rtc_read(void *opaque, hwaddr addr,
300                                    unsigned size)
301 {
302     StrongARMRTCState *s = opaque;
303 
304     switch (addr) {
305     case RTTR:
306         return s->rttr;
307     case RTSR:
308         return s->rtsr;
309     case RTAR:
310         return s->rtar;
311     case RCNR:
312         return s->last_rcnr +
313                 ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
314                 (1000 * ((s->rttr & 0xffff) + 1));
315     default:
316         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
317         return 0;
318     }
319 }
320 
321 static void strongarm_rtc_write(void *opaque, hwaddr addr,
322                                 uint64_t value, unsigned size)
323 {
324     StrongARMRTCState *s = opaque;
325     uint32_t old_rtsr;
326 
327     switch (addr) {
328     case RTTR:
329         strongarm_rtc_hzupdate(s);
330         s->rttr = value;
331         strongarm_rtc_timer_update(s);
332         break;
333 
334     case RTSR:
335         old_rtsr = s->rtsr;
336         s->rtsr = (value & (RTSR_ALE | RTSR_HZE)) |
337                   (s->rtsr & ~(value & (RTSR_AL | RTSR_HZ)));
338 
339         if (s->rtsr != old_rtsr) {
340             strongarm_rtc_timer_update(s);
341         }
342 
343         strongarm_rtc_int_update(s);
344         break;
345 
346     case RTAR:
347         s->rtar = value;
348         strongarm_rtc_timer_update(s);
349         break;
350 
351     case RCNR:
352         strongarm_rtc_hzupdate(s);
353         s->last_rcnr = value;
354         strongarm_rtc_timer_update(s);
355         break;
356 
357     default:
358         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
359     }
360 }
361 
362 static const MemoryRegionOps strongarm_rtc_ops = {
363     .read = strongarm_rtc_read,
364     .write = strongarm_rtc_write,
365     .endianness = DEVICE_NATIVE_ENDIAN,
366 };
367 
368 static int strongarm_rtc_init(SysBusDevice *dev)
369 {
370     StrongARMRTCState *s = FROM_SYSBUS(StrongARMRTCState, dev);
371     struct tm tm;
372 
373     s->rttr = 0x0;
374     s->rtsr = 0;
375 
376     qemu_get_timedate(&tm, 0);
377 
378     s->last_rcnr = (uint32_t) mktimegm(&tm);
379     s->last_hz = qemu_get_clock_ms(rtc_clock);
380 
381     s->rtc_alarm = qemu_new_timer_ms(rtc_clock, strongarm_rtc_alarm_tick, s);
382     s->rtc_hz = qemu_new_timer_ms(rtc_clock, strongarm_rtc_hz_tick, s);
383 
384     sysbus_init_irq(dev, &s->rtc_irq);
385     sysbus_init_irq(dev, &s->rtc_hz_irq);
386 
387     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_rtc_ops, s,
388                           "rtc", 0x10000);
389     sysbus_init_mmio(dev, &s->iomem);
390 
391     return 0;
392 }
393 
394 static void strongarm_rtc_pre_save(void *opaque)
395 {
396     StrongARMRTCState *s = opaque;
397 
398     strongarm_rtc_hzupdate(s);
399 }
400 
401 static int strongarm_rtc_post_load(void *opaque, int version_id)
402 {
403     StrongARMRTCState *s = opaque;
404 
405     strongarm_rtc_timer_update(s);
406     strongarm_rtc_int_update(s);
407 
408     return 0;
409 }
410 
411 static const VMStateDescription vmstate_strongarm_rtc_regs = {
412     .name = "strongarm-rtc",
413     .version_id = 0,
414     .minimum_version_id = 0,
415     .minimum_version_id_old = 0,
416     .pre_save = strongarm_rtc_pre_save,
417     .post_load = strongarm_rtc_post_load,
418     .fields = (VMStateField[]) {
419         VMSTATE_UINT32(rttr, StrongARMRTCState),
420         VMSTATE_UINT32(rtsr, StrongARMRTCState),
421         VMSTATE_UINT32(rtar, StrongARMRTCState),
422         VMSTATE_UINT32(last_rcnr, StrongARMRTCState),
423         VMSTATE_INT64(last_hz, StrongARMRTCState),
424         VMSTATE_END_OF_LIST(),
425     },
426 };
427 
428 static void strongarm_rtc_sysbus_class_init(ObjectClass *klass, void *data)
429 {
430     DeviceClass *dc = DEVICE_CLASS(klass);
431     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
432 
433     k->init = strongarm_rtc_init;
434     dc->desc = "StrongARM RTC Controller";
435     dc->vmsd = &vmstate_strongarm_rtc_regs;
436 }
437 
438 static const TypeInfo strongarm_rtc_sysbus_info = {
439     .name          = "strongarm-rtc",
440     .parent        = TYPE_SYS_BUS_DEVICE,
441     .instance_size = sizeof(StrongARMRTCState),
442     .class_init    = strongarm_rtc_sysbus_class_init,
443 };
444 
445 /* GPIO */
446 #define GPLR 0x00
447 #define GPDR 0x04
448 #define GPSR 0x08
449 #define GPCR 0x0c
450 #define GRER 0x10
451 #define GFER 0x14
452 #define GEDR 0x18
453 #define GAFR 0x1c
454 
455 typedef struct StrongARMGPIOInfo StrongARMGPIOInfo;
456 struct StrongARMGPIOInfo {
457     SysBusDevice busdev;
458     MemoryRegion iomem;
459     qemu_irq handler[28];
460     qemu_irq irqs[11];
461     qemu_irq irqX;
462 
463     uint32_t ilevel;
464     uint32_t olevel;
465     uint32_t dir;
466     uint32_t rising;
467     uint32_t falling;
468     uint32_t status;
469     uint32_t gpsr;
470     uint32_t gafr;
471 
472     uint32_t prev_level;
473 };
474 
475 
476 static void strongarm_gpio_irq_update(StrongARMGPIOInfo *s)
477 {
478     int i;
479     for (i = 0; i < 11; i++) {
480         qemu_set_irq(s->irqs[i], s->status & (1 << i));
481     }
482 
483     qemu_set_irq(s->irqX, (s->status & ~0x7ff));
484 }
485 
486 static void strongarm_gpio_set(void *opaque, int line, int level)
487 {
488     StrongARMGPIOInfo *s = opaque;
489     uint32_t mask;
490 
491     mask = 1 << line;
492 
493     if (level) {
494         s->status |= s->rising & mask &
495                 ~s->ilevel & ~s->dir;
496         s->ilevel |= mask;
497     } else {
498         s->status |= s->falling & mask &
499                 s->ilevel & ~s->dir;
500         s->ilevel &= ~mask;
501     }
502 
503     if (s->status & mask) {
504         strongarm_gpio_irq_update(s);
505     }
506 }
507 
508 static void strongarm_gpio_handler_update(StrongARMGPIOInfo *s)
509 {
510     uint32_t level, diff;
511     int bit;
512 
513     level = s->olevel & s->dir;
514 
515     for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
516         bit = ffs(diff) - 1;
517         qemu_set_irq(s->handler[bit], (level >> bit) & 1);
518     }
519 
520     s->prev_level = level;
521 }
522 
523 static uint64_t strongarm_gpio_read(void *opaque, hwaddr offset,
524                                     unsigned size)
525 {
526     StrongARMGPIOInfo *s = opaque;
527 
528     switch (offset) {
529     case GPDR:        /* GPIO Pin-Direction registers */
530         return s->dir;
531 
532     case GPSR:        /* GPIO Pin-Output Set registers */
533         DPRINTF("%s: Read from a write-only register 0x" TARGET_FMT_plx "\n",
534                         __func__, offset);
535         return s->gpsr;    /* Return last written value.  */
536 
537     case GPCR:        /* GPIO Pin-Output Clear registers */
538         DPRINTF("%s: Read from a write-only register 0x" TARGET_FMT_plx "\n",
539                         __func__, offset);
540         return 31337;        /* Specified as unpredictable in the docs.  */
541 
542     case GRER:        /* GPIO Rising-Edge Detect Enable registers */
543         return s->rising;
544 
545     case GFER:        /* GPIO Falling-Edge Detect Enable registers */
546         return s->falling;
547 
548     case GAFR:        /* GPIO Alternate Function registers */
549         return s->gafr;
550 
551     case GPLR:        /* GPIO Pin-Level registers */
552         return (s->olevel & s->dir) |
553                (s->ilevel & ~s->dir);
554 
555     case GEDR:        /* GPIO Edge Detect Status registers */
556         return s->status;
557 
558     default:
559         printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
560     }
561 
562     return 0;
563 }
564 
565 static void strongarm_gpio_write(void *opaque, hwaddr offset,
566                                  uint64_t value, unsigned size)
567 {
568     StrongARMGPIOInfo *s = opaque;
569 
570     switch (offset) {
571     case GPDR:        /* GPIO Pin-Direction registers */
572         s->dir = value;
573         strongarm_gpio_handler_update(s);
574         break;
575 
576     case GPSR:        /* GPIO Pin-Output Set registers */
577         s->olevel |= value;
578         strongarm_gpio_handler_update(s);
579         s->gpsr = value;
580         break;
581 
582     case GPCR:        /* GPIO Pin-Output Clear registers */
583         s->olevel &= ~value;
584         strongarm_gpio_handler_update(s);
585         break;
586 
587     case GRER:        /* GPIO Rising-Edge Detect Enable registers */
588         s->rising = value;
589         break;
590 
591     case GFER:        /* GPIO Falling-Edge Detect Enable registers */
592         s->falling = value;
593         break;
594 
595     case GAFR:        /* GPIO Alternate Function registers */
596         s->gafr = value;
597         break;
598 
599     case GEDR:        /* GPIO Edge Detect Status registers */
600         s->status &= ~value;
601         strongarm_gpio_irq_update(s);
602         break;
603 
604     default:
605         printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
606     }
607 }
608 
609 static const MemoryRegionOps strongarm_gpio_ops = {
610     .read = strongarm_gpio_read,
611     .write = strongarm_gpio_write,
612     .endianness = DEVICE_NATIVE_ENDIAN,
613 };
614 
615 static DeviceState *strongarm_gpio_init(hwaddr base,
616                 DeviceState *pic)
617 {
618     DeviceState *dev;
619     int i;
620 
621     dev = qdev_create(NULL, "strongarm-gpio");
622     qdev_init_nofail(dev);
623 
624     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
625     for (i = 0; i < 12; i++)
626         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
627                     qdev_get_gpio_in(pic, SA_PIC_GPIO0_EDGE + i));
628 
629     return dev;
630 }
631 
632 static int strongarm_gpio_initfn(SysBusDevice *dev)
633 {
634     StrongARMGPIOInfo *s;
635     int i;
636 
637     s = FROM_SYSBUS(StrongARMGPIOInfo, dev);
638 
639     qdev_init_gpio_in(&dev->qdev, strongarm_gpio_set, 28);
640     qdev_init_gpio_out(&dev->qdev, s->handler, 28);
641 
642     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_gpio_ops, s,
643                           "gpio", 0x1000);
644 
645     sysbus_init_mmio(dev, &s->iomem);
646     for (i = 0; i < 11; i++) {
647         sysbus_init_irq(dev, &s->irqs[i]);
648     }
649     sysbus_init_irq(dev, &s->irqX);
650 
651     return 0;
652 }
653 
654 static const VMStateDescription vmstate_strongarm_gpio_regs = {
655     .name = "strongarm-gpio",
656     .version_id = 0,
657     .minimum_version_id = 0,
658     .minimum_version_id_old = 0,
659     .fields = (VMStateField[]) {
660         VMSTATE_UINT32(ilevel, StrongARMGPIOInfo),
661         VMSTATE_UINT32(olevel, StrongARMGPIOInfo),
662         VMSTATE_UINT32(dir, StrongARMGPIOInfo),
663         VMSTATE_UINT32(rising, StrongARMGPIOInfo),
664         VMSTATE_UINT32(falling, StrongARMGPIOInfo),
665         VMSTATE_UINT32(status, StrongARMGPIOInfo),
666         VMSTATE_UINT32(gafr, StrongARMGPIOInfo),
667         VMSTATE_END_OF_LIST(),
668     },
669 };
670 
671 static void strongarm_gpio_class_init(ObjectClass *klass, void *data)
672 {
673     DeviceClass *dc = DEVICE_CLASS(klass);
674     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
675 
676     k->init = strongarm_gpio_initfn;
677     dc->desc = "StrongARM GPIO controller";
678 }
679 
680 static const TypeInfo strongarm_gpio_info = {
681     .name          = "strongarm-gpio",
682     .parent        = TYPE_SYS_BUS_DEVICE,
683     .instance_size = sizeof(StrongARMGPIOInfo),
684     .class_init    = strongarm_gpio_class_init,
685 };
686 
687 /* Peripheral Pin Controller */
688 #define PPDR 0x00
689 #define PPSR 0x04
690 #define PPAR 0x08
691 #define PSDR 0x0c
692 #define PPFR 0x10
693 
694 typedef struct StrongARMPPCInfo StrongARMPPCInfo;
695 struct StrongARMPPCInfo {
696     SysBusDevice busdev;
697     MemoryRegion iomem;
698     qemu_irq handler[28];
699 
700     uint32_t ilevel;
701     uint32_t olevel;
702     uint32_t dir;
703     uint32_t ppar;
704     uint32_t psdr;
705     uint32_t ppfr;
706 
707     uint32_t prev_level;
708 };
709 
710 static void strongarm_ppc_set(void *opaque, int line, int level)
711 {
712     StrongARMPPCInfo *s = opaque;
713 
714     if (level) {
715         s->ilevel |= 1 << line;
716     } else {
717         s->ilevel &= ~(1 << line);
718     }
719 }
720 
721 static void strongarm_ppc_handler_update(StrongARMPPCInfo *s)
722 {
723     uint32_t level, diff;
724     int bit;
725 
726     level = s->olevel & s->dir;
727 
728     for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
729         bit = ffs(diff) - 1;
730         qemu_set_irq(s->handler[bit], (level >> bit) & 1);
731     }
732 
733     s->prev_level = level;
734 }
735 
736 static uint64_t strongarm_ppc_read(void *opaque, hwaddr offset,
737                                    unsigned size)
738 {
739     StrongARMPPCInfo *s = opaque;
740 
741     switch (offset) {
742     case PPDR:        /* PPC Pin Direction registers */
743         return s->dir | ~0x3fffff;
744 
745     case PPSR:        /* PPC Pin State registers */
746         return (s->olevel & s->dir) |
747                (s->ilevel & ~s->dir) |
748                ~0x3fffff;
749 
750     case PPAR:
751         return s->ppar | ~0x41000;
752 
753     case PSDR:
754         return s->psdr;
755 
756     case PPFR:
757         return s->ppfr | ~0x7f001;
758 
759     default:
760         printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
761     }
762 
763     return 0;
764 }
765 
766 static void strongarm_ppc_write(void *opaque, hwaddr offset,
767                                 uint64_t value, unsigned size)
768 {
769     StrongARMPPCInfo *s = opaque;
770 
771     switch (offset) {
772     case PPDR:        /* PPC Pin Direction registers */
773         s->dir = value & 0x3fffff;
774         strongarm_ppc_handler_update(s);
775         break;
776 
777     case PPSR:        /* PPC Pin State registers */
778         s->olevel = value & s->dir & 0x3fffff;
779         strongarm_ppc_handler_update(s);
780         break;
781 
782     case PPAR:
783         s->ppar = value & 0x41000;
784         break;
785 
786     case PSDR:
787         s->psdr = value & 0x3fffff;
788         break;
789 
790     case PPFR:
791         s->ppfr = value & 0x7f001;
792         break;
793 
794     default:
795         printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
796     }
797 }
798 
799 static const MemoryRegionOps strongarm_ppc_ops = {
800     .read = strongarm_ppc_read,
801     .write = strongarm_ppc_write,
802     .endianness = DEVICE_NATIVE_ENDIAN,
803 };
804 
805 static int strongarm_ppc_init(SysBusDevice *dev)
806 {
807     StrongARMPPCInfo *s;
808 
809     s = FROM_SYSBUS(StrongARMPPCInfo, dev);
810 
811     qdev_init_gpio_in(&dev->qdev, strongarm_ppc_set, 22);
812     qdev_init_gpio_out(&dev->qdev, s->handler, 22);
813 
814     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_ppc_ops, s,
815                           "ppc", 0x1000);
816 
817     sysbus_init_mmio(dev, &s->iomem);
818 
819     return 0;
820 }
821 
822 static const VMStateDescription vmstate_strongarm_ppc_regs = {
823     .name = "strongarm-ppc",
824     .version_id = 0,
825     .minimum_version_id = 0,
826     .minimum_version_id_old = 0,
827     .fields = (VMStateField[]) {
828         VMSTATE_UINT32(ilevel, StrongARMPPCInfo),
829         VMSTATE_UINT32(olevel, StrongARMPPCInfo),
830         VMSTATE_UINT32(dir, StrongARMPPCInfo),
831         VMSTATE_UINT32(ppar, StrongARMPPCInfo),
832         VMSTATE_UINT32(psdr, StrongARMPPCInfo),
833         VMSTATE_UINT32(ppfr, StrongARMPPCInfo),
834         VMSTATE_END_OF_LIST(),
835     },
836 };
837 
838 static void strongarm_ppc_class_init(ObjectClass *klass, void *data)
839 {
840     DeviceClass *dc = DEVICE_CLASS(klass);
841     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
842 
843     k->init = strongarm_ppc_init;
844     dc->desc = "StrongARM PPC controller";
845 }
846 
847 static const TypeInfo strongarm_ppc_info = {
848     .name          = "strongarm-ppc",
849     .parent        = TYPE_SYS_BUS_DEVICE,
850     .instance_size = sizeof(StrongARMPPCInfo),
851     .class_init    = strongarm_ppc_class_init,
852 };
853 
854 /* UART Ports */
855 #define UTCR0 0x00
856 #define UTCR1 0x04
857 #define UTCR2 0x08
858 #define UTCR3 0x0c
859 #define UTDR  0x14
860 #define UTSR0 0x1c
861 #define UTSR1 0x20
862 
863 #define UTCR0_PE  (1 << 0) /* Parity enable */
864 #define UTCR0_OES (1 << 1) /* Even parity */
865 #define UTCR0_SBS (1 << 2) /* 2 stop bits */
866 #define UTCR0_DSS (1 << 3) /* 8-bit data */
867 
868 #define UTCR3_RXE (1 << 0) /* Rx enable */
869 #define UTCR3_TXE (1 << 1) /* Tx enable */
870 #define UTCR3_BRK (1 << 2) /* Force Break */
871 #define UTCR3_RIE (1 << 3) /* Rx int enable */
872 #define UTCR3_TIE (1 << 4) /* Tx int enable */
873 #define UTCR3_LBM (1 << 5) /* Loopback */
874 
875 #define UTSR0_TFS (1 << 0) /* Tx FIFO nearly empty */
876 #define UTSR0_RFS (1 << 1) /* Rx FIFO nearly full */
877 #define UTSR0_RID (1 << 2) /* Receiver Idle */
878 #define UTSR0_RBB (1 << 3) /* Receiver begin break */
879 #define UTSR0_REB (1 << 4) /* Receiver end break */
880 #define UTSR0_EIF (1 << 5) /* Error in FIFO */
881 
882 #define UTSR1_RNE (1 << 1) /* Receive FIFO not empty */
883 #define UTSR1_TNF (1 << 2) /* Transmit FIFO not full */
884 #define UTSR1_PRE (1 << 3) /* Parity error */
885 #define UTSR1_FRE (1 << 4) /* Frame error */
886 #define UTSR1_ROR (1 << 5) /* Receive Over Run */
887 
888 #define RX_FIFO_PRE (1 << 8)
889 #define RX_FIFO_FRE (1 << 9)
890 #define RX_FIFO_ROR (1 << 10)
891 
892 typedef struct {
893     SysBusDevice busdev;
894     MemoryRegion iomem;
895     CharDriverState *chr;
896     qemu_irq irq;
897 
898     uint8_t utcr0;
899     uint16_t brd;
900     uint8_t utcr3;
901     uint8_t utsr0;
902     uint8_t utsr1;
903 
904     uint8_t tx_fifo[8];
905     uint8_t tx_start;
906     uint8_t tx_len;
907     uint16_t rx_fifo[12]; /* value + error flags in high bits */
908     uint8_t rx_start;
909     uint8_t rx_len;
910 
911     uint64_t char_transmit_time; /* time to transmit a char in ticks*/
912     bool wait_break_end;
913     QEMUTimer *rx_timeout_timer;
914     QEMUTimer *tx_timer;
915 } StrongARMUARTState;
916 
917 static void strongarm_uart_update_status(StrongARMUARTState *s)
918 {
919     uint16_t utsr1 = 0;
920 
921     if (s->tx_len != 8) {
922         utsr1 |= UTSR1_TNF;
923     }
924 
925     if (s->rx_len != 0) {
926         uint16_t ent = s->rx_fifo[s->rx_start];
927 
928         utsr1 |= UTSR1_RNE;
929         if (ent & RX_FIFO_PRE) {
930             s->utsr1 |= UTSR1_PRE;
931         }
932         if (ent & RX_FIFO_FRE) {
933             s->utsr1 |= UTSR1_FRE;
934         }
935         if (ent & RX_FIFO_ROR) {
936             s->utsr1 |= UTSR1_ROR;
937         }
938     }
939 
940     s->utsr1 = utsr1;
941 }
942 
943 static void strongarm_uart_update_int_status(StrongARMUARTState *s)
944 {
945     uint16_t utsr0 = s->utsr0 &
946             (UTSR0_REB | UTSR0_RBB | UTSR0_RID);
947     int i;
948 
949     if ((s->utcr3 & UTCR3_TXE) &&
950                 (s->utcr3 & UTCR3_TIE) &&
951                 s->tx_len <= 4) {
952         utsr0 |= UTSR0_TFS;
953     }
954 
955     if ((s->utcr3 & UTCR3_RXE) &&
956                 (s->utcr3 & UTCR3_RIE) &&
957                 s->rx_len > 4) {
958         utsr0 |= UTSR0_RFS;
959     }
960 
961     for (i = 0; i < s->rx_len && i < 4; i++)
962         if (s->rx_fifo[(s->rx_start + i) % 12] & ~0xff) {
963             utsr0 |= UTSR0_EIF;
964             break;
965         }
966 
967     s->utsr0 = utsr0;
968     qemu_set_irq(s->irq, utsr0);
969 }
970 
971 static void strongarm_uart_update_parameters(StrongARMUARTState *s)
972 {
973     int speed, parity, data_bits, stop_bits, frame_size;
974     QEMUSerialSetParams ssp;
975 
976     /* Start bit. */
977     frame_size = 1;
978     if (s->utcr0 & UTCR0_PE) {
979         /* Parity bit. */
980         frame_size++;
981         if (s->utcr0 & UTCR0_OES) {
982             parity = 'E';
983         } else {
984             parity = 'O';
985         }
986     } else {
987             parity = 'N';
988     }
989     if (s->utcr0 & UTCR0_SBS) {
990         stop_bits = 2;
991     } else {
992         stop_bits = 1;
993     }
994 
995     data_bits = (s->utcr0 & UTCR0_DSS) ? 8 : 7;
996     frame_size += data_bits + stop_bits;
997     speed = 3686400 / 16 / (s->brd + 1);
998     ssp.speed = speed;
999     ssp.parity = parity;
1000     ssp.data_bits = data_bits;
1001     ssp.stop_bits = stop_bits;
1002     s->char_transmit_time =  (get_ticks_per_sec() / speed) * frame_size;
1003     if (s->chr) {
1004         qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
1005     }
1006 
1007     DPRINTF(stderr, "%s speed=%d parity=%c data=%d stop=%d\n", s->chr->label,
1008             speed, parity, data_bits, stop_bits);
1009 }
1010 
1011 static void strongarm_uart_rx_to(void *opaque)
1012 {
1013     StrongARMUARTState *s = opaque;
1014 
1015     if (s->rx_len) {
1016         s->utsr0 |= UTSR0_RID;
1017         strongarm_uart_update_int_status(s);
1018     }
1019 }
1020 
1021 static void strongarm_uart_rx_push(StrongARMUARTState *s, uint16_t c)
1022 {
1023     if ((s->utcr3 & UTCR3_RXE) == 0) {
1024         /* rx disabled */
1025         return;
1026     }
1027 
1028     if (s->wait_break_end) {
1029         s->utsr0 |= UTSR0_REB;
1030         s->wait_break_end = false;
1031     }
1032 
1033     if (s->rx_len < 12) {
1034         s->rx_fifo[(s->rx_start + s->rx_len) % 12] = c;
1035         s->rx_len++;
1036     } else
1037         s->rx_fifo[(s->rx_start + 11) % 12] |= RX_FIFO_ROR;
1038 }
1039 
1040 static int strongarm_uart_can_receive(void *opaque)
1041 {
1042     StrongARMUARTState *s = opaque;
1043 
1044     if (s->rx_len == 12) {
1045         return 0;
1046     }
1047     /* It's best not to get more than 2/3 of RX FIFO, so advertise that much */
1048     if (s->rx_len < 8) {
1049         return 8 - s->rx_len;
1050     }
1051     return 1;
1052 }
1053 
1054 static void strongarm_uart_receive(void *opaque, const uint8_t *buf, int size)
1055 {
1056     StrongARMUARTState *s = opaque;
1057     int i;
1058 
1059     for (i = 0; i < size; i++) {
1060         strongarm_uart_rx_push(s, buf[i]);
1061     }
1062 
1063     /* call the timeout receive callback in 3 char transmit time */
1064     qemu_mod_timer(s->rx_timeout_timer,
1065                     qemu_get_clock_ns(vm_clock) + s->char_transmit_time * 3);
1066 
1067     strongarm_uart_update_status(s);
1068     strongarm_uart_update_int_status(s);
1069 }
1070 
1071 static void strongarm_uart_event(void *opaque, int event)
1072 {
1073     StrongARMUARTState *s = opaque;
1074     if (event == CHR_EVENT_BREAK) {
1075         s->utsr0 |= UTSR0_RBB;
1076         strongarm_uart_rx_push(s, RX_FIFO_FRE);
1077         s->wait_break_end = true;
1078         strongarm_uart_update_status(s);
1079         strongarm_uart_update_int_status(s);
1080     }
1081 }
1082 
1083 static void strongarm_uart_tx(void *opaque)
1084 {
1085     StrongARMUARTState *s = opaque;
1086     uint64_t new_xmit_ts = qemu_get_clock_ns(vm_clock);
1087 
1088     if (s->utcr3 & UTCR3_LBM) /* loopback */ {
1089         strongarm_uart_receive(s, &s->tx_fifo[s->tx_start], 1);
1090     } else if (s->chr) {
1091         qemu_chr_fe_write(s->chr, &s->tx_fifo[s->tx_start], 1);
1092     }
1093 
1094     s->tx_start = (s->tx_start + 1) % 8;
1095     s->tx_len--;
1096     if (s->tx_len) {
1097         qemu_mod_timer(s->tx_timer, new_xmit_ts + s->char_transmit_time);
1098     }
1099     strongarm_uart_update_status(s);
1100     strongarm_uart_update_int_status(s);
1101 }
1102 
1103 static uint64_t strongarm_uart_read(void *opaque, hwaddr addr,
1104                                     unsigned size)
1105 {
1106     StrongARMUARTState *s = opaque;
1107     uint16_t ret;
1108 
1109     switch (addr) {
1110     case UTCR0:
1111         return s->utcr0;
1112 
1113     case UTCR1:
1114         return s->brd >> 8;
1115 
1116     case UTCR2:
1117         return s->brd & 0xff;
1118 
1119     case UTCR3:
1120         return s->utcr3;
1121 
1122     case UTDR:
1123         if (s->rx_len != 0) {
1124             ret = s->rx_fifo[s->rx_start];
1125             s->rx_start = (s->rx_start + 1) % 12;
1126             s->rx_len--;
1127             strongarm_uart_update_status(s);
1128             strongarm_uart_update_int_status(s);
1129             return ret;
1130         }
1131         return 0;
1132 
1133     case UTSR0:
1134         return s->utsr0;
1135 
1136     case UTSR1:
1137         return s->utsr1;
1138 
1139     default:
1140         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1141         return 0;
1142     }
1143 }
1144 
1145 static void strongarm_uart_write(void *opaque, hwaddr addr,
1146                                  uint64_t value, unsigned size)
1147 {
1148     StrongARMUARTState *s = opaque;
1149 
1150     switch (addr) {
1151     case UTCR0:
1152         s->utcr0 = value & 0x7f;
1153         strongarm_uart_update_parameters(s);
1154         break;
1155 
1156     case UTCR1:
1157         s->brd = (s->brd & 0xff) | ((value & 0xf) << 8);
1158         strongarm_uart_update_parameters(s);
1159         break;
1160 
1161     case UTCR2:
1162         s->brd = (s->brd & 0xf00) | (value & 0xff);
1163         strongarm_uart_update_parameters(s);
1164         break;
1165 
1166     case UTCR3:
1167         s->utcr3 = value & 0x3f;
1168         if ((s->utcr3 & UTCR3_RXE) == 0) {
1169             s->rx_len = 0;
1170         }
1171         if ((s->utcr3 & UTCR3_TXE) == 0) {
1172             s->tx_len = 0;
1173         }
1174         strongarm_uart_update_status(s);
1175         strongarm_uart_update_int_status(s);
1176         break;
1177 
1178     case UTDR:
1179         if ((s->utcr3 & UTCR3_TXE) && s->tx_len != 8) {
1180             s->tx_fifo[(s->tx_start + s->tx_len) % 8] = value;
1181             s->tx_len++;
1182             strongarm_uart_update_status(s);
1183             strongarm_uart_update_int_status(s);
1184             if (s->tx_len == 1) {
1185                 strongarm_uart_tx(s);
1186             }
1187         }
1188         break;
1189 
1190     case UTSR0:
1191         s->utsr0 = s->utsr0 & ~(value &
1192                 (UTSR0_REB | UTSR0_RBB | UTSR0_RID));
1193         strongarm_uart_update_int_status(s);
1194         break;
1195 
1196     default:
1197         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1198     }
1199 }
1200 
1201 static const MemoryRegionOps strongarm_uart_ops = {
1202     .read = strongarm_uart_read,
1203     .write = strongarm_uart_write,
1204     .endianness = DEVICE_NATIVE_ENDIAN,
1205 };
1206 
1207 static int strongarm_uart_init(SysBusDevice *dev)
1208 {
1209     StrongARMUARTState *s = FROM_SYSBUS(StrongARMUARTState, dev);
1210 
1211     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_uart_ops, s,
1212                           "uart", 0x10000);
1213     sysbus_init_mmio(dev, &s->iomem);
1214     sysbus_init_irq(dev, &s->irq);
1215 
1216     s->rx_timeout_timer = qemu_new_timer_ns(vm_clock, strongarm_uart_rx_to, s);
1217     s->tx_timer = qemu_new_timer_ns(vm_clock, strongarm_uart_tx, s);
1218 
1219     if (s->chr) {
1220         qemu_chr_add_handlers(s->chr,
1221                         strongarm_uart_can_receive,
1222                         strongarm_uart_receive,
1223                         strongarm_uart_event,
1224                         s);
1225     }
1226 
1227     return 0;
1228 }
1229 
1230 static void strongarm_uart_reset(DeviceState *dev)
1231 {
1232     StrongARMUARTState *s = DO_UPCAST(StrongARMUARTState, busdev.qdev, dev);
1233 
1234     s->utcr0 = UTCR0_DSS; /* 8 data, no parity */
1235     s->brd = 23;    /* 9600 */
1236     /* enable send & recv - this actually violates spec */
1237     s->utcr3 = UTCR3_TXE | UTCR3_RXE;
1238 
1239     s->rx_len = s->tx_len = 0;
1240 
1241     strongarm_uart_update_parameters(s);
1242     strongarm_uart_update_status(s);
1243     strongarm_uart_update_int_status(s);
1244 }
1245 
1246 static int strongarm_uart_post_load(void *opaque, int version_id)
1247 {
1248     StrongARMUARTState *s = opaque;
1249 
1250     strongarm_uart_update_parameters(s);
1251     strongarm_uart_update_status(s);
1252     strongarm_uart_update_int_status(s);
1253 
1254     /* tx and restart timer */
1255     if (s->tx_len) {
1256         strongarm_uart_tx(s);
1257     }
1258 
1259     /* restart rx timeout timer */
1260     if (s->rx_len) {
1261         qemu_mod_timer(s->rx_timeout_timer,
1262                 qemu_get_clock_ns(vm_clock) + s->char_transmit_time * 3);
1263     }
1264 
1265     return 0;
1266 }
1267 
1268 static const VMStateDescription vmstate_strongarm_uart_regs = {
1269     .name = "strongarm-uart",
1270     .version_id = 0,
1271     .minimum_version_id = 0,
1272     .minimum_version_id_old = 0,
1273     .post_load = strongarm_uart_post_load,
1274     .fields = (VMStateField[]) {
1275         VMSTATE_UINT8(utcr0, StrongARMUARTState),
1276         VMSTATE_UINT16(brd, StrongARMUARTState),
1277         VMSTATE_UINT8(utcr3, StrongARMUARTState),
1278         VMSTATE_UINT8(utsr0, StrongARMUARTState),
1279         VMSTATE_UINT8_ARRAY(tx_fifo, StrongARMUARTState, 8),
1280         VMSTATE_UINT8(tx_start, StrongARMUARTState),
1281         VMSTATE_UINT8(tx_len, StrongARMUARTState),
1282         VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMUARTState, 12),
1283         VMSTATE_UINT8(rx_start, StrongARMUARTState),
1284         VMSTATE_UINT8(rx_len, StrongARMUARTState),
1285         VMSTATE_BOOL(wait_break_end, StrongARMUARTState),
1286         VMSTATE_END_OF_LIST(),
1287     },
1288 };
1289 
1290 static Property strongarm_uart_properties[] = {
1291     DEFINE_PROP_CHR("chardev", StrongARMUARTState, chr),
1292     DEFINE_PROP_END_OF_LIST(),
1293 };
1294 
1295 static void strongarm_uart_class_init(ObjectClass *klass, void *data)
1296 {
1297     DeviceClass *dc = DEVICE_CLASS(klass);
1298     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1299 
1300     k->init = strongarm_uart_init;
1301     dc->desc = "StrongARM UART controller";
1302     dc->reset = strongarm_uart_reset;
1303     dc->vmsd = &vmstate_strongarm_uart_regs;
1304     dc->props = strongarm_uart_properties;
1305 }
1306 
1307 static const TypeInfo strongarm_uart_info = {
1308     .name          = "strongarm-uart",
1309     .parent        = TYPE_SYS_BUS_DEVICE,
1310     .instance_size = sizeof(StrongARMUARTState),
1311     .class_init    = strongarm_uart_class_init,
1312 };
1313 
1314 /* Synchronous Serial Ports */
1315 typedef struct {
1316     SysBusDevice busdev;
1317     MemoryRegion iomem;
1318     qemu_irq irq;
1319     SSIBus *bus;
1320 
1321     uint16_t sscr[2];
1322     uint16_t sssr;
1323 
1324     uint16_t rx_fifo[8];
1325     uint8_t rx_level;
1326     uint8_t rx_start;
1327 } StrongARMSSPState;
1328 
1329 #define SSCR0 0x60 /* SSP Control register 0 */
1330 #define SSCR1 0x64 /* SSP Control register 1 */
1331 #define SSDR  0x6c /* SSP Data register */
1332 #define SSSR  0x74 /* SSP Status register */
1333 
1334 /* Bitfields for above registers */
1335 #define SSCR0_SPI(x)    (((x) & 0x30) == 0x00)
1336 #define SSCR0_SSP(x)    (((x) & 0x30) == 0x10)
1337 #define SSCR0_UWIRE(x)  (((x) & 0x30) == 0x20)
1338 #define SSCR0_PSP(x)    (((x) & 0x30) == 0x30)
1339 #define SSCR0_SSE       (1 << 7)
1340 #define SSCR0_DSS(x)    (((x) & 0xf) + 1)
1341 #define SSCR1_RIE       (1 << 0)
1342 #define SSCR1_TIE       (1 << 1)
1343 #define SSCR1_LBM       (1 << 2)
1344 #define SSSR_TNF        (1 << 2)
1345 #define SSSR_RNE        (1 << 3)
1346 #define SSSR_TFS        (1 << 5)
1347 #define SSSR_RFS        (1 << 6)
1348 #define SSSR_ROR        (1 << 7)
1349 #define SSSR_RW         0x0080
1350 
1351 static void strongarm_ssp_int_update(StrongARMSSPState *s)
1352 {
1353     int level = 0;
1354 
1355     level |= (s->sssr & SSSR_ROR);
1356     level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
1357     level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
1358     qemu_set_irq(s->irq, level);
1359 }
1360 
1361 static void strongarm_ssp_fifo_update(StrongARMSSPState *s)
1362 {
1363     s->sssr &= ~SSSR_TFS;
1364     s->sssr &= ~SSSR_TNF;
1365     if (s->sscr[0] & SSCR0_SSE) {
1366         if (s->rx_level >= 4) {
1367             s->sssr |= SSSR_RFS;
1368         } else {
1369             s->sssr &= ~SSSR_RFS;
1370         }
1371         if (s->rx_level) {
1372             s->sssr |= SSSR_RNE;
1373         } else {
1374             s->sssr &= ~SSSR_RNE;
1375         }
1376         /* TX FIFO is never filled, so it is always in underrun
1377            condition if SSP is enabled */
1378         s->sssr |= SSSR_TFS;
1379         s->sssr |= SSSR_TNF;
1380     }
1381 
1382     strongarm_ssp_int_update(s);
1383 }
1384 
1385 static uint64_t strongarm_ssp_read(void *opaque, hwaddr addr,
1386                                    unsigned size)
1387 {
1388     StrongARMSSPState *s = opaque;
1389     uint32_t retval;
1390 
1391     switch (addr) {
1392     case SSCR0:
1393         return s->sscr[0];
1394     case SSCR1:
1395         return s->sscr[1];
1396     case SSSR:
1397         return s->sssr;
1398     case SSDR:
1399         if (~s->sscr[0] & SSCR0_SSE) {
1400             return 0xffffffff;
1401         }
1402         if (s->rx_level < 1) {
1403             printf("%s: SSP Rx Underrun\n", __func__);
1404             return 0xffffffff;
1405         }
1406         s->rx_level--;
1407         retval = s->rx_fifo[s->rx_start++];
1408         s->rx_start &= 0x7;
1409         strongarm_ssp_fifo_update(s);
1410         return retval;
1411     default:
1412         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1413         break;
1414     }
1415     return 0;
1416 }
1417 
1418 static void strongarm_ssp_write(void *opaque, hwaddr addr,
1419                                 uint64_t value, unsigned size)
1420 {
1421     StrongARMSSPState *s = opaque;
1422 
1423     switch (addr) {
1424     case SSCR0:
1425         s->sscr[0] = value & 0xffbf;
1426         if ((s->sscr[0] & SSCR0_SSE) && SSCR0_DSS(value) < 4) {
1427             printf("%s: Wrong data size: %i bits\n", __func__,
1428                    (int)SSCR0_DSS(value));
1429         }
1430         if (!(value & SSCR0_SSE)) {
1431             s->sssr = 0;
1432             s->rx_level = 0;
1433         }
1434         strongarm_ssp_fifo_update(s);
1435         break;
1436 
1437     case SSCR1:
1438         s->sscr[1] = value & 0x2f;
1439         if (value & SSCR1_LBM) {
1440             printf("%s: Attempt to use SSP LBM mode\n", __func__);
1441         }
1442         strongarm_ssp_fifo_update(s);
1443         break;
1444 
1445     case SSSR:
1446         s->sssr &= ~(value & SSSR_RW);
1447         strongarm_ssp_int_update(s);
1448         break;
1449 
1450     case SSDR:
1451         if (SSCR0_UWIRE(s->sscr[0])) {
1452             value &= 0xff;
1453         } else
1454             /* Note how 32bits overflow does no harm here */
1455             value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
1456 
1457         /* Data goes from here to the Tx FIFO and is shifted out from
1458          * there directly to the slave, no need to buffer it.
1459          */
1460         if (s->sscr[0] & SSCR0_SSE) {
1461             uint32_t readval;
1462             if (s->sscr[1] & SSCR1_LBM) {
1463                 readval = value;
1464             } else {
1465                 readval = ssi_transfer(s->bus, value);
1466             }
1467 
1468             if (s->rx_level < 0x08) {
1469                 s->rx_fifo[(s->rx_start + s->rx_level++) & 0x7] = readval;
1470             } else {
1471                 s->sssr |= SSSR_ROR;
1472             }
1473         }
1474         strongarm_ssp_fifo_update(s);
1475         break;
1476 
1477     default:
1478         printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1479         break;
1480     }
1481 }
1482 
1483 static const MemoryRegionOps strongarm_ssp_ops = {
1484     .read = strongarm_ssp_read,
1485     .write = strongarm_ssp_write,
1486     .endianness = DEVICE_NATIVE_ENDIAN,
1487 };
1488 
1489 static int strongarm_ssp_post_load(void *opaque, int version_id)
1490 {
1491     StrongARMSSPState *s = opaque;
1492 
1493     strongarm_ssp_fifo_update(s);
1494 
1495     return 0;
1496 }
1497 
1498 static int strongarm_ssp_init(SysBusDevice *dev)
1499 {
1500     StrongARMSSPState *s = FROM_SYSBUS(StrongARMSSPState, dev);
1501 
1502     sysbus_init_irq(dev, &s->irq);
1503 
1504     memory_region_init_io(&s->iomem, OBJECT(s), &strongarm_ssp_ops, s,
1505                           "ssp", 0x1000);
1506     sysbus_init_mmio(dev, &s->iomem);
1507 
1508     s->bus = ssi_create_bus(&dev->qdev, "ssi");
1509     return 0;
1510 }
1511 
1512 static void strongarm_ssp_reset(DeviceState *dev)
1513 {
1514     StrongARMSSPState *s = DO_UPCAST(StrongARMSSPState, busdev.qdev, dev);
1515     s->sssr = 0x03; /* 3 bit data, SPI, disabled */
1516     s->rx_start = 0;
1517     s->rx_level = 0;
1518 }
1519 
1520 static const VMStateDescription vmstate_strongarm_ssp_regs = {
1521     .name = "strongarm-ssp",
1522     .version_id = 0,
1523     .minimum_version_id = 0,
1524     .minimum_version_id_old = 0,
1525     .post_load = strongarm_ssp_post_load,
1526     .fields = (VMStateField[]) {
1527         VMSTATE_UINT16_ARRAY(sscr, StrongARMSSPState, 2),
1528         VMSTATE_UINT16(sssr, StrongARMSSPState),
1529         VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMSSPState, 8),
1530         VMSTATE_UINT8(rx_start, StrongARMSSPState),
1531         VMSTATE_UINT8(rx_level, StrongARMSSPState),
1532         VMSTATE_END_OF_LIST(),
1533     },
1534 };
1535 
1536 static void strongarm_ssp_class_init(ObjectClass *klass, void *data)
1537 {
1538     DeviceClass *dc = DEVICE_CLASS(klass);
1539     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1540 
1541     k->init = strongarm_ssp_init;
1542     dc->desc = "StrongARM SSP controller";
1543     dc->reset = strongarm_ssp_reset;
1544     dc->vmsd = &vmstate_strongarm_ssp_regs;
1545 }
1546 
1547 static const TypeInfo strongarm_ssp_info = {
1548     .name          = "strongarm-ssp",
1549     .parent        = TYPE_SYS_BUS_DEVICE,
1550     .instance_size = sizeof(StrongARMSSPState),
1551     .class_init    = strongarm_ssp_class_init,
1552 };
1553 
1554 /* Main CPU functions */
1555 StrongARMState *sa1110_init(MemoryRegion *sysmem,
1556                             unsigned int sdram_size, const char *rev)
1557 {
1558     StrongARMState *s;
1559     qemu_irq *pic;
1560     int i;
1561 
1562     s = g_malloc0(sizeof(StrongARMState));
1563 
1564     if (!rev) {
1565         rev = "sa1110-b5";
1566     }
1567 
1568     if (strncmp(rev, "sa1110", 6)) {
1569         error_report("Machine requires a SA1110 processor.");
1570         exit(1);
1571     }
1572 
1573     s->cpu = cpu_arm_init(rev);
1574 
1575     if (!s->cpu) {
1576         error_report("Unable to find CPU definition");
1577         exit(1);
1578     }
1579 
1580     memory_region_init_ram(&s->sdram, NULL, "strongarm.sdram", sdram_size);
1581     vmstate_register_ram_global(&s->sdram);
1582     memory_region_add_subregion(sysmem, SA_SDCS0, &s->sdram);
1583 
1584     pic = arm_pic_init_cpu(s->cpu);
1585     s->pic = sysbus_create_varargs("strongarm_pic", 0x90050000,
1586                     pic[ARM_PIC_CPU_IRQ], pic[ARM_PIC_CPU_FIQ], NULL);
1587 
1588     sysbus_create_varargs("pxa25x-timer", 0x90000000,
1589                     qdev_get_gpio_in(s->pic, SA_PIC_OSTC0),
1590                     qdev_get_gpio_in(s->pic, SA_PIC_OSTC1),
1591                     qdev_get_gpio_in(s->pic, SA_PIC_OSTC2),
1592                     qdev_get_gpio_in(s->pic, SA_PIC_OSTC3),
1593                     NULL);
1594 
1595     sysbus_create_simple("strongarm-rtc", 0x90010000,
1596                     qdev_get_gpio_in(s->pic, SA_PIC_RTC_ALARM));
1597 
1598     s->gpio = strongarm_gpio_init(0x90040000, s->pic);
1599 
1600     s->ppc = sysbus_create_varargs("strongarm-ppc", 0x90060000, NULL);
1601 
1602     for (i = 0; sa_serial[i].io_base; i++) {
1603         DeviceState *dev = qdev_create(NULL, "strongarm-uart");
1604         qdev_prop_set_chr(dev, "chardev", serial_hds[i]);
1605         qdev_init_nofail(dev);
1606         sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0,
1607                 sa_serial[i].io_base);
1608         sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0,
1609                 qdev_get_gpio_in(s->pic, sa_serial[i].irq));
1610     }
1611 
1612     s->ssp = sysbus_create_varargs("strongarm-ssp", 0x80070000,
1613                 qdev_get_gpio_in(s->pic, SA_PIC_SSP), NULL);
1614     s->ssp_bus = (SSIBus *)qdev_get_child_bus(s->ssp, "ssi");
1615 
1616     return s;
1617 }
1618 
1619 static void strongarm_register_types(void)
1620 {
1621     type_register_static(&strongarm_pic_info);
1622     type_register_static(&strongarm_rtc_sysbus_info);
1623     type_register_static(&strongarm_gpio_info);
1624     type_register_static(&strongarm_ppc_info);
1625     type_register_static(&strongarm_uart_info);
1626     type_register_static(&strongarm_ssp_info);
1627 }
1628 
1629 type_init(strongarm_register_types)
1630