1 /* 2 * Luminary Micro Stellaris peripherals 3 * 4 * Copyright (c) 2006 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "hw/sysbus.h" 11 #include "hw/ssi.h" 12 #include "hw/arm/arm.h" 13 #include "hw/devices.h" 14 #include "qemu/timer.h" 15 #include "hw/i2c/i2c.h" 16 #include "net/net.h" 17 #include "hw/boards.h" 18 #include "exec/address-spaces.h" 19 20 #define GPIO_A 0 21 #define GPIO_B 1 22 #define GPIO_C 2 23 #define GPIO_D 3 24 #define GPIO_E 4 25 #define GPIO_F 5 26 #define GPIO_G 6 27 28 #define BP_OLED_I2C 0x01 29 #define BP_OLED_SSI 0x02 30 #define BP_GAMEPAD 0x04 31 32 #define NUM_IRQ_LINES 64 33 34 typedef const struct { 35 const char *name; 36 uint32_t did0; 37 uint32_t did1; 38 uint32_t dc0; 39 uint32_t dc1; 40 uint32_t dc2; 41 uint32_t dc3; 42 uint32_t dc4; 43 uint32_t peripherals; 44 } stellaris_board_info; 45 46 /* General purpose timer module. */ 47 48 #define TYPE_STELLARIS_GPTM "stellaris-gptm" 49 #define STELLARIS_GPTM(obj) \ 50 OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM) 51 52 typedef struct gptm_state { 53 SysBusDevice parent_obj; 54 55 MemoryRegion iomem; 56 uint32_t config; 57 uint32_t mode[2]; 58 uint32_t control; 59 uint32_t state; 60 uint32_t mask; 61 uint32_t load[2]; 62 uint32_t match[2]; 63 uint32_t prescale[2]; 64 uint32_t match_prescale[2]; 65 uint32_t rtc; 66 int64_t tick[2]; 67 struct gptm_state *opaque[2]; 68 QEMUTimer *timer[2]; 69 /* The timers have an alternate output used to trigger the ADC. */ 70 qemu_irq trigger; 71 qemu_irq irq; 72 } gptm_state; 73 74 static void gptm_update_irq(gptm_state *s) 75 { 76 int level; 77 level = (s->state & s->mask) != 0; 78 qemu_set_irq(s->irq, level); 79 } 80 81 static void gptm_stop(gptm_state *s, int n) 82 { 83 timer_del(s->timer[n]); 84 } 85 86 static void gptm_reload(gptm_state *s, int n, int reset) 87 { 88 int64_t tick; 89 if (reset) 90 tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 91 else 92 tick = s->tick[n]; 93 94 if (s->config == 0) { 95 /* 32-bit CountDown. */ 96 uint32_t count; 97 count = s->load[0] | (s->load[1] << 16); 98 tick += (int64_t)count * system_clock_scale; 99 } else if (s->config == 1) { 100 /* 32-bit RTC. 1Hz tick. */ 101 tick += get_ticks_per_sec(); 102 } else if (s->mode[n] == 0xa) { 103 /* PWM mode. Not implemented. */ 104 } else { 105 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]); 106 } 107 s->tick[n] = tick; 108 timer_mod(s->timer[n], tick); 109 } 110 111 static void gptm_tick(void *opaque) 112 { 113 gptm_state **p = (gptm_state **)opaque; 114 gptm_state *s; 115 int n; 116 117 s = *p; 118 n = p - s->opaque; 119 if (s->config == 0) { 120 s->state |= 1; 121 if ((s->control & 0x20)) { 122 /* Output trigger. */ 123 qemu_irq_pulse(s->trigger); 124 } 125 if (s->mode[0] & 1) { 126 /* One-shot. */ 127 s->control &= ~1; 128 } else { 129 /* Periodic. */ 130 gptm_reload(s, 0, 0); 131 } 132 } else if (s->config == 1) { 133 /* RTC. */ 134 uint32_t match; 135 s->rtc++; 136 match = s->match[0] | (s->match[1] << 16); 137 if (s->rtc > match) 138 s->rtc = 0; 139 if (s->rtc == 0) { 140 s->state |= 8; 141 } 142 gptm_reload(s, 0, 0); 143 } else if (s->mode[n] == 0xa) { 144 /* PWM mode. Not implemented. */ 145 } else { 146 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]); 147 } 148 gptm_update_irq(s); 149 } 150 151 static uint64_t gptm_read(void *opaque, hwaddr offset, 152 unsigned size) 153 { 154 gptm_state *s = (gptm_state *)opaque; 155 156 switch (offset) { 157 case 0x00: /* CFG */ 158 return s->config; 159 case 0x04: /* TAMR */ 160 return s->mode[0]; 161 case 0x08: /* TBMR */ 162 return s->mode[1]; 163 case 0x0c: /* CTL */ 164 return s->control; 165 case 0x18: /* IMR */ 166 return s->mask; 167 case 0x1c: /* RIS */ 168 return s->state; 169 case 0x20: /* MIS */ 170 return s->state & s->mask; 171 case 0x24: /* CR */ 172 return 0; 173 case 0x28: /* TAILR */ 174 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0); 175 case 0x2c: /* TBILR */ 176 return s->load[1]; 177 case 0x30: /* TAMARCHR */ 178 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0); 179 case 0x34: /* TBMATCHR */ 180 return s->match[1]; 181 case 0x38: /* TAPR */ 182 return s->prescale[0]; 183 case 0x3c: /* TBPR */ 184 return s->prescale[1]; 185 case 0x40: /* TAPMR */ 186 return s->match_prescale[0]; 187 case 0x44: /* TBPMR */ 188 return s->match_prescale[1]; 189 case 0x48: /* TAR */ 190 if (s->config == 1) { 191 return s->rtc; 192 } 193 qemu_log_mask(LOG_UNIMP, 194 "GPTM: read of TAR but timer read not supported"); 195 return 0; 196 case 0x4c: /* TBR */ 197 qemu_log_mask(LOG_UNIMP, 198 "GPTM: read of TBR but timer read not supported"); 199 return 0; 200 default: 201 qemu_log_mask(LOG_GUEST_ERROR, 202 "GPTM: read at bad offset 0x%x\n", (int)offset); 203 return 0; 204 } 205 } 206 207 static void gptm_write(void *opaque, hwaddr offset, 208 uint64_t value, unsigned size) 209 { 210 gptm_state *s = (gptm_state *)opaque; 211 uint32_t oldval; 212 213 /* The timers should be disabled before changing the configuration. 214 We take advantage of this and defer everything until the timer 215 is enabled. */ 216 switch (offset) { 217 case 0x00: /* CFG */ 218 s->config = value; 219 break; 220 case 0x04: /* TAMR */ 221 s->mode[0] = value; 222 break; 223 case 0x08: /* TBMR */ 224 s->mode[1] = value; 225 break; 226 case 0x0c: /* CTL */ 227 oldval = s->control; 228 s->control = value; 229 /* TODO: Implement pause. */ 230 if ((oldval ^ value) & 1) { 231 if (value & 1) { 232 gptm_reload(s, 0, 1); 233 } else { 234 gptm_stop(s, 0); 235 } 236 } 237 if (((oldval ^ value) & 0x100) && s->config >= 4) { 238 if (value & 0x100) { 239 gptm_reload(s, 1, 1); 240 } else { 241 gptm_stop(s, 1); 242 } 243 } 244 break; 245 case 0x18: /* IMR */ 246 s->mask = value & 0x77; 247 gptm_update_irq(s); 248 break; 249 case 0x24: /* CR */ 250 s->state &= ~value; 251 break; 252 case 0x28: /* TAILR */ 253 s->load[0] = value & 0xffff; 254 if (s->config < 4) { 255 s->load[1] = value >> 16; 256 } 257 break; 258 case 0x2c: /* TBILR */ 259 s->load[1] = value & 0xffff; 260 break; 261 case 0x30: /* TAMARCHR */ 262 s->match[0] = value & 0xffff; 263 if (s->config < 4) { 264 s->match[1] = value >> 16; 265 } 266 break; 267 case 0x34: /* TBMATCHR */ 268 s->match[1] = value >> 16; 269 break; 270 case 0x38: /* TAPR */ 271 s->prescale[0] = value; 272 break; 273 case 0x3c: /* TBPR */ 274 s->prescale[1] = value; 275 break; 276 case 0x40: /* TAPMR */ 277 s->match_prescale[0] = value; 278 break; 279 case 0x44: /* TBPMR */ 280 s->match_prescale[0] = value; 281 break; 282 default: 283 hw_error("gptm_write: Bad offset 0x%x\n", (int)offset); 284 } 285 gptm_update_irq(s); 286 } 287 288 static const MemoryRegionOps gptm_ops = { 289 .read = gptm_read, 290 .write = gptm_write, 291 .endianness = DEVICE_NATIVE_ENDIAN, 292 }; 293 294 static const VMStateDescription vmstate_stellaris_gptm = { 295 .name = "stellaris_gptm", 296 .version_id = 1, 297 .minimum_version_id = 1, 298 .fields = (VMStateField[]) { 299 VMSTATE_UINT32(config, gptm_state), 300 VMSTATE_UINT32_ARRAY(mode, gptm_state, 2), 301 VMSTATE_UINT32(control, gptm_state), 302 VMSTATE_UINT32(state, gptm_state), 303 VMSTATE_UINT32(mask, gptm_state), 304 VMSTATE_UNUSED(8), 305 VMSTATE_UINT32_ARRAY(load, gptm_state, 2), 306 VMSTATE_UINT32_ARRAY(match, gptm_state, 2), 307 VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2), 308 VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2), 309 VMSTATE_UINT32(rtc, gptm_state), 310 VMSTATE_INT64_ARRAY(tick, gptm_state, 2), 311 VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2), 312 VMSTATE_END_OF_LIST() 313 } 314 }; 315 316 static int stellaris_gptm_init(SysBusDevice *sbd) 317 { 318 DeviceState *dev = DEVICE(sbd); 319 gptm_state *s = STELLARIS_GPTM(dev); 320 321 sysbus_init_irq(sbd, &s->irq); 322 qdev_init_gpio_out(dev, &s->trigger, 1); 323 324 memory_region_init_io(&s->iomem, OBJECT(s), &gptm_ops, s, 325 "gptm", 0x1000); 326 sysbus_init_mmio(sbd, &s->iomem); 327 328 s->opaque[0] = s->opaque[1] = s; 329 s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]); 330 s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]); 331 vmstate_register(dev, -1, &vmstate_stellaris_gptm, s); 332 return 0; 333 } 334 335 336 /* System controller. */ 337 338 typedef struct { 339 MemoryRegion iomem; 340 uint32_t pborctl; 341 uint32_t ldopctl; 342 uint32_t int_status; 343 uint32_t int_mask; 344 uint32_t resc; 345 uint32_t rcc; 346 uint32_t rcc2; 347 uint32_t rcgc[3]; 348 uint32_t scgc[3]; 349 uint32_t dcgc[3]; 350 uint32_t clkvclr; 351 uint32_t ldoarst; 352 uint32_t user0; 353 uint32_t user1; 354 qemu_irq irq; 355 stellaris_board_info *board; 356 } ssys_state; 357 358 static void ssys_update(ssys_state *s) 359 { 360 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0); 361 } 362 363 static uint32_t pllcfg_sandstorm[16] = { 364 0x31c0, /* 1 Mhz */ 365 0x1ae0, /* 1.8432 Mhz */ 366 0x18c0, /* 2 Mhz */ 367 0xd573, /* 2.4576 Mhz */ 368 0x37a6, /* 3.57954 Mhz */ 369 0x1ae2, /* 3.6864 Mhz */ 370 0x0c40, /* 4 Mhz */ 371 0x98bc, /* 4.906 Mhz */ 372 0x935b, /* 4.9152 Mhz */ 373 0x09c0, /* 5 Mhz */ 374 0x4dee, /* 5.12 Mhz */ 375 0x0c41, /* 6 Mhz */ 376 0x75db, /* 6.144 Mhz */ 377 0x1ae6, /* 7.3728 Mhz */ 378 0x0600, /* 8 Mhz */ 379 0x585b /* 8.192 Mhz */ 380 }; 381 382 static uint32_t pllcfg_fury[16] = { 383 0x3200, /* 1 Mhz */ 384 0x1b20, /* 1.8432 Mhz */ 385 0x1900, /* 2 Mhz */ 386 0xf42b, /* 2.4576 Mhz */ 387 0x37e3, /* 3.57954 Mhz */ 388 0x1b21, /* 3.6864 Mhz */ 389 0x0c80, /* 4 Mhz */ 390 0x98ee, /* 4.906 Mhz */ 391 0xd5b4, /* 4.9152 Mhz */ 392 0x0a00, /* 5 Mhz */ 393 0x4e27, /* 5.12 Mhz */ 394 0x1902, /* 6 Mhz */ 395 0xec1c, /* 6.144 Mhz */ 396 0x1b23, /* 7.3728 Mhz */ 397 0x0640, /* 8 Mhz */ 398 0xb11c /* 8.192 Mhz */ 399 }; 400 401 #define DID0_VER_MASK 0x70000000 402 #define DID0_VER_0 0x00000000 403 #define DID0_VER_1 0x10000000 404 405 #define DID0_CLASS_MASK 0x00FF0000 406 #define DID0_CLASS_SANDSTORM 0x00000000 407 #define DID0_CLASS_FURY 0x00010000 408 409 static int ssys_board_class(const ssys_state *s) 410 { 411 uint32_t did0 = s->board->did0; 412 switch (did0 & DID0_VER_MASK) { 413 case DID0_VER_0: 414 return DID0_CLASS_SANDSTORM; 415 case DID0_VER_1: 416 switch (did0 & DID0_CLASS_MASK) { 417 case DID0_CLASS_SANDSTORM: 418 case DID0_CLASS_FURY: 419 return did0 & DID0_CLASS_MASK; 420 } 421 /* for unknown classes, fall through */ 422 default: 423 hw_error("ssys_board_class: Unknown class 0x%08x\n", did0); 424 } 425 } 426 427 static uint64_t ssys_read(void *opaque, hwaddr offset, 428 unsigned size) 429 { 430 ssys_state *s = (ssys_state *)opaque; 431 432 switch (offset) { 433 case 0x000: /* DID0 */ 434 return s->board->did0; 435 case 0x004: /* DID1 */ 436 return s->board->did1; 437 case 0x008: /* DC0 */ 438 return s->board->dc0; 439 case 0x010: /* DC1 */ 440 return s->board->dc1; 441 case 0x014: /* DC2 */ 442 return s->board->dc2; 443 case 0x018: /* DC3 */ 444 return s->board->dc3; 445 case 0x01c: /* DC4 */ 446 return s->board->dc4; 447 case 0x030: /* PBORCTL */ 448 return s->pborctl; 449 case 0x034: /* LDOPCTL */ 450 return s->ldopctl; 451 case 0x040: /* SRCR0 */ 452 return 0; 453 case 0x044: /* SRCR1 */ 454 return 0; 455 case 0x048: /* SRCR2 */ 456 return 0; 457 case 0x050: /* RIS */ 458 return s->int_status; 459 case 0x054: /* IMC */ 460 return s->int_mask; 461 case 0x058: /* MISC */ 462 return s->int_status & s->int_mask; 463 case 0x05c: /* RESC */ 464 return s->resc; 465 case 0x060: /* RCC */ 466 return s->rcc; 467 case 0x064: /* PLLCFG */ 468 { 469 int xtal; 470 xtal = (s->rcc >> 6) & 0xf; 471 switch (ssys_board_class(s)) { 472 case DID0_CLASS_FURY: 473 return pllcfg_fury[xtal]; 474 case DID0_CLASS_SANDSTORM: 475 return pllcfg_sandstorm[xtal]; 476 default: 477 hw_error("ssys_read: Unhandled class for PLLCFG read.\n"); 478 return 0; 479 } 480 } 481 case 0x070: /* RCC2 */ 482 return s->rcc2; 483 case 0x100: /* RCGC0 */ 484 return s->rcgc[0]; 485 case 0x104: /* RCGC1 */ 486 return s->rcgc[1]; 487 case 0x108: /* RCGC2 */ 488 return s->rcgc[2]; 489 case 0x110: /* SCGC0 */ 490 return s->scgc[0]; 491 case 0x114: /* SCGC1 */ 492 return s->scgc[1]; 493 case 0x118: /* SCGC2 */ 494 return s->scgc[2]; 495 case 0x120: /* DCGC0 */ 496 return s->dcgc[0]; 497 case 0x124: /* DCGC1 */ 498 return s->dcgc[1]; 499 case 0x128: /* DCGC2 */ 500 return s->dcgc[2]; 501 case 0x150: /* CLKVCLR */ 502 return s->clkvclr; 503 case 0x160: /* LDOARST */ 504 return s->ldoarst; 505 case 0x1e0: /* USER0 */ 506 return s->user0; 507 case 0x1e4: /* USER1 */ 508 return s->user1; 509 default: 510 hw_error("ssys_read: Bad offset 0x%x\n", (int)offset); 511 return 0; 512 } 513 } 514 515 static bool ssys_use_rcc2(ssys_state *s) 516 { 517 return (s->rcc2 >> 31) & 0x1; 518 } 519 520 /* 521 * Caculate the sys. clock period in ms. 522 */ 523 static void ssys_calculate_system_clock(ssys_state *s) 524 { 525 if (ssys_use_rcc2(s)) { 526 system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1); 527 } else { 528 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1); 529 } 530 } 531 532 static void ssys_write(void *opaque, hwaddr offset, 533 uint64_t value, unsigned size) 534 { 535 ssys_state *s = (ssys_state *)opaque; 536 537 switch (offset) { 538 case 0x030: /* PBORCTL */ 539 s->pborctl = value & 0xffff; 540 break; 541 case 0x034: /* LDOPCTL */ 542 s->ldopctl = value & 0x1f; 543 break; 544 case 0x040: /* SRCR0 */ 545 case 0x044: /* SRCR1 */ 546 case 0x048: /* SRCR2 */ 547 fprintf(stderr, "Peripheral reset not implemented\n"); 548 break; 549 case 0x054: /* IMC */ 550 s->int_mask = value & 0x7f; 551 break; 552 case 0x058: /* MISC */ 553 s->int_status &= ~value; 554 break; 555 case 0x05c: /* RESC */ 556 s->resc = value & 0x3f; 557 break; 558 case 0x060: /* RCC */ 559 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { 560 /* PLL enable. */ 561 s->int_status |= (1 << 6); 562 } 563 s->rcc = value; 564 ssys_calculate_system_clock(s); 565 break; 566 case 0x070: /* RCC2 */ 567 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { 568 break; 569 } 570 571 if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { 572 /* PLL enable. */ 573 s->int_status |= (1 << 6); 574 } 575 s->rcc2 = value; 576 ssys_calculate_system_clock(s); 577 break; 578 case 0x100: /* RCGC0 */ 579 s->rcgc[0] = value; 580 break; 581 case 0x104: /* RCGC1 */ 582 s->rcgc[1] = value; 583 break; 584 case 0x108: /* RCGC2 */ 585 s->rcgc[2] = value; 586 break; 587 case 0x110: /* SCGC0 */ 588 s->scgc[0] = value; 589 break; 590 case 0x114: /* SCGC1 */ 591 s->scgc[1] = value; 592 break; 593 case 0x118: /* SCGC2 */ 594 s->scgc[2] = value; 595 break; 596 case 0x120: /* DCGC0 */ 597 s->dcgc[0] = value; 598 break; 599 case 0x124: /* DCGC1 */ 600 s->dcgc[1] = value; 601 break; 602 case 0x128: /* DCGC2 */ 603 s->dcgc[2] = value; 604 break; 605 case 0x150: /* CLKVCLR */ 606 s->clkvclr = value; 607 break; 608 case 0x160: /* LDOARST */ 609 s->ldoarst = value; 610 break; 611 default: 612 hw_error("ssys_write: Bad offset 0x%x\n", (int)offset); 613 } 614 ssys_update(s); 615 } 616 617 static const MemoryRegionOps ssys_ops = { 618 .read = ssys_read, 619 .write = ssys_write, 620 .endianness = DEVICE_NATIVE_ENDIAN, 621 }; 622 623 static void ssys_reset(void *opaque) 624 { 625 ssys_state *s = (ssys_state *)opaque; 626 627 s->pborctl = 0x7ffd; 628 s->rcc = 0x078e3ac0; 629 630 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { 631 s->rcc2 = 0; 632 } else { 633 s->rcc2 = 0x07802810; 634 } 635 s->rcgc[0] = 1; 636 s->scgc[0] = 1; 637 s->dcgc[0] = 1; 638 ssys_calculate_system_clock(s); 639 } 640 641 static int stellaris_sys_post_load(void *opaque, int version_id) 642 { 643 ssys_state *s = opaque; 644 645 ssys_calculate_system_clock(s); 646 647 return 0; 648 } 649 650 static const VMStateDescription vmstate_stellaris_sys = { 651 .name = "stellaris_sys", 652 .version_id = 2, 653 .minimum_version_id = 1, 654 .post_load = stellaris_sys_post_load, 655 .fields = (VMStateField[]) { 656 VMSTATE_UINT32(pborctl, ssys_state), 657 VMSTATE_UINT32(ldopctl, ssys_state), 658 VMSTATE_UINT32(int_mask, ssys_state), 659 VMSTATE_UINT32(int_status, ssys_state), 660 VMSTATE_UINT32(resc, ssys_state), 661 VMSTATE_UINT32(rcc, ssys_state), 662 VMSTATE_UINT32_V(rcc2, ssys_state, 2), 663 VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3), 664 VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3), 665 VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3), 666 VMSTATE_UINT32(clkvclr, ssys_state), 667 VMSTATE_UINT32(ldoarst, ssys_state), 668 VMSTATE_END_OF_LIST() 669 } 670 }; 671 672 static int stellaris_sys_init(uint32_t base, qemu_irq irq, 673 stellaris_board_info * board, 674 uint8_t *macaddr) 675 { 676 ssys_state *s; 677 678 s = (ssys_state *)g_malloc0(sizeof(ssys_state)); 679 s->irq = irq; 680 s->board = board; 681 /* Most devices come preprogrammed with a MAC address in the user data. */ 682 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16); 683 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16); 684 685 memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000); 686 memory_region_add_subregion(get_system_memory(), base, &s->iomem); 687 ssys_reset(s); 688 vmstate_register(NULL, -1, &vmstate_stellaris_sys, s); 689 return 0; 690 } 691 692 693 /* I2C controller. */ 694 695 #define TYPE_STELLARIS_I2C "stellaris-i2c" 696 #define STELLARIS_I2C(obj) \ 697 OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C) 698 699 typedef struct { 700 SysBusDevice parent_obj; 701 702 I2CBus *bus; 703 qemu_irq irq; 704 MemoryRegion iomem; 705 uint32_t msa; 706 uint32_t mcs; 707 uint32_t mdr; 708 uint32_t mtpr; 709 uint32_t mimr; 710 uint32_t mris; 711 uint32_t mcr; 712 } stellaris_i2c_state; 713 714 #define STELLARIS_I2C_MCS_BUSY 0x01 715 #define STELLARIS_I2C_MCS_ERROR 0x02 716 #define STELLARIS_I2C_MCS_ADRACK 0x04 717 #define STELLARIS_I2C_MCS_DATACK 0x08 718 #define STELLARIS_I2C_MCS_ARBLST 0x10 719 #define STELLARIS_I2C_MCS_IDLE 0x20 720 #define STELLARIS_I2C_MCS_BUSBSY 0x40 721 722 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset, 723 unsigned size) 724 { 725 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; 726 727 switch (offset) { 728 case 0x00: /* MSA */ 729 return s->msa; 730 case 0x04: /* MCS */ 731 /* We don't emulate timing, so the controller is never busy. */ 732 return s->mcs | STELLARIS_I2C_MCS_IDLE; 733 case 0x08: /* MDR */ 734 return s->mdr; 735 case 0x0c: /* MTPR */ 736 return s->mtpr; 737 case 0x10: /* MIMR */ 738 return s->mimr; 739 case 0x14: /* MRIS */ 740 return s->mris; 741 case 0x18: /* MMIS */ 742 return s->mris & s->mimr; 743 case 0x20: /* MCR */ 744 return s->mcr; 745 default: 746 hw_error("strllaris_i2c_read: Bad offset 0x%x\n", (int)offset); 747 return 0; 748 } 749 } 750 751 static void stellaris_i2c_update(stellaris_i2c_state *s) 752 { 753 int level; 754 755 level = (s->mris & s->mimr) != 0; 756 qemu_set_irq(s->irq, level); 757 } 758 759 static void stellaris_i2c_write(void *opaque, hwaddr offset, 760 uint64_t value, unsigned size) 761 { 762 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; 763 764 switch (offset) { 765 case 0x00: /* MSA */ 766 s->msa = value & 0xff; 767 break; 768 case 0x04: /* MCS */ 769 if ((s->mcr & 0x10) == 0) { 770 /* Disabled. Do nothing. */ 771 break; 772 } 773 /* Grab the bus if this is starting a transfer. */ 774 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { 775 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) { 776 s->mcs |= STELLARIS_I2C_MCS_ARBLST; 777 } else { 778 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST; 779 s->mcs |= STELLARIS_I2C_MCS_BUSBSY; 780 } 781 } 782 /* If we don't have the bus then indicate an error. */ 783 if (!i2c_bus_busy(s->bus) 784 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { 785 s->mcs |= STELLARIS_I2C_MCS_ERROR; 786 break; 787 } 788 s->mcs &= ~STELLARIS_I2C_MCS_ERROR; 789 if (value & 1) { 790 /* Transfer a byte. */ 791 /* TODO: Handle errors. */ 792 if (s->msa & 1) { 793 /* Recv */ 794 s->mdr = i2c_recv(s->bus) & 0xff; 795 } else { 796 /* Send */ 797 i2c_send(s->bus, s->mdr); 798 } 799 /* Raise an interrupt. */ 800 s->mris |= 1; 801 } 802 if (value & 4) { 803 /* Finish transfer. */ 804 i2c_end_transfer(s->bus); 805 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY; 806 } 807 break; 808 case 0x08: /* MDR */ 809 s->mdr = value & 0xff; 810 break; 811 case 0x0c: /* MTPR */ 812 s->mtpr = value & 0xff; 813 break; 814 case 0x10: /* MIMR */ 815 s->mimr = 1; 816 break; 817 case 0x1c: /* MICR */ 818 s->mris &= ~value; 819 break; 820 case 0x20: /* MCR */ 821 if (value & 1) 822 hw_error( 823 "stellaris_i2c_write: Loopback not implemented\n"); 824 if (value & 0x20) 825 hw_error( 826 "stellaris_i2c_write: Slave mode not implemented\n"); 827 s->mcr = value & 0x31; 828 break; 829 default: 830 hw_error("stellaris_i2c_write: Bad offset 0x%x\n", 831 (int)offset); 832 } 833 stellaris_i2c_update(s); 834 } 835 836 static void stellaris_i2c_reset(stellaris_i2c_state *s) 837 { 838 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY) 839 i2c_end_transfer(s->bus); 840 841 s->msa = 0; 842 s->mcs = 0; 843 s->mdr = 0; 844 s->mtpr = 1; 845 s->mimr = 0; 846 s->mris = 0; 847 s->mcr = 0; 848 stellaris_i2c_update(s); 849 } 850 851 static const MemoryRegionOps stellaris_i2c_ops = { 852 .read = stellaris_i2c_read, 853 .write = stellaris_i2c_write, 854 .endianness = DEVICE_NATIVE_ENDIAN, 855 }; 856 857 static const VMStateDescription vmstate_stellaris_i2c = { 858 .name = "stellaris_i2c", 859 .version_id = 1, 860 .minimum_version_id = 1, 861 .fields = (VMStateField[]) { 862 VMSTATE_UINT32(msa, stellaris_i2c_state), 863 VMSTATE_UINT32(mcs, stellaris_i2c_state), 864 VMSTATE_UINT32(mdr, stellaris_i2c_state), 865 VMSTATE_UINT32(mtpr, stellaris_i2c_state), 866 VMSTATE_UINT32(mimr, stellaris_i2c_state), 867 VMSTATE_UINT32(mris, stellaris_i2c_state), 868 VMSTATE_UINT32(mcr, stellaris_i2c_state), 869 VMSTATE_END_OF_LIST() 870 } 871 }; 872 873 static int stellaris_i2c_init(SysBusDevice *sbd) 874 { 875 DeviceState *dev = DEVICE(sbd); 876 stellaris_i2c_state *s = STELLARIS_I2C(dev); 877 I2CBus *bus; 878 879 sysbus_init_irq(sbd, &s->irq); 880 bus = i2c_init_bus(dev, "i2c"); 881 s->bus = bus; 882 883 memory_region_init_io(&s->iomem, OBJECT(s), &stellaris_i2c_ops, s, 884 "i2c", 0x1000); 885 sysbus_init_mmio(sbd, &s->iomem); 886 /* ??? For now we only implement the master interface. */ 887 stellaris_i2c_reset(s); 888 vmstate_register(dev, -1, &vmstate_stellaris_i2c, s); 889 return 0; 890 } 891 892 /* Analogue to Digital Converter. This is only partially implemented, 893 enough for applications that use a combined ADC and timer tick. */ 894 895 #define STELLARIS_ADC_EM_CONTROLLER 0 896 #define STELLARIS_ADC_EM_COMP 1 897 #define STELLARIS_ADC_EM_EXTERNAL 4 898 #define STELLARIS_ADC_EM_TIMER 5 899 #define STELLARIS_ADC_EM_PWM0 6 900 #define STELLARIS_ADC_EM_PWM1 7 901 #define STELLARIS_ADC_EM_PWM2 8 902 903 #define STELLARIS_ADC_FIFO_EMPTY 0x0100 904 #define STELLARIS_ADC_FIFO_FULL 0x1000 905 906 #define TYPE_STELLARIS_ADC "stellaris-adc" 907 #define STELLARIS_ADC(obj) \ 908 OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC) 909 910 typedef struct StellarisADCState { 911 SysBusDevice parent_obj; 912 913 MemoryRegion iomem; 914 uint32_t actss; 915 uint32_t ris; 916 uint32_t im; 917 uint32_t emux; 918 uint32_t ostat; 919 uint32_t ustat; 920 uint32_t sspri; 921 uint32_t sac; 922 struct { 923 uint32_t state; 924 uint32_t data[16]; 925 } fifo[4]; 926 uint32_t ssmux[4]; 927 uint32_t ssctl[4]; 928 uint32_t noise; 929 qemu_irq irq[4]; 930 } stellaris_adc_state; 931 932 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n) 933 { 934 int tail; 935 936 tail = s->fifo[n].state & 0xf; 937 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) { 938 s->ustat |= 1 << n; 939 } else { 940 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf); 941 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL; 942 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf)) 943 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY; 944 } 945 return s->fifo[n].data[tail]; 946 } 947 948 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n, 949 uint32_t value) 950 { 951 int head; 952 953 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry 954 FIFO fir each sequencer. */ 955 head = (s->fifo[n].state >> 4) & 0xf; 956 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) { 957 s->ostat |= 1 << n; 958 return; 959 } 960 s->fifo[n].data[head] = value; 961 head = (head + 1) & 0xf; 962 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY; 963 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4); 964 if ((s->fifo[n].state & 0xf) == head) 965 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL; 966 } 967 968 static void stellaris_adc_update(stellaris_adc_state *s) 969 { 970 int level; 971 int n; 972 973 for (n = 0; n < 4; n++) { 974 level = (s->ris & s->im & (1 << n)) != 0; 975 qemu_set_irq(s->irq[n], level); 976 } 977 } 978 979 static void stellaris_adc_trigger(void *opaque, int irq, int level) 980 { 981 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 982 int n; 983 984 for (n = 0; n < 4; n++) { 985 if ((s->actss & (1 << n)) == 0) { 986 continue; 987 } 988 989 if (((s->emux >> (n * 4)) & 0xff) != 5) { 990 continue; 991 } 992 993 /* Some applications use the ADC as a random number source, so introduce 994 some variation into the signal. */ 995 s->noise = s->noise * 314159 + 1; 996 /* ??? actual inputs not implemented. Return an arbitrary value. */ 997 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7)); 998 s->ris |= (1 << n); 999 stellaris_adc_update(s); 1000 } 1001 } 1002 1003 static void stellaris_adc_reset(stellaris_adc_state *s) 1004 { 1005 int n; 1006 1007 for (n = 0; n < 4; n++) { 1008 s->ssmux[n] = 0; 1009 s->ssctl[n] = 0; 1010 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY; 1011 } 1012 } 1013 1014 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset, 1015 unsigned size) 1016 { 1017 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 1018 1019 /* TODO: Implement this. */ 1020 if (offset >= 0x40 && offset < 0xc0) { 1021 int n; 1022 n = (offset - 0x40) >> 5; 1023 switch (offset & 0x1f) { 1024 case 0x00: /* SSMUX */ 1025 return s->ssmux[n]; 1026 case 0x04: /* SSCTL */ 1027 return s->ssctl[n]; 1028 case 0x08: /* SSFIFO */ 1029 return stellaris_adc_fifo_read(s, n); 1030 case 0x0c: /* SSFSTAT */ 1031 return s->fifo[n].state; 1032 default: 1033 break; 1034 } 1035 } 1036 switch (offset) { 1037 case 0x00: /* ACTSS */ 1038 return s->actss; 1039 case 0x04: /* RIS */ 1040 return s->ris; 1041 case 0x08: /* IM */ 1042 return s->im; 1043 case 0x0c: /* ISC */ 1044 return s->ris & s->im; 1045 case 0x10: /* OSTAT */ 1046 return s->ostat; 1047 case 0x14: /* EMUX */ 1048 return s->emux; 1049 case 0x18: /* USTAT */ 1050 return s->ustat; 1051 case 0x20: /* SSPRI */ 1052 return s->sspri; 1053 case 0x30: /* SAC */ 1054 return s->sac; 1055 default: 1056 hw_error("strllaris_adc_read: Bad offset 0x%x\n", 1057 (int)offset); 1058 return 0; 1059 } 1060 } 1061 1062 static void stellaris_adc_write(void *opaque, hwaddr offset, 1063 uint64_t value, unsigned size) 1064 { 1065 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 1066 1067 /* TODO: Implement this. */ 1068 if (offset >= 0x40 && offset < 0xc0) { 1069 int n; 1070 n = (offset - 0x40) >> 5; 1071 switch (offset & 0x1f) { 1072 case 0x00: /* SSMUX */ 1073 s->ssmux[n] = value & 0x33333333; 1074 return; 1075 case 0x04: /* SSCTL */ 1076 if (value != 6) { 1077 hw_error("ADC: Unimplemented sequence %" PRIx64 "\n", 1078 value); 1079 } 1080 s->ssctl[n] = value; 1081 return; 1082 default: 1083 break; 1084 } 1085 } 1086 switch (offset) { 1087 case 0x00: /* ACTSS */ 1088 s->actss = value & 0xf; 1089 break; 1090 case 0x08: /* IM */ 1091 s->im = value; 1092 break; 1093 case 0x0c: /* ISC */ 1094 s->ris &= ~value; 1095 break; 1096 case 0x10: /* OSTAT */ 1097 s->ostat &= ~value; 1098 break; 1099 case 0x14: /* EMUX */ 1100 s->emux = value; 1101 break; 1102 case 0x18: /* USTAT */ 1103 s->ustat &= ~value; 1104 break; 1105 case 0x20: /* SSPRI */ 1106 s->sspri = value; 1107 break; 1108 case 0x28: /* PSSI */ 1109 hw_error("Not implemented: ADC sample initiate\n"); 1110 break; 1111 case 0x30: /* SAC */ 1112 s->sac = value; 1113 break; 1114 default: 1115 hw_error("stellaris_adc_write: Bad offset 0x%x\n", (int)offset); 1116 } 1117 stellaris_adc_update(s); 1118 } 1119 1120 static const MemoryRegionOps stellaris_adc_ops = { 1121 .read = stellaris_adc_read, 1122 .write = stellaris_adc_write, 1123 .endianness = DEVICE_NATIVE_ENDIAN, 1124 }; 1125 1126 static const VMStateDescription vmstate_stellaris_adc = { 1127 .name = "stellaris_adc", 1128 .version_id = 1, 1129 .minimum_version_id = 1, 1130 .fields = (VMStateField[]) { 1131 VMSTATE_UINT32(actss, stellaris_adc_state), 1132 VMSTATE_UINT32(ris, stellaris_adc_state), 1133 VMSTATE_UINT32(im, stellaris_adc_state), 1134 VMSTATE_UINT32(emux, stellaris_adc_state), 1135 VMSTATE_UINT32(ostat, stellaris_adc_state), 1136 VMSTATE_UINT32(ustat, stellaris_adc_state), 1137 VMSTATE_UINT32(sspri, stellaris_adc_state), 1138 VMSTATE_UINT32(sac, stellaris_adc_state), 1139 VMSTATE_UINT32(fifo[0].state, stellaris_adc_state), 1140 VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16), 1141 VMSTATE_UINT32(ssmux[0], stellaris_adc_state), 1142 VMSTATE_UINT32(ssctl[0], stellaris_adc_state), 1143 VMSTATE_UINT32(fifo[1].state, stellaris_adc_state), 1144 VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16), 1145 VMSTATE_UINT32(ssmux[1], stellaris_adc_state), 1146 VMSTATE_UINT32(ssctl[1], stellaris_adc_state), 1147 VMSTATE_UINT32(fifo[2].state, stellaris_adc_state), 1148 VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16), 1149 VMSTATE_UINT32(ssmux[2], stellaris_adc_state), 1150 VMSTATE_UINT32(ssctl[2], stellaris_adc_state), 1151 VMSTATE_UINT32(fifo[3].state, stellaris_adc_state), 1152 VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16), 1153 VMSTATE_UINT32(ssmux[3], stellaris_adc_state), 1154 VMSTATE_UINT32(ssctl[3], stellaris_adc_state), 1155 VMSTATE_UINT32(noise, stellaris_adc_state), 1156 VMSTATE_END_OF_LIST() 1157 } 1158 }; 1159 1160 static int stellaris_adc_init(SysBusDevice *sbd) 1161 { 1162 DeviceState *dev = DEVICE(sbd); 1163 stellaris_adc_state *s = STELLARIS_ADC(dev); 1164 int n; 1165 1166 for (n = 0; n < 4; n++) { 1167 sysbus_init_irq(sbd, &s->irq[n]); 1168 } 1169 1170 memory_region_init_io(&s->iomem, OBJECT(s), &stellaris_adc_ops, s, 1171 "adc", 0x1000); 1172 sysbus_init_mmio(sbd, &s->iomem); 1173 stellaris_adc_reset(s); 1174 qdev_init_gpio_in(dev, stellaris_adc_trigger, 1); 1175 vmstate_register(dev, -1, &vmstate_stellaris_adc, s); 1176 return 0; 1177 } 1178 1179 /* Board init. */ 1180 static stellaris_board_info stellaris_boards[] = { 1181 { "LM3S811EVB", 1182 0, 1183 0x0032000e, 1184 0x001f001f, /* dc0 */ 1185 0x001132bf, 1186 0x01071013, 1187 0x3f0f01ff, 1188 0x0000001f, 1189 BP_OLED_I2C 1190 }, 1191 { "LM3S6965EVB", 1192 0x10010002, 1193 0x1073402e, 1194 0x00ff007f, /* dc0 */ 1195 0x001133ff, 1196 0x030f5317, 1197 0x0f0f87ff, 1198 0x5000007f, 1199 BP_OLED_SSI | BP_GAMEPAD 1200 } 1201 }; 1202 1203 static void stellaris_init(const char *kernel_filename, const char *cpu_model, 1204 stellaris_board_info *board) 1205 { 1206 static const int uart_irq[] = {5, 6, 33, 34}; 1207 static const int timer_irq[] = {19, 21, 23, 35}; 1208 static const uint32_t gpio_addr[7] = 1209 { 0x40004000, 0x40005000, 0x40006000, 0x40007000, 1210 0x40024000, 0x40025000, 0x40026000}; 1211 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31}; 1212 1213 qemu_irq *pic; 1214 DeviceState *gpio_dev[7]; 1215 qemu_irq gpio_in[7][8]; 1216 qemu_irq gpio_out[7][8]; 1217 qemu_irq adc; 1218 int sram_size; 1219 int flash_size; 1220 I2CBus *i2c; 1221 DeviceState *dev; 1222 int i; 1223 int j; 1224 1225 MemoryRegion *sram = g_new(MemoryRegion, 1); 1226 MemoryRegion *flash = g_new(MemoryRegion, 1); 1227 MemoryRegion *system_memory = get_system_memory(); 1228 1229 flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024; 1230 sram_size = ((board->dc0 >> 18) + 1) * 1024; 1231 1232 /* Flash programming is done via the SCU, so pretend it is ROM. */ 1233 memory_region_init_ram(flash, NULL, "stellaris.flash", flash_size, 1234 &error_abort); 1235 vmstate_register_ram_global(flash); 1236 memory_region_set_readonly(flash, true); 1237 memory_region_add_subregion(system_memory, 0, flash); 1238 1239 memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size, 1240 &error_abort); 1241 vmstate_register_ram_global(sram); 1242 memory_region_add_subregion(system_memory, 0x20000000, sram); 1243 1244 pic = armv7m_init(system_memory, flash_size, NUM_IRQ_LINES, 1245 kernel_filename, cpu_model); 1246 1247 if (board->dc1 & (1 << 16)) { 1248 dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000, 1249 pic[14], pic[15], pic[16], pic[17], NULL); 1250 adc = qdev_get_gpio_in(dev, 0); 1251 } else { 1252 adc = NULL; 1253 } 1254 for (i = 0; i < 4; i++) { 1255 if (board->dc2 & (0x10000 << i)) { 1256 dev = sysbus_create_simple(TYPE_STELLARIS_GPTM, 1257 0x40030000 + i * 0x1000, 1258 pic[timer_irq[i]]); 1259 /* TODO: This is incorrect, but we get away with it because 1260 the ADC output is only ever pulsed. */ 1261 qdev_connect_gpio_out(dev, 0, adc); 1262 } 1263 } 1264 1265 stellaris_sys_init(0x400fe000, pic[28], board, nd_table[0].macaddr.a); 1266 1267 for (i = 0; i < 7; i++) { 1268 if (board->dc4 & (1 << i)) { 1269 gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i], 1270 pic[gpio_irq[i]]); 1271 for (j = 0; j < 8; j++) { 1272 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j); 1273 gpio_out[i][j] = NULL; 1274 } 1275 } 1276 } 1277 1278 if (board->dc2 & (1 << 12)) { 1279 dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000, pic[8]); 1280 i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c"); 1281 if (board->peripherals & BP_OLED_I2C) { 1282 i2c_create_slave(i2c, "ssd0303", 0x3d); 1283 } 1284 } 1285 1286 for (i = 0; i < 4; i++) { 1287 if (board->dc2 & (1 << i)) { 1288 sysbus_create_simple("pl011_luminary", 0x4000c000 + i * 0x1000, 1289 pic[uart_irq[i]]); 1290 } 1291 } 1292 if (board->dc2 & (1 << 4)) { 1293 dev = sysbus_create_simple("pl022", 0x40008000, pic[7]); 1294 if (board->peripherals & BP_OLED_SSI) { 1295 void *bus; 1296 DeviceState *sddev; 1297 DeviceState *ssddev; 1298 1299 /* Some boards have both an OLED controller and SD card connected to 1300 * the same SSI port, with the SD card chip select connected to a 1301 * GPIO pin. Technically the OLED chip select is connected to the 1302 * SSI Fss pin. We do not bother emulating that as both devices 1303 * should never be selected simultaneously, and our OLED controller 1304 * ignores stray 0xff commands that occur when deselecting the SD 1305 * card. 1306 */ 1307 bus = qdev_get_child_bus(dev, "ssi"); 1308 1309 sddev = ssi_create_slave(bus, "ssi-sd"); 1310 ssddev = ssi_create_slave(bus, "ssd0323"); 1311 gpio_out[GPIO_D][0] = qemu_irq_split( 1312 qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0), 1313 qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0)); 1314 gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0); 1315 1316 /* Make sure the select pin is high. */ 1317 qemu_irq_raise(gpio_out[GPIO_D][0]); 1318 } 1319 } 1320 if (board->dc4 & (1 << 28)) { 1321 DeviceState *enet; 1322 1323 qemu_check_nic_model(&nd_table[0], "stellaris"); 1324 1325 enet = qdev_create(NULL, "stellaris_enet"); 1326 qdev_set_nic_properties(enet, &nd_table[0]); 1327 qdev_init_nofail(enet); 1328 sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000); 1329 sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, pic[42]); 1330 } 1331 if (board->peripherals & BP_GAMEPAD) { 1332 qemu_irq gpad_irq[5]; 1333 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d }; 1334 1335 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */ 1336 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */ 1337 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */ 1338 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */ 1339 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */ 1340 1341 stellaris_gamepad_init(5, gpad_irq, gpad_keycode); 1342 } 1343 for (i = 0; i < 7; i++) { 1344 if (board->dc4 & (1 << i)) { 1345 for (j = 0; j < 8; j++) { 1346 if (gpio_out[i][j]) { 1347 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]); 1348 } 1349 } 1350 } 1351 } 1352 } 1353 1354 /* FIXME: Figure out how to generate these from stellaris_boards. */ 1355 static void lm3s811evb_init(MachineState *machine) 1356 { 1357 const char *cpu_model = machine->cpu_model; 1358 const char *kernel_filename = machine->kernel_filename; 1359 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]); 1360 } 1361 1362 static void lm3s6965evb_init(MachineState *machine) 1363 { 1364 const char *cpu_model = machine->cpu_model; 1365 const char *kernel_filename = machine->kernel_filename; 1366 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]); 1367 } 1368 1369 static QEMUMachine lm3s811evb_machine = { 1370 .name = "lm3s811evb", 1371 .desc = "Stellaris LM3S811EVB", 1372 .init = lm3s811evb_init, 1373 }; 1374 1375 static QEMUMachine lm3s6965evb_machine = { 1376 .name = "lm3s6965evb", 1377 .desc = "Stellaris LM3S6965EVB", 1378 .init = lm3s6965evb_init, 1379 }; 1380 1381 static void stellaris_machine_init(void) 1382 { 1383 qemu_register_machine(&lm3s811evb_machine); 1384 qemu_register_machine(&lm3s6965evb_machine); 1385 } 1386 1387 machine_init(stellaris_machine_init); 1388 1389 static void stellaris_i2c_class_init(ObjectClass *klass, void *data) 1390 { 1391 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass); 1392 1393 sdc->init = stellaris_i2c_init; 1394 } 1395 1396 static const TypeInfo stellaris_i2c_info = { 1397 .name = TYPE_STELLARIS_I2C, 1398 .parent = TYPE_SYS_BUS_DEVICE, 1399 .instance_size = sizeof(stellaris_i2c_state), 1400 .class_init = stellaris_i2c_class_init, 1401 }; 1402 1403 static void stellaris_gptm_class_init(ObjectClass *klass, void *data) 1404 { 1405 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass); 1406 1407 sdc->init = stellaris_gptm_init; 1408 } 1409 1410 static const TypeInfo stellaris_gptm_info = { 1411 .name = TYPE_STELLARIS_GPTM, 1412 .parent = TYPE_SYS_BUS_DEVICE, 1413 .instance_size = sizeof(gptm_state), 1414 .class_init = stellaris_gptm_class_init, 1415 }; 1416 1417 static void stellaris_adc_class_init(ObjectClass *klass, void *data) 1418 { 1419 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass); 1420 1421 sdc->init = stellaris_adc_init; 1422 } 1423 1424 static const TypeInfo stellaris_adc_info = { 1425 .name = TYPE_STELLARIS_ADC, 1426 .parent = TYPE_SYS_BUS_DEVICE, 1427 .instance_size = sizeof(stellaris_adc_state), 1428 .class_init = stellaris_adc_class_init, 1429 }; 1430 1431 static void stellaris_register_types(void) 1432 { 1433 type_register_static(&stellaris_i2c_info); 1434 type_register_static(&stellaris_gptm_info); 1435 type_register_static(&stellaris_adc_info); 1436 } 1437 1438 type_init(stellaris_register_types) 1439