xref: /openbmc/qemu/hw/arm/stellaris.c (revision cc1838c2)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/sysbus.h"
13 #include "hw/ssi/ssi.h"
14 #include "hw/arm/boot.h"
15 #include "qemu/timer.h"
16 #include "hw/i2c/i2c.h"
17 #include "net/net.h"
18 #include "hw/boards.h"
19 #include "qemu/log.h"
20 #include "exec/address-spaces.h"
21 #include "sysemu/sysemu.h"
22 #include "hw/arm/armv7m.h"
23 #include "hw/char/pl011.h"
24 #include "hw/input/gamepad.h"
25 #include "hw/irq.h"
26 #include "hw/watchdog/cmsdk-apb-watchdog.h"
27 #include "migration/vmstate.h"
28 #include "hw/misc/unimp.h"
29 #include "hw/qdev-clock.h"
30 #include "qom/object.h"
31 
32 #define GPIO_A 0
33 #define GPIO_B 1
34 #define GPIO_C 2
35 #define GPIO_D 3
36 #define GPIO_E 4
37 #define GPIO_F 5
38 #define GPIO_G 6
39 
40 #define BP_OLED_I2C  0x01
41 #define BP_OLED_SSI  0x02
42 #define BP_GAMEPAD   0x04
43 
44 #define NUM_IRQ_LINES 64
45 
46 typedef const struct {
47     const char *name;
48     uint32_t did0;
49     uint32_t did1;
50     uint32_t dc0;
51     uint32_t dc1;
52     uint32_t dc2;
53     uint32_t dc3;
54     uint32_t dc4;
55     uint32_t peripherals;
56 } stellaris_board_info;
57 
58 /* General purpose timer module.  */
59 
60 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
61 OBJECT_DECLARE_SIMPLE_TYPE(gptm_state, STELLARIS_GPTM)
62 
63 struct gptm_state {
64     SysBusDevice parent_obj;
65 
66     MemoryRegion iomem;
67     uint32_t config;
68     uint32_t mode[2];
69     uint32_t control;
70     uint32_t state;
71     uint32_t mask;
72     uint32_t load[2];
73     uint32_t match[2];
74     uint32_t prescale[2];
75     uint32_t match_prescale[2];
76     uint32_t rtc;
77     int64_t tick[2];
78     struct gptm_state *opaque[2];
79     QEMUTimer *timer[2];
80     /* The timers have an alternate output used to trigger the ADC.  */
81     qemu_irq trigger;
82     qemu_irq irq;
83 };
84 
85 static void gptm_update_irq(gptm_state *s)
86 {
87     int level;
88     level = (s->state & s->mask) != 0;
89     qemu_set_irq(s->irq, level);
90 }
91 
92 static void gptm_stop(gptm_state *s, int n)
93 {
94     timer_del(s->timer[n]);
95 }
96 
97 static void gptm_reload(gptm_state *s, int n, int reset)
98 {
99     int64_t tick;
100     if (reset)
101         tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
102     else
103         tick = s->tick[n];
104 
105     if (s->config == 0) {
106         /* 32-bit CountDown.  */
107         uint32_t count;
108         count = s->load[0] | (s->load[1] << 16);
109         tick += (int64_t)count * system_clock_scale;
110     } else if (s->config == 1) {
111         /* 32-bit RTC.  1Hz tick.  */
112         tick += NANOSECONDS_PER_SECOND;
113     } else if (s->mode[n] == 0xa) {
114         /* PWM mode.  Not implemented.  */
115     } else {
116         qemu_log_mask(LOG_UNIMP,
117                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
118                       s->mode[n]);
119         return;
120     }
121     s->tick[n] = tick;
122     timer_mod(s->timer[n], tick);
123 }
124 
125 static void gptm_tick(void *opaque)
126 {
127     gptm_state **p = (gptm_state **)opaque;
128     gptm_state *s;
129     int n;
130 
131     s = *p;
132     n = p - s->opaque;
133     if (s->config == 0) {
134         s->state |= 1;
135         if ((s->control & 0x20)) {
136             /* Output trigger.  */
137             qemu_irq_pulse(s->trigger);
138         }
139         if (s->mode[0] & 1) {
140             /* One-shot.  */
141             s->control &= ~1;
142         } else {
143             /* Periodic.  */
144             gptm_reload(s, 0, 0);
145         }
146     } else if (s->config == 1) {
147         /* RTC.  */
148         uint32_t match;
149         s->rtc++;
150         match = s->match[0] | (s->match[1] << 16);
151         if (s->rtc > match)
152             s->rtc = 0;
153         if (s->rtc == 0) {
154             s->state |= 8;
155         }
156         gptm_reload(s, 0, 0);
157     } else if (s->mode[n] == 0xa) {
158         /* PWM mode.  Not implemented.  */
159     } else {
160         qemu_log_mask(LOG_UNIMP,
161                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
162                       s->mode[n]);
163     }
164     gptm_update_irq(s);
165 }
166 
167 static uint64_t gptm_read(void *opaque, hwaddr offset,
168                           unsigned size)
169 {
170     gptm_state *s = (gptm_state *)opaque;
171 
172     switch (offset) {
173     case 0x00: /* CFG */
174         return s->config;
175     case 0x04: /* TAMR */
176         return s->mode[0];
177     case 0x08: /* TBMR */
178         return s->mode[1];
179     case 0x0c: /* CTL */
180         return s->control;
181     case 0x18: /* IMR */
182         return s->mask;
183     case 0x1c: /* RIS */
184         return s->state;
185     case 0x20: /* MIS */
186         return s->state & s->mask;
187     case 0x24: /* CR */
188         return 0;
189     case 0x28: /* TAILR */
190         return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
191     case 0x2c: /* TBILR */
192         return s->load[1];
193     case 0x30: /* TAMARCHR */
194         return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
195     case 0x34: /* TBMATCHR */
196         return s->match[1];
197     case 0x38: /* TAPR */
198         return s->prescale[0];
199     case 0x3c: /* TBPR */
200         return s->prescale[1];
201     case 0x40: /* TAPMR */
202         return s->match_prescale[0];
203     case 0x44: /* TBPMR */
204         return s->match_prescale[1];
205     case 0x48: /* TAR */
206         if (s->config == 1) {
207             return s->rtc;
208         }
209         qemu_log_mask(LOG_UNIMP,
210                       "GPTM: read of TAR but timer read not supported\n");
211         return 0;
212     case 0x4c: /* TBR */
213         qemu_log_mask(LOG_UNIMP,
214                       "GPTM: read of TBR but timer read not supported\n");
215         return 0;
216     default:
217         qemu_log_mask(LOG_GUEST_ERROR,
218                       "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
219                       offset);
220         return 0;
221     }
222 }
223 
224 static void gptm_write(void *opaque, hwaddr offset,
225                        uint64_t value, unsigned size)
226 {
227     gptm_state *s = (gptm_state *)opaque;
228     uint32_t oldval;
229 
230     /* The timers should be disabled before changing the configuration.
231        We take advantage of this and defer everything until the timer
232        is enabled.  */
233     switch (offset) {
234     case 0x00: /* CFG */
235         s->config = value;
236         break;
237     case 0x04: /* TAMR */
238         s->mode[0] = value;
239         break;
240     case 0x08: /* TBMR */
241         s->mode[1] = value;
242         break;
243     case 0x0c: /* CTL */
244         oldval = s->control;
245         s->control = value;
246         /* TODO: Implement pause.  */
247         if ((oldval ^ value) & 1) {
248             if (value & 1) {
249                 gptm_reload(s, 0, 1);
250             } else {
251                 gptm_stop(s, 0);
252             }
253         }
254         if (((oldval ^ value) & 0x100) && s->config >= 4) {
255             if (value & 0x100) {
256                 gptm_reload(s, 1, 1);
257             } else {
258                 gptm_stop(s, 1);
259             }
260         }
261         break;
262     case 0x18: /* IMR */
263         s->mask = value & 0x77;
264         gptm_update_irq(s);
265         break;
266     case 0x24: /* CR */
267         s->state &= ~value;
268         break;
269     case 0x28: /* TAILR */
270         s->load[0] = value & 0xffff;
271         if (s->config < 4) {
272             s->load[1] = value >> 16;
273         }
274         break;
275     case 0x2c: /* TBILR */
276         s->load[1] = value & 0xffff;
277         break;
278     case 0x30: /* TAMARCHR */
279         s->match[0] = value & 0xffff;
280         if (s->config < 4) {
281             s->match[1] = value >> 16;
282         }
283         break;
284     case 0x34: /* TBMATCHR */
285         s->match[1] = value >> 16;
286         break;
287     case 0x38: /* TAPR */
288         s->prescale[0] = value;
289         break;
290     case 0x3c: /* TBPR */
291         s->prescale[1] = value;
292         break;
293     case 0x40: /* TAPMR */
294         s->match_prescale[0] = value;
295         break;
296     case 0x44: /* TBPMR */
297         s->match_prescale[0] = value;
298         break;
299     default:
300         qemu_log_mask(LOG_GUEST_ERROR,
301                       "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
302                       offset);
303     }
304     gptm_update_irq(s);
305 }
306 
307 static const MemoryRegionOps gptm_ops = {
308     .read = gptm_read,
309     .write = gptm_write,
310     .endianness = DEVICE_NATIVE_ENDIAN,
311 };
312 
313 static const VMStateDescription vmstate_stellaris_gptm = {
314     .name = "stellaris_gptm",
315     .version_id = 1,
316     .minimum_version_id = 1,
317     .fields = (VMStateField[]) {
318         VMSTATE_UINT32(config, gptm_state),
319         VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
320         VMSTATE_UINT32(control, gptm_state),
321         VMSTATE_UINT32(state, gptm_state),
322         VMSTATE_UINT32(mask, gptm_state),
323         VMSTATE_UNUSED(8),
324         VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
325         VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
326         VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
327         VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
328         VMSTATE_UINT32(rtc, gptm_state),
329         VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
330         VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
331         VMSTATE_END_OF_LIST()
332     }
333 };
334 
335 static void stellaris_gptm_init(Object *obj)
336 {
337     DeviceState *dev = DEVICE(obj);
338     gptm_state *s = STELLARIS_GPTM(obj);
339     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
340 
341     sysbus_init_irq(sbd, &s->irq);
342     qdev_init_gpio_out(dev, &s->trigger, 1);
343 
344     memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
345                           "gptm", 0x1000);
346     sysbus_init_mmio(sbd, &s->iomem);
347 
348     s->opaque[0] = s->opaque[1] = s;
349 }
350 
351 static void stellaris_gptm_realize(DeviceState *dev, Error **errp)
352 {
353     gptm_state *s = STELLARIS_GPTM(dev);
354     s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
355     s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
356 }
357 
358 /* System controller.  */
359 
360 #define TYPE_STELLARIS_SYS "stellaris-sys"
361 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
362 
363 struct ssys_state {
364     SysBusDevice parent_obj;
365 
366     MemoryRegion iomem;
367     uint32_t pborctl;
368     uint32_t ldopctl;
369     uint32_t int_status;
370     uint32_t int_mask;
371     uint32_t resc;
372     uint32_t rcc;
373     uint32_t rcc2;
374     uint32_t rcgc[3];
375     uint32_t scgc[3];
376     uint32_t dcgc[3];
377     uint32_t clkvclr;
378     uint32_t ldoarst;
379     qemu_irq irq;
380     Clock *sysclk;
381     /* Properties (all read-only registers) */
382     uint32_t user0;
383     uint32_t user1;
384     uint32_t did0;
385     uint32_t did1;
386     uint32_t dc0;
387     uint32_t dc1;
388     uint32_t dc2;
389     uint32_t dc3;
390     uint32_t dc4;
391 };
392 
393 static void ssys_update(ssys_state *s)
394 {
395   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
396 }
397 
398 static uint32_t pllcfg_sandstorm[16] = {
399     0x31c0, /* 1 Mhz */
400     0x1ae0, /* 1.8432 Mhz */
401     0x18c0, /* 2 Mhz */
402     0xd573, /* 2.4576 Mhz */
403     0x37a6, /* 3.57954 Mhz */
404     0x1ae2, /* 3.6864 Mhz */
405     0x0c40, /* 4 Mhz */
406     0x98bc, /* 4.906 Mhz */
407     0x935b, /* 4.9152 Mhz */
408     0x09c0, /* 5 Mhz */
409     0x4dee, /* 5.12 Mhz */
410     0x0c41, /* 6 Mhz */
411     0x75db, /* 6.144 Mhz */
412     0x1ae6, /* 7.3728 Mhz */
413     0x0600, /* 8 Mhz */
414     0x585b /* 8.192 Mhz */
415 };
416 
417 static uint32_t pllcfg_fury[16] = {
418     0x3200, /* 1 Mhz */
419     0x1b20, /* 1.8432 Mhz */
420     0x1900, /* 2 Mhz */
421     0xf42b, /* 2.4576 Mhz */
422     0x37e3, /* 3.57954 Mhz */
423     0x1b21, /* 3.6864 Mhz */
424     0x0c80, /* 4 Mhz */
425     0x98ee, /* 4.906 Mhz */
426     0xd5b4, /* 4.9152 Mhz */
427     0x0a00, /* 5 Mhz */
428     0x4e27, /* 5.12 Mhz */
429     0x1902, /* 6 Mhz */
430     0xec1c, /* 6.144 Mhz */
431     0x1b23, /* 7.3728 Mhz */
432     0x0640, /* 8 Mhz */
433     0xb11c /* 8.192 Mhz */
434 };
435 
436 #define DID0_VER_MASK        0x70000000
437 #define DID0_VER_0           0x00000000
438 #define DID0_VER_1           0x10000000
439 
440 #define DID0_CLASS_MASK      0x00FF0000
441 #define DID0_CLASS_SANDSTORM 0x00000000
442 #define DID0_CLASS_FURY      0x00010000
443 
444 static int ssys_board_class(const ssys_state *s)
445 {
446     uint32_t did0 = s->did0;
447     switch (did0 & DID0_VER_MASK) {
448     case DID0_VER_0:
449         return DID0_CLASS_SANDSTORM;
450     case DID0_VER_1:
451         switch (did0 & DID0_CLASS_MASK) {
452         case DID0_CLASS_SANDSTORM:
453         case DID0_CLASS_FURY:
454             return did0 & DID0_CLASS_MASK;
455         }
456         /* for unknown classes, fall through */
457     default:
458         /* This can only happen if the hardwired constant did0 value
459          * in this board's stellaris_board_info struct is wrong.
460          */
461         g_assert_not_reached();
462     }
463 }
464 
465 static uint64_t ssys_read(void *opaque, hwaddr offset,
466                           unsigned size)
467 {
468     ssys_state *s = (ssys_state *)opaque;
469 
470     switch (offset) {
471     case 0x000: /* DID0 */
472         return s->did0;
473     case 0x004: /* DID1 */
474         return s->did1;
475     case 0x008: /* DC0 */
476         return s->dc0;
477     case 0x010: /* DC1 */
478         return s->dc1;
479     case 0x014: /* DC2 */
480         return s->dc2;
481     case 0x018: /* DC3 */
482         return s->dc3;
483     case 0x01c: /* DC4 */
484         return s->dc4;
485     case 0x030: /* PBORCTL */
486         return s->pborctl;
487     case 0x034: /* LDOPCTL */
488         return s->ldopctl;
489     case 0x040: /* SRCR0 */
490         return 0;
491     case 0x044: /* SRCR1 */
492         return 0;
493     case 0x048: /* SRCR2 */
494         return 0;
495     case 0x050: /* RIS */
496         return s->int_status;
497     case 0x054: /* IMC */
498         return s->int_mask;
499     case 0x058: /* MISC */
500         return s->int_status & s->int_mask;
501     case 0x05c: /* RESC */
502         return s->resc;
503     case 0x060: /* RCC */
504         return s->rcc;
505     case 0x064: /* PLLCFG */
506         {
507             int xtal;
508             xtal = (s->rcc >> 6) & 0xf;
509             switch (ssys_board_class(s)) {
510             case DID0_CLASS_FURY:
511                 return pllcfg_fury[xtal];
512             case DID0_CLASS_SANDSTORM:
513                 return pllcfg_sandstorm[xtal];
514             default:
515                 g_assert_not_reached();
516             }
517         }
518     case 0x070: /* RCC2 */
519         return s->rcc2;
520     case 0x100: /* RCGC0 */
521         return s->rcgc[0];
522     case 0x104: /* RCGC1 */
523         return s->rcgc[1];
524     case 0x108: /* RCGC2 */
525         return s->rcgc[2];
526     case 0x110: /* SCGC0 */
527         return s->scgc[0];
528     case 0x114: /* SCGC1 */
529         return s->scgc[1];
530     case 0x118: /* SCGC2 */
531         return s->scgc[2];
532     case 0x120: /* DCGC0 */
533         return s->dcgc[0];
534     case 0x124: /* DCGC1 */
535         return s->dcgc[1];
536     case 0x128: /* DCGC2 */
537         return s->dcgc[2];
538     case 0x150: /* CLKVCLR */
539         return s->clkvclr;
540     case 0x160: /* LDOARST */
541         return s->ldoarst;
542     case 0x1e0: /* USER0 */
543         return s->user0;
544     case 0x1e4: /* USER1 */
545         return s->user1;
546     default:
547         qemu_log_mask(LOG_GUEST_ERROR,
548                       "SSYS: read at bad offset 0x%x\n", (int)offset);
549         return 0;
550     }
551 }
552 
553 static bool ssys_use_rcc2(ssys_state *s)
554 {
555     return (s->rcc2 >> 31) & 0x1;
556 }
557 
558 /*
559  * Calculate the system clock period. We only want to propagate
560  * this change to the rest of the system if we're not being called
561  * from migration post-load.
562  */
563 static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
564 {
565     /*
566      * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
567      * clock is 200MHz, which is a period of 5 ns. Dividing the clock
568      * frequency by X is the same as multiplying the period by X.
569      */
570     if (ssys_use_rcc2(s)) {
571         system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
572     } else {
573         system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
574     }
575     clock_set_ns(s->sysclk, system_clock_scale);
576     if (propagate_clock) {
577         clock_propagate(s->sysclk);
578     }
579 }
580 
581 static void ssys_write(void *opaque, hwaddr offset,
582                        uint64_t value, unsigned size)
583 {
584     ssys_state *s = (ssys_state *)opaque;
585 
586     switch (offset) {
587     case 0x030: /* PBORCTL */
588         s->pborctl = value & 0xffff;
589         break;
590     case 0x034: /* LDOPCTL */
591         s->ldopctl = value & 0x1f;
592         break;
593     case 0x040: /* SRCR0 */
594     case 0x044: /* SRCR1 */
595     case 0x048: /* SRCR2 */
596         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
597         break;
598     case 0x054: /* IMC */
599         s->int_mask = value & 0x7f;
600         break;
601     case 0x058: /* MISC */
602         s->int_status &= ~value;
603         break;
604     case 0x05c: /* RESC */
605         s->resc = value & 0x3f;
606         break;
607     case 0x060: /* RCC */
608         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
609             /* PLL enable.  */
610             s->int_status |= (1 << 6);
611         }
612         s->rcc = value;
613         ssys_calculate_system_clock(s, true);
614         break;
615     case 0x070: /* RCC2 */
616         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
617             break;
618         }
619 
620         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
621             /* PLL enable.  */
622             s->int_status |= (1 << 6);
623         }
624         s->rcc2 = value;
625         ssys_calculate_system_clock(s, true);
626         break;
627     case 0x100: /* RCGC0 */
628         s->rcgc[0] = value;
629         break;
630     case 0x104: /* RCGC1 */
631         s->rcgc[1] = value;
632         break;
633     case 0x108: /* RCGC2 */
634         s->rcgc[2] = value;
635         break;
636     case 0x110: /* SCGC0 */
637         s->scgc[0] = value;
638         break;
639     case 0x114: /* SCGC1 */
640         s->scgc[1] = value;
641         break;
642     case 0x118: /* SCGC2 */
643         s->scgc[2] = value;
644         break;
645     case 0x120: /* DCGC0 */
646         s->dcgc[0] = value;
647         break;
648     case 0x124: /* DCGC1 */
649         s->dcgc[1] = value;
650         break;
651     case 0x128: /* DCGC2 */
652         s->dcgc[2] = value;
653         break;
654     case 0x150: /* CLKVCLR */
655         s->clkvclr = value;
656         break;
657     case 0x160: /* LDOARST */
658         s->ldoarst = value;
659         break;
660     default:
661         qemu_log_mask(LOG_GUEST_ERROR,
662                       "SSYS: write at bad offset 0x%x\n", (int)offset);
663     }
664     ssys_update(s);
665 }
666 
667 static const MemoryRegionOps ssys_ops = {
668     .read = ssys_read,
669     .write = ssys_write,
670     .endianness = DEVICE_NATIVE_ENDIAN,
671 };
672 
673 static void stellaris_sys_reset_enter(Object *obj, ResetType type)
674 {
675     ssys_state *s = STELLARIS_SYS(obj);
676 
677     s->pborctl = 0x7ffd;
678     s->rcc = 0x078e3ac0;
679 
680     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
681         s->rcc2 = 0;
682     } else {
683         s->rcc2 = 0x07802810;
684     }
685     s->rcgc[0] = 1;
686     s->scgc[0] = 1;
687     s->dcgc[0] = 1;
688 }
689 
690 static void stellaris_sys_reset_hold(Object *obj)
691 {
692     ssys_state *s = STELLARIS_SYS(obj);
693 
694     /* OK to propagate clocks from the hold phase */
695     ssys_calculate_system_clock(s, true);
696 }
697 
698 static void stellaris_sys_reset_exit(Object *obj)
699 {
700 }
701 
702 static int stellaris_sys_post_load(void *opaque, int version_id)
703 {
704     ssys_state *s = opaque;
705 
706     ssys_calculate_system_clock(s, false);
707 
708     return 0;
709 }
710 
711 static const VMStateDescription vmstate_stellaris_sys = {
712     .name = "stellaris_sys",
713     .version_id = 2,
714     .minimum_version_id = 1,
715     .post_load = stellaris_sys_post_load,
716     .fields = (VMStateField[]) {
717         VMSTATE_UINT32(pborctl, ssys_state),
718         VMSTATE_UINT32(ldopctl, ssys_state),
719         VMSTATE_UINT32(int_mask, ssys_state),
720         VMSTATE_UINT32(int_status, ssys_state),
721         VMSTATE_UINT32(resc, ssys_state),
722         VMSTATE_UINT32(rcc, ssys_state),
723         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
724         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
725         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
726         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
727         VMSTATE_UINT32(clkvclr, ssys_state),
728         VMSTATE_UINT32(ldoarst, ssys_state),
729         /* No field for sysclk -- handled in post-load instead */
730         VMSTATE_END_OF_LIST()
731     }
732 };
733 
734 static Property stellaris_sys_properties[] = {
735     DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
736     DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
737     DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
738     DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
739     DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
740     DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
741     DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
742     DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
743     DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
744     DEFINE_PROP_END_OF_LIST()
745 };
746 
747 static void stellaris_sys_instance_init(Object *obj)
748 {
749     ssys_state *s = STELLARIS_SYS(obj);
750     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
751 
752     memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
753     sysbus_init_mmio(sbd, &s->iomem);
754     sysbus_init_irq(sbd, &s->irq);
755     s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
756 }
757 
758 static DeviceState *stellaris_sys_init(uint32_t base, qemu_irq irq,
759                                        stellaris_board_info *board,
760                                        uint8_t *macaddr)
761 {
762     DeviceState *dev = qdev_new(TYPE_STELLARIS_SYS);
763     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
764 
765     /* Most devices come preprogrammed with a MAC address in the user data. */
766     qdev_prop_set_uint32(dev, "user0",
767                          macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
768     qdev_prop_set_uint32(dev, "user1",
769                          macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
770     qdev_prop_set_uint32(dev, "did0", board->did0);
771     qdev_prop_set_uint32(dev, "did1", board->did1);
772     qdev_prop_set_uint32(dev, "dc0", board->dc0);
773     qdev_prop_set_uint32(dev, "dc1", board->dc1);
774     qdev_prop_set_uint32(dev, "dc2", board->dc2);
775     qdev_prop_set_uint32(dev, "dc3", board->dc3);
776     qdev_prop_set_uint32(dev, "dc4", board->dc4);
777 
778     sysbus_realize_and_unref(sbd, &error_fatal);
779     sysbus_mmio_map(sbd, 0, base);
780     sysbus_connect_irq(sbd, 0, irq);
781 
782     return dev;
783 }
784 
785 /* I2C controller.  */
786 
787 #define TYPE_STELLARIS_I2C "stellaris-i2c"
788 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
789 
790 struct stellaris_i2c_state {
791     SysBusDevice parent_obj;
792 
793     I2CBus *bus;
794     qemu_irq irq;
795     MemoryRegion iomem;
796     uint32_t msa;
797     uint32_t mcs;
798     uint32_t mdr;
799     uint32_t mtpr;
800     uint32_t mimr;
801     uint32_t mris;
802     uint32_t mcr;
803 };
804 
805 #define STELLARIS_I2C_MCS_BUSY    0x01
806 #define STELLARIS_I2C_MCS_ERROR   0x02
807 #define STELLARIS_I2C_MCS_ADRACK  0x04
808 #define STELLARIS_I2C_MCS_DATACK  0x08
809 #define STELLARIS_I2C_MCS_ARBLST  0x10
810 #define STELLARIS_I2C_MCS_IDLE    0x20
811 #define STELLARIS_I2C_MCS_BUSBSY  0x40
812 
813 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
814                                    unsigned size)
815 {
816     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
817 
818     switch (offset) {
819     case 0x00: /* MSA */
820         return s->msa;
821     case 0x04: /* MCS */
822         /* We don't emulate timing, so the controller is never busy.  */
823         return s->mcs | STELLARIS_I2C_MCS_IDLE;
824     case 0x08: /* MDR */
825         return s->mdr;
826     case 0x0c: /* MTPR */
827         return s->mtpr;
828     case 0x10: /* MIMR */
829         return s->mimr;
830     case 0x14: /* MRIS */
831         return s->mris;
832     case 0x18: /* MMIS */
833         return s->mris & s->mimr;
834     case 0x20: /* MCR */
835         return s->mcr;
836     default:
837         qemu_log_mask(LOG_GUEST_ERROR,
838                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
839         return 0;
840     }
841 }
842 
843 static void stellaris_i2c_update(stellaris_i2c_state *s)
844 {
845     int level;
846 
847     level = (s->mris & s->mimr) != 0;
848     qemu_set_irq(s->irq, level);
849 }
850 
851 static void stellaris_i2c_write(void *opaque, hwaddr offset,
852                                 uint64_t value, unsigned size)
853 {
854     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
855 
856     switch (offset) {
857     case 0x00: /* MSA */
858         s->msa = value & 0xff;
859         break;
860     case 0x04: /* MCS */
861         if ((s->mcr & 0x10) == 0) {
862             /* Disabled.  Do nothing.  */
863             break;
864         }
865         /* Grab the bus if this is starting a transfer.  */
866         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
867             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
868                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
869             } else {
870                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
871                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
872             }
873         }
874         /* If we don't have the bus then indicate an error.  */
875         if (!i2c_bus_busy(s->bus)
876                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
877             s->mcs |= STELLARIS_I2C_MCS_ERROR;
878             break;
879         }
880         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
881         if (value & 1) {
882             /* Transfer a byte.  */
883             /* TODO: Handle errors.  */
884             if (s->msa & 1) {
885                 /* Recv */
886                 s->mdr = i2c_recv(s->bus);
887             } else {
888                 /* Send */
889                 i2c_send(s->bus, s->mdr);
890             }
891             /* Raise an interrupt.  */
892             s->mris |= 1;
893         }
894         if (value & 4) {
895             /* Finish transfer.  */
896             i2c_end_transfer(s->bus);
897             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
898         }
899         break;
900     case 0x08: /* MDR */
901         s->mdr = value & 0xff;
902         break;
903     case 0x0c: /* MTPR */
904         s->mtpr = value & 0xff;
905         break;
906     case 0x10: /* MIMR */
907         s->mimr = 1;
908         break;
909     case 0x1c: /* MICR */
910         s->mris &= ~value;
911         break;
912     case 0x20: /* MCR */
913         if (value & 1) {
914             qemu_log_mask(LOG_UNIMP,
915                           "stellaris_i2c: Loopback not implemented\n");
916         }
917         if (value & 0x20) {
918             qemu_log_mask(LOG_UNIMP,
919                           "stellaris_i2c: Slave mode not implemented\n");
920         }
921         s->mcr = value & 0x31;
922         break;
923     default:
924         qemu_log_mask(LOG_GUEST_ERROR,
925                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
926     }
927     stellaris_i2c_update(s);
928 }
929 
930 static void stellaris_i2c_reset(stellaris_i2c_state *s)
931 {
932     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
933         i2c_end_transfer(s->bus);
934 
935     s->msa = 0;
936     s->mcs = 0;
937     s->mdr = 0;
938     s->mtpr = 1;
939     s->mimr = 0;
940     s->mris = 0;
941     s->mcr = 0;
942     stellaris_i2c_update(s);
943 }
944 
945 static const MemoryRegionOps stellaris_i2c_ops = {
946     .read = stellaris_i2c_read,
947     .write = stellaris_i2c_write,
948     .endianness = DEVICE_NATIVE_ENDIAN,
949 };
950 
951 static const VMStateDescription vmstate_stellaris_i2c = {
952     .name = "stellaris_i2c",
953     .version_id = 1,
954     .minimum_version_id = 1,
955     .fields = (VMStateField[]) {
956         VMSTATE_UINT32(msa, stellaris_i2c_state),
957         VMSTATE_UINT32(mcs, stellaris_i2c_state),
958         VMSTATE_UINT32(mdr, stellaris_i2c_state),
959         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
960         VMSTATE_UINT32(mimr, stellaris_i2c_state),
961         VMSTATE_UINT32(mris, stellaris_i2c_state),
962         VMSTATE_UINT32(mcr, stellaris_i2c_state),
963         VMSTATE_END_OF_LIST()
964     }
965 };
966 
967 static void stellaris_i2c_init(Object *obj)
968 {
969     DeviceState *dev = DEVICE(obj);
970     stellaris_i2c_state *s = STELLARIS_I2C(obj);
971     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
972     I2CBus *bus;
973 
974     sysbus_init_irq(sbd, &s->irq);
975     bus = i2c_init_bus(dev, "i2c");
976     s->bus = bus;
977 
978     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
979                           "i2c", 0x1000);
980     sysbus_init_mmio(sbd, &s->iomem);
981     /* ??? For now we only implement the master interface.  */
982     stellaris_i2c_reset(s);
983 }
984 
985 /* Analogue to Digital Converter.  This is only partially implemented,
986    enough for applications that use a combined ADC and timer tick.  */
987 
988 #define STELLARIS_ADC_EM_CONTROLLER 0
989 #define STELLARIS_ADC_EM_COMP       1
990 #define STELLARIS_ADC_EM_EXTERNAL   4
991 #define STELLARIS_ADC_EM_TIMER      5
992 #define STELLARIS_ADC_EM_PWM0       6
993 #define STELLARIS_ADC_EM_PWM1       7
994 #define STELLARIS_ADC_EM_PWM2       8
995 
996 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
997 #define STELLARIS_ADC_FIFO_FULL     0x1000
998 
999 #define TYPE_STELLARIS_ADC "stellaris-adc"
1000 typedef struct StellarisADCState stellaris_adc_state;
1001 DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC,
1002                          TYPE_STELLARIS_ADC)
1003 
1004 struct StellarisADCState {
1005     SysBusDevice parent_obj;
1006 
1007     MemoryRegion iomem;
1008     uint32_t actss;
1009     uint32_t ris;
1010     uint32_t im;
1011     uint32_t emux;
1012     uint32_t ostat;
1013     uint32_t ustat;
1014     uint32_t sspri;
1015     uint32_t sac;
1016     struct {
1017         uint32_t state;
1018         uint32_t data[16];
1019     } fifo[4];
1020     uint32_t ssmux[4];
1021     uint32_t ssctl[4];
1022     uint32_t noise;
1023     qemu_irq irq[4];
1024 };
1025 
1026 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
1027 {
1028     int tail;
1029 
1030     tail = s->fifo[n].state & 0xf;
1031     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
1032         s->ustat |= 1 << n;
1033     } else {
1034         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
1035         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
1036         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
1037             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
1038     }
1039     return s->fifo[n].data[tail];
1040 }
1041 
1042 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
1043                                      uint32_t value)
1044 {
1045     int head;
1046 
1047     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
1048        FIFO fir each sequencer.  */
1049     head = (s->fifo[n].state >> 4) & 0xf;
1050     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
1051         s->ostat |= 1 << n;
1052         return;
1053     }
1054     s->fifo[n].data[head] = value;
1055     head = (head + 1) & 0xf;
1056     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
1057     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
1058     if ((s->fifo[n].state & 0xf) == head)
1059         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
1060 }
1061 
1062 static void stellaris_adc_update(stellaris_adc_state *s)
1063 {
1064     int level;
1065     int n;
1066 
1067     for (n = 0; n < 4; n++) {
1068         level = (s->ris & s->im & (1 << n)) != 0;
1069         qemu_set_irq(s->irq[n], level);
1070     }
1071 }
1072 
1073 static void stellaris_adc_trigger(void *opaque, int irq, int level)
1074 {
1075     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1076     int n;
1077 
1078     for (n = 0; n < 4; n++) {
1079         if ((s->actss & (1 << n)) == 0) {
1080             continue;
1081         }
1082 
1083         if (((s->emux >> (n * 4)) & 0xff) != 5) {
1084             continue;
1085         }
1086 
1087         /* Some applications use the ADC as a random number source, so introduce
1088            some variation into the signal.  */
1089         s->noise = s->noise * 314159 + 1;
1090         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
1091         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1092         s->ris |= (1 << n);
1093         stellaris_adc_update(s);
1094     }
1095 }
1096 
1097 static void stellaris_adc_reset(stellaris_adc_state *s)
1098 {
1099     int n;
1100 
1101     for (n = 0; n < 4; n++) {
1102         s->ssmux[n] = 0;
1103         s->ssctl[n] = 0;
1104         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1105     }
1106 }
1107 
1108 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1109                                    unsigned size)
1110 {
1111     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1112 
1113     /* TODO: Implement this.  */
1114     if (offset >= 0x40 && offset < 0xc0) {
1115         int n;
1116         n = (offset - 0x40) >> 5;
1117         switch (offset & 0x1f) {
1118         case 0x00: /* SSMUX */
1119             return s->ssmux[n];
1120         case 0x04: /* SSCTL */
1121             return s->ssctl[n];
1122         case 0x08: /* SSFIFO */
1123             return stellaris_adc_fifo_read(s, n);
1124         case 0x0c: /* SSFSTAT */
1125             return s->fifo[n].state;
1126         default:
1127             break;
1128         }
1129     }
1130     switch (offset) {
1131     case 0x00: /* ACTSS */
1132         return s->actss;
1133     case 0x04: /* RIS */
1134         return s->ris;
1135     case 0x08: /* IM */
1136         return s->im;
1137     case 0x0c: /* ISC */
1138         return s->ris & s->im;
1139     case 0x10: /* OSTAT */
1140         return s->ostat;
1141     case 0x14: /* EMUX */
1142         return s->emux;
1143     case 0x18: /* USTAT */
1144         return s->ustat;
1145     case 0x20: /* SSPRI */
1146         return s->sspri;
1147     case 0x30: /* SAC */
1148         return s->sac;
1149     default:
1150         qemu_log_mask(LOG_GUEST_ERROR,
1151                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1152         return 0;
1153     }
1154 }
1155 
1156 static void stellaris_adc_write(void *opaque, hwaddr offset,
1157                                 uint64_t value, unsigned size)
1158 {
1159     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1160 
1161     /* TODO: Implement this.  */
1162     if (offset >= 0x40 && offset < 0xc0) {
1163         int n;
1164         n = (offset - 0x40) >> 5;
1165         switch (offset & 0x1f) {
1166         case 0x00: /* SSMUX */
1167             s->ssmux[n] = value & 0x33333333;
1168             return;
1169         case 0x04: /* SSCTL */
1170             if (value != 6) {
1171                 qemu_log_mask(LOG_UNIMP,
1172                               "ADC: Unimplemented sequence %" PRIx64 "\n",
1173                               value);
1174             }
1175             s->ssctl[n] = value;
1176             return;
1177         default:
1178             break;
1179         }
1180     }
1181     switch (offset) {
1182     case 0x00: /* ACTSS */
1183         s->actss = value & 0xf;
1184         break;
1185     case 0x08: /* IM */
1186         s->im = value;
1187         break;
1188     case 0x0c: /* ISC */
1189         s->ris &= ~value;
1190         break;
1191     case 0x10: /* OSTAT */
1192         s->ostat &= ~value;
1193         break;
1194     case 0x14: /* EMUX */
1195         s->emux = value;
1196         break;
1197     case 0x18: /* USTAT */
1198         s->ustat &= ~value;
1199         break;
1200     case 0x20: /* SSPRI */
1201         s->sspri = value;
1202         break;
1203     case 0x28: /* PSSI */
1204         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
1205         break;
1206     case 0x30: /* SAC */
1207         s->sac = value;
1208         break;
1209     default:
1210         qemu_log_mask(LOG_GUEST_ERROR,
1211                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1212     }
1213     stellaris_adc_update(s);
1214 }
1215 
1216 static const MemoryRegionOps stellaris_adc_ops = {
1217     .read = stellaris_adc_read,
1218     .write = stellaris_adc_write,
1219     .endianness = DEVICE_NATIVE_ENDIAN,
1220 };
1221 
1222 static const VMStateDescription vmstate_stellaris_adc = {
1223     .name = "stellaris_adc",
1224     .version_id = 1,
1225     .minimum_version_id = 1,
1226     .fields = (VMStateField[]) {
1227         VMSTATE_UINT32(actss, stellaris_adc_state),
1228         VMSTATE_UINT32(ris, stellaris_adc_state),
1229         VMSTATE_UINT32(im, stellaris_adc_state),
1230         VMSTATE_UINT32(emux, stellaris_adc_state),
1231         VMSTATE_UINT32(ostat, stellaris_adc_state),
1232         VMSTATE_UINT32(ustat, stellaris_adc_state),
1233         VMSTATE_UINT32(sspri, stellaris_adc_state),
1234         VMSTATE_UINT32(sac, stellaris_adc_state),
1235         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1236         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1237         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1238         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1239         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1240         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1241         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1242         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1243         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1244         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1245         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1246         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1247         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1248         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1249         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1250         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1251         VMSTATE_UINT32(noise, stellaris_adc_state),
1252         VMSTATE_END_OF_LIST()
1253     }
1254 };
1255 
1256 static void stellaris_adc_init(Object *obj)
1257 {
1258     DeviceState *dev = DEVICE(obj);
1259     stellaris_adc_state *s = STELLARIS_ADC(obj);
1260     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1261     int n;
1262 
1263     for (n = 0; n < 4; n++) {
1264         sysbus_init_irq(sbd, &s->irq[n]);
1265     }
1266 
1267     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1268                           "adc", 0x1000);
1269     sysbus_init_mmio(sbd, &s->iomem);
1270     stellaris_adc_reset(s);
1271     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1272 }
1273 
1274 /* Board init.  */
1275 static stellaris_board_info stellaris_boards[] = {
1276   { "LM3S811EVB",
1277     0,
1278     0x0032000e,
1279     0x001f001f, /* dc0 */
1280     0x001132bf,
1281     0x01071013,
1282     0x3f0f01ff,
1283     0x0000001f,
1284     BP_OLED_I2C
1285   },
1286   { "LM3S6965EVB",
1287     0x10010002,
1288     0x1073402e,
1289     0x00ff007f, /* dc0 */
1290     0x001133ff,
1291     0x030f5317,
1292     0x0f0f87ff,
1293     0x5000007f,
1294     BP_OLED_SSI | BP_GAMEPAD
1295   }
1296 };
1297 
1298 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1299 {
1300     static const int uart_irq[] = {5, 6, 33, 34};
1301     static const int timer_irq[] = {19, 21, 23, 35};
1302     static const uint32_t gpio_addr[7] =
1303       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1304         0x40024000, 0x40025000, 0x40026000};
1305     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1306 
1307     /* Memory map of SoC devices, from
1308      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1309      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1310      *
1311      * 40000000 wdtimer
1312      * 40002000 i2c (unimplemented)
1313      * 40004000 GPIO
1314      * 40005000 GPIO
1315      * 40006000 GPIO
1316      * 40007000 GPIO
1317      * 40008000 SSI
1318      * 4000c000 UART
1319      * 4000d000 UART
1320      * 4000e000 UART
1321      * 40020000 i2c
1322      * 40021000 i2c (unimplemented)
1323      * 40024000 GPIO
1324      * 40025000 GPIO
1325      * 40026000 GPIO
1326      * 40028000 PWM (unimplemented)
1327      * 4002c000 QEI (unimplemented)
1328      * 4002d000 QEI (unimplemented)
1329      * 40030000 gptimer
1330      * 40031000 gptimer
1331      * 40032000 gptimer
1332      * 40033000 gptimer
1333      * 40038000 ADC
1334      * 4003c000 analogue comparator (unimplemented)
1335      * 40048000 ethernet
1336      * 400fc000 hibernation module (unimplemented)
1337      * 400fd000 flash memory control (unimplemented)
1338      * 400fe000 system control
1339      */
1340 
1341     DeviceState *gpio_dev[7], *nvic;
1342     qemu_irq gpio_in[7][8];
1343     qemu_irq gpio_out[7][8];
1344     qemu_irq adc;
1345     int sram_size;
1346     int flash_size;
1347     I2CBus *i2c;
1348     DeviceState *dev;
1349     DeviceState *ssys_dev;
1350     int i;
1351     int j;
1352 
1353     MemoryRegion *sram = g_new(MemoryRegion, 1);
1354     MemoryRegion *flash = g_new(MemoryRegion, 1);
1355     MemoryRegion *system_memory = get_system_memory();
1356 
1357     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1358     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1359 
1360     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1361     memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1362                            &error_fatal);
1363     memory_region_add_subregion(system_memory, 0, flash);
1364 
1365     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1366                            &error_fatal);
1367     memory_region_add_subregion(system_memory, 0x20000000, sram);
1368 
1369     nvic = qdev_new(TYPE_ARMV7M);
1370     qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1371     qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1372     qdev_prop_set_bit(nvic, "enable-bitband", true);
1373     object_property_set_link(OBJECT(nvic), "memory",
1374                              OBJECT(get_system_memory()), &error_abort);
1375     /* This will exit with an error if the user passed us a bad cpu_type */
1376     sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
1377 
1378     if (board->dc1 & (1 << 16)) {
1379         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1380                                     qdev_get_gpio_in(nvic, 14),
1381                                     qdev_get_gpio_in(nvic, 15),
1382                                     qdev_get_gpio_in(nvic, 16),
1383                                     qdev_get_gpio_in(nvic, 17),
1384                                     NULL);
1385         adc = qdev_get_gpio_in(dev, 0);
1386     } else {
1387         adc = NULL;
1388     }
1389     for (i = 0; i < 4; i++) {
1390         if (board->dc2 & (0x10000 << i)) {
1391             dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1392                                        0x40030000 + i * 0x1000,
1393                                        qdev_get_gpio_in(nvic, timer_irq[i]));
1394             /* TODO: This is incorrect, but we get away with it because
1395                the ADC output is only ever pulsed.  */
1396             qdev_connect_gpio_out(dev, 0, adc);
1397         }
1398     }
1399 
1400     ssys_dev = stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1401                                   board, nd_table[0].macaddr.a);
1402 
1403 
1404     if (board->dc1 & (1 << 3)) { /* watchdog present */
1405         dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1406 
1407         qdev_connect_clock_in(dev, "WDOGCLK",
1408                               qdev_get_clock_out(ssys_dev, "SYSCLK"));
1409 
1410         sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1411         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1412                         0,
1413                         0x40000000u);
1414         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1415                            0,
1416                            qdev_get_gpio_in(nvic, 18));
1417     }
1418 
1419 
1420     for (i = 0; i < 7; i++) {
1421         if (board->dc4 & (1 << i)) {
1422             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1423                                                qdev_get_gpio_in(nvic,
1424                                                                 gpio_irq[i]));
1425             for (j = 0; j < 8; j++) {
1426                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1427                 gpio_out[i][j] = NULL;
1428             }
1429         }
1430     }
1431 
1432     if (board->dc2 & (1 << 12)) {
1433         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1434                                    qdev_get_gpio_in(nvic, 8));
1435         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1436         if (board->peripherals & BP_OLED_I2C) {
1437             i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1438         }
1439     }
1440 
1441     for (i = 0; i < 4; i++) {
1442         if (board->dc2 & (1 << i)) {
1443             pl011_luminary_create(0x4000c000 + i * 0x1000,
1444                                   qdev_get_gpio_in(nvic, uart_irq[i]),
1445                                   serial_hd(i));
1446         }
1447     }
1448     if (board->dc2 & (1 << 4)) {
1449         dev = sysbus_create_simple("pl022", 0x40008000,
1450                                    qdev_get_gpio_in(nvic, 7));
1451         if (board->peripherals & BP_OLED_SSI) {
1452             void *bus;
1453             DeviceState *sddev;
1454             DeviceState *ssddev;
1455 
1456             /*
1457              * Some boards have both an OLED controller and SD card connected to
1458              * the same SSI port, with the SD card chip select connected to a
1459              * GPIO pin.  Technically the OLED chip select is connected to the
1460              * SSI Fss pin.  We do not bother emulating that as both devices
1461              * should never be selected simultaneously, and our OLED controller
1462              * ignores stray 0xff commands that occur when deselecting the SD
1463              * card.
1464              *
1465              * The h/w wiring is:
1466              *  - GPIO pin D0 is wired to the active-low SD card chip select
1467              *  - GPIO pin A3 is wired to the active-low OLED chip select
1468              *  - The SoC wiring of the PL061 "auxiliary function" for A3 is
1469              *    SSI0Fss ("frame signal"), which is an output from the SoC's
1470              *    SSI controller. The SSI controller takes SSI0Fss low when it
1471              *    transmits a frame, so it can work as a chip-select signal.
1472              *  - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
1473              *    (the OLED never sends data to the CPU, so no wiring needed)
1474              *  - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
1475              *    and the OLED display-data-in
1476              *  - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
1477              *    serial-clock input
1478              * So a guest that wants to use the OLED can configure the PL061
1479              * to make pins A2, A3, A5 aux-function, so they are connected
1480              * directly to the SSI controller. When the SSI controller sends
1481              * data it asserts SSI0Fss which selects the OLED.
1482              * A guest that wants to use the SD card configures A2, A4 and A5
1483              * as aux-function, but leaves A3 as a software-controlled GPIO
1484              * line. It asserts the SD card chip-select by using the PL061
1485              * to control pin D0, and lets the SSI controller handle Clk, Tx
1486              * and Rx. (The SSI controller asserts Fss during tx cycles as
1487              * usual, but because A3 is not set to aux-function this is not
1488              * forwarded to the OLED, and so the OLED stays unselected.)
1489              *
1490              * The QEMU implementation instead is:
1491              *  - GPIO pin D0 is wired to the active-low SD card chip select,
1492              *    and also to the OLED chip-select which is implemented
1493              *    as *active-high*
1494              *  - SSI controller signals go to the devices regardless of
1495              *    whether the guest programs A2, A4, A5 as aux-function or not
1496              *
1497              * The problem with this implementation is if the guest doesn't
1498              * care about the SD card and only uses the OLED. In that case it
1499              * may choose never to do anything with D0 (leaving it in its
1500              * default floating state, which reliably leaves the card disabled
1501              * because an SD card has a pullup on CS within the card itself),
1502              * and only set up A2, A3, A5. This for us would mean the OLED
1503              * never gets the chip-select assert it needs. We work around
1504              * this with a manual raise of D0 here (despite board creation
1505              * code being the wrong place to raise IRQ lines) to put the OLED
1506              * into an initially selected state.
1507              *
1508              * In theory the right way to model this would be:
1509              *  - Implement aux-function support in the PL061, with an
1510              *    extra set of AFIN and AFOUT GPIO lines (set up so that
1511              *    if a GPIO line is in auxfn mode the main GPIO in and out
1512              *    track the AFIN and AFOUT lines)
1513              *  - Wire the AFOUT for D0 up to either a line from the
1514              *    SSI controller that's pulled low around every transmit,
1515              *    or at least to an always-0 line here on the board
1516              *  - Make the ssd0323 OLED controller chipselect active-low
1517              */
1518             bus = qdev_get_child_bus(dev, "ssi");
1519 
1520             sddev = ssi_create_peripheral(bus, "ssi-sd");
1521             ssddev = ssi_create_peripheral(bus, "ssd0323");
1522             gpio_out[GPIO_D][0] = qemu_irq_split(
1523                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1524                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1525             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1526 
1527             /* Make sure the select pin is high.  */
1528             qemu_irq_raise(gpio_out[GPIO_D][0]);
1529         }
1530     }
1531     if (board->dc4 & (1 << 28)) {
1532         DeviceState *enet;
1533 
1534         qemu_check_nic_model(&nd_table[0], "stellaris");
1535 
1536         enet = qdev_new("stellaris_enet");
1537         qdev_set_nic_properties(enet, &nd_table[0]);
1538         sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1539         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1540         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1541     }
1542     if (board->peripherals & BP_GAMEPAD) {
1543         qemu_irq gpad_irq[5];
1544         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1545 
1546         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1547         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1548         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1549         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1550         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1551 
1552         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1553     }
1554     for (i = 0; i < 7; i++) {
1555         if (board->dc4 & (1 << i)) {
1556             for (j = 0; j < 8; j++) {
1557                 if (gpio_out[i][j]) {
1558                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1559                 }
1560             }
1561         }
1562     }
1563 
1564     /* Add dummy regions for the devices we don't implement yet,
1565      * so guest accesses don't cause unlogged crashes.
1566      */
1567     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1568     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1569     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1570     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1571     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1572     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1573     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1574     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1575 
1576     armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1577 }
1578 
1579 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1580 static void lm3s811evb_init(MachineState *machine)
1581 {
1582     stellaris_init(machine, &stellaris_boards[0]);
1583 }
1584 
1585 static void lm3s6965evb_init(MachineState *machine)
1586 {
1587     stellaris_init(machine, &stellaris_boards[1]);
1588 }
1589 
1590 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1591 {
1592     MachineClass *mc = MACHINE_CLASS(oc);
1593 
1594     mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
1595     mc->init = lm3s811evb_init;
1596     mc->ignore_memory_transaction_failures = true;
1597     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1598 }
1599 
1600 static const TypeInfo lm3s811evb_type = {
1601     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1602     .parent = TYPE_MACHINE,
1603     .class_init = lm3s811evb_class_init,
1604 };
1605 
1606 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1607 {
1608     MachineClass *mc = MACHINE_CLASS(oc);
1609 
1610     mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
1611     mc->init = lm3s6965evb_init;
1612     mc->ignore_memory_transaction_failures = true;
1613     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1614 }
1615 
1616 static const TypeInfo lm3s6965evb_type = {
1617     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1618     .parent = TYPE_MACHINE,
1619     .class_init = lm3s6965evb_class_init,
1620 };
1621 
1622 static void stellaris_machine_init(void)
1623 {
1624     type_register_static(&lm3s811evb_type);
1625     type_register_static(&lm3s6965evb_type);
1626 }
1627 
1628 type_init(stellaris_machine_init)
1629 
1630 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1631 {
1632     DeviceClass *dc = DEVICE_CLASS(klass);
1633 
1634     dc->vmsd = &vmstate_stellaris_i2c;
1635 }
1636 
1637 static const TypeInfo stellaris_i2c_info = {
1638     .name          = TYPE_STELLARIS_I2C,
1639     .parent        = TYPE_SYS_BUS_DEVICE,
1640     .instance_size = sizeof(stellaris_i2c_state),
1641     .instance_init = stellaris_i2c_init,
1642     .class_init    = stellaris_i2c_class_init,
1643 };
1644 
1645 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1646 {
1647     DeviceClass *dc = DEVICE_CLASS(klass);
1648 
1649     dc->vmsd = &vmstate_stellaris_gptm;
1650     dc->realize = stellaris_gptm_realize;
1651 }
1652 
1653 static const TypeInfo stellaris_gptm_info = {
1654     .name          = TYPE_STELLARIS_GPTM,
1655     .parent        = TYPE_SYS_BUS_DEVICE,
1656     .instance_size = sizeof(gptm_state),
1657     .instance_init = stellaris_gptm_init,
1658     .class_init    = stellaris_gptm_class_init,
1659 };
1660 
1661 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1662 {
1663     DeviceClass *dc = DEVICE_CLASS(klass);
1664 
1665     dc->vmsd = &vmstate_stellaris_adc;
1666 }
1667 
1668 static const TypeInfo stellaris_adc_info = {
1669     .name          = TYPE_STELLARIS_ADC,
1670     .parent        = TYPE_SYS_BUS_DEVICE,
1671     .instance_size = sizeof(stellaris_adc_state),
1672     .instance_init = stellaris_adc_init,
1673     .class_init    = stellaris_adc_class_init,
1674 };
1675 
1676 static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1677 {
1678     DeviceClass *dc = DEVICE_CLASS(klass);
1679     ResettableClass *rc = RESETTABLE_CLASS(klass);
1680 
1681     dc->vmsd = &vmstate_stellaris_sys;
1682     rc->phases.enter = stellaris_sys_reset_enter;
1683     rc->phases.hold = stellaris_sys_reset_hold;
1684     rc->phases.exit = stellaris_sys_reset_exit;
1685     device_class_set_props(dc, stellaris_sys_properties);
1686 }
1687 
1688 static const TypeInfo stellaris_sys_info = {
1689     .name = TYPE_STELLARIS_SYS,
1690     .parent = TYPE_SYS_BUS_DEVICE,
1691     .instance_size = sizeof(ssys_state),
1692     .instance_init = stellaris_sys_instance_init,
1693     .class_init = stellaris_sys_class_init,
1694 };
1695 
1696 static void stellaris_register_types(void)
1697 {
1698     type_register_static(&stellaris_i2c_info);
1699     type_register_static(&stellaris_gptm_info);
1700     type_register_static(&stellaris_adc_info);
1701     type_register_static(&stellaris_sys_info);
1702 }
1703 
1704 type_init(stellaris_register_types)
1705