1 /* 2 * Luminary Micro Stellaris peripherals 3 * 4 * Copyright (c) 2006 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qapi/error.h" 12 #include "hw/sysbus.h" 13 #include "hw/ssi/ssi.h" 14 #include "hw/arm/boot.h" 15 #include "qemu/timer.h" 16 #include "hw/i2c/i2c.h" 17 #include "net/net.h" 18 #include "hw/boards.h" 19 #include "qemu/log.h" 20 #include "exec/address-spaces.h" 21 #include "sysemu/sysemu.h" 22 #include "hw/arm/armv7m.h" 23 #include "hw/char/pl011.h" 24 #include "hw/input/gamepad.h" 25 #include "hw/irq.h" 26 #include "hw/watchdog/cmsdk-apb-watchdog.h" 27 #include "migration/vmstate.h" 28 #include "hw/misc/unimp.h" 29 #include "cpu.h" 30 #include "qom/object.h" 31 32 #define GPIO_A 0 33 #define GPIO_B 1 34 #define GPIO_C 2 35 #define GPIO_D 3 36 #define GPIO_E 4 37 #define GPIO_F 5 38 #define GPIO_G 6 39 40 #define BP_OLED_I2C 0x01 41 #define BP_OLED_SSI 0x02 42 #define BP_GAMEPAD 0x04 43 44 #define NUM_IRQ_LINES 64 45 46 typedef const struct { 47 const char *name; 48 uint32_t did0; 49 uint32_t did1; 50 uint32_t dc0; 51 uint32_t dc1; 52 uint32_t dc2; 53 uint32_t dc3; 54 uint32_t dc4; 55 uint32_t peripherals; 56 } stellaris_board_info; 57 58 /* General purpose timer module. */ 59 60 #define TYPE_STELLARIS_GPTM "stellaris-gptm" 61 OBJECT_DECLARE_SIMPLE_TYPE(gptm_state, STELLARIS_GPTM) 62 63 struct gptm_state { 64 SysBusDevice parent_obj; 65 66 MemoryRegion iomem; 67 uint32_t config; 68 uint32_t mode[2]; 69 uint32_t control; 70 uint32_t state; 71 uint32_t mask; 72 uint32_t load[2]; 73 uint32_t match[2]; 74 uint32_t prescale[2]; 75 uint32_t match_prescale[2]; 76 uint32_t rtc; 77 int64_t tick[2]; 78 struct gptm_state *opaque[2]; 79 QEMUTimer *timer[2]; 80 /* The timers have an alternate output used to trigger the ADC. */ 81 qemu_irq trigger; 82 qemu_irq irq; 83 }; 84 85 static void gptm_update_irq(gptm_state *s) 86 { 87 int level; 88 level = (s->state & s->mask) != 0; 89 qemu_set_irq(s->irq, level); 90 } 91 92 static void gptm_stop(gptm_state *s, int n) 93 { 94 timer_del(s->timer[n]); 95 } 96 97 static void gptm_reload(gptm_state *s, int n, int reset) 98 { 99 int64_t tick; 100 if (reset) 101 tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 102 else 103 tick = s->tick[n]; 104 105 if (s->config == 0) { 106 /* 32-bit CountDown. */ 107 uint32_t count; 108 count = s->load[0] | (s->load[1] << 16); 109 tick += (int64_t)count * system_clock_scale; 110 } else if (s->config == 1) { 111 /* 32-bit RTC. 1Hz tick. */ 112 tick += NANOSECONDS_PER_SECOND; 113 } else if (s->mode[n] == 0xa) { 114 /* PWM mode. Not implemented. */ 115 } else { 116 qemu_log_mask(LOG_UNIMP, 117 "GPTM: 16-bit timer mode unimplemented: 0x%x\n", 118 s->mode[n]); 119 return; 120 } 121 s->tick[n] = tick; 122 timer_mod(s->timer[n], tick); 123 } 124 125 static void gptm_tick(void *opaque) 126 { 127 gptm_state **p = (gptm_state **)opaque; 128 gptm_state *s; 129 int n; 130 131 s = *p; 132 n = p - s->opaque; 133 if (s->config == 0) { 134 s->state |= 1; 135 if ((s->control & 0x20)) { 136 /* Output trigger. */ 137 qemu_irq_pulse(s->trigger); 138 } 139 if (s->mode[0] & 1) { 140 /* One-shot. */ 141 s->control &= ~1; 142 } else { 143 /* Periodic. */ 144 gptm_reload(s, 0, 0); 145 } 146 } else if (s->config == 1) { 147 /* RTC. */ 148 uint32_t match; 149 s->rtc++; 150 match = s->match[0] | (s->match[1] << 16); 151 if (s->rtc > match) 152 s->rtc = 0; 153 if (s->rtc == 0) { 154 s->state |= 8; 155 } 156 gptm_reload(s, 0, 0); 157 } else if (s->mode[n] == 0xa) { 158 /* PWM mode. Not implemented. */ 159 } else { 160 qemu_log_mask(LOG_UNIMP, 161 "GPTM: 16-bit timer mode unimplemented: 0x%x\n", 162 s->mode[n]); 163 } 164 gptm_update_irq(s); 165 } 166 167 static uint64_t gptm_read(void *opaque, hwaddr offset, 168 unsigned size) 169 { 170 gptm_state *s = (gptm_state *)opaque; 171 172 switch (offset) { 173 case 0x00: /* CFG */ 174 return s->config; 175 case 0x04: /* TAMR */ 176 return s->mode[0]; 177 case 0x08: /* TBMR */ 178 return s->mode[1]; 179 case 0x0c: /* CTL */ 180 return s->control; 181 case 0x18: /* IMR */ 182 return s->mask; 183 case 0x1c: /* RIS */ 184 return s->state; 185 case 0x20: /* MIS */ 186 return s->state & s->mask; 187 case 0x24: /* CR */ 188 return 0; 189 case 0x28: /* TAILR */ 190 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0); 191 case 0x2c: /* TBILR */ 192 return s->load[1]; 193 case 0x30: /* TAMARCHR */ 194 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0); 195 case 0x34: /* TBMATCHR */ 196 return s->match[1]; 197 case 0x38: /* TAPR */ 198 return s->prescale[0]; 199 case 0x3c: /* TBPR */ 200 return s->prescale[1]; 201 case 0x40: /* TAPMR */ 202 return s->match_prescale[0]; 203 case 0x44: /* TBPMR */ 204 return s->match_prescale[1]; 205 case 0x48: /* TAR */ 206 if (s->config == 1) { 207 return s->rtc; 208 } 209 qemu_log_mask(LOG_UNIMP, 210 "GPTM: read of TAR but timer read not supported\n"); 211 return 0; 212 case 0x4c: /* TBR */ 213 qemu_log_mask(LOG_UNIMP, 214 "GPTM: read of TBR but timer read not supported\n"); 215 return 0; 216 default: 217 qemu_log_mask(LOG_GUEST_ERROR, 218 "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n", 219 offset); 220 return 0; 221 } 222 } 223 224 static void gptm_write(void *opaque, hwaddr offset, 225 uint64_t value, unsigned size) 226 { 227 gptm_state *s = (gptm_state *)opaque; 228 uint32_t oldval; 229 230 /* The timers should be disabled before changing the configuration. 231 We take advantage of this and defer everything until the timer 232 is enabled. */ 233 switch (offset) { 234 case 0x00: /* CFG */ 235 s->config = value; 236 break; 237 case 0x04: /* TAMR */ 238 s->mode[0] = value; 239 break; 240 case 0x08: /* TBMR */ 241 s->mode[1] = value; 242 break; 243 case 0x0c: /* CTL */ 244 oldval = s->control; 245 s->control = value; 246 /* TODO: Implement pause. */ 247 if ((oldval ^ value) & 1) { 248 if (value & 1) { 249 gptm_reload(s, 0, 1); 250 } else { 251 gptm_stop(s, 0); 252 } 253 } 254 if (((oldval ^ value) & 0x100) && s->config >= 4) { 255 if (value & 0x100) { 256 gptm_reload(s, 1, 1); 257 } else { 258 gptm_stop(s, 1); 259 } 260 } 261 break; 262 case 0x18: /* IMR */ 263 s->mask = value & 0x77; 264 gptm_update_irq(s); 265 break; 266 case 0x24: /* CR */ 267 s->state &= ~value; 268 break; 269 case 0x28: /* TAILR */ 270 s->load[0] = value & 0xffff; 271 if (s->config < 4) { 272 s->load[1] = value >> 16; 273 } 274 break; 275 case 0x2c: /* TBILR */ 276 s->load[1] = value & 0xffff; 277 break; 278 case 0x30: /* TAMARCHR */ 279 s->match[0] = value & 0xffff; 280 if (s->config < 4) { 281 s->match[1] = value >> 16; 282 } 283 break; 284 case 0x34: /* TBMATCHR */ 285 s->match[1] = value >> 16; 286 break; 287 case 0x38: /* TAPR */ 288 s->prescale[0] = value; 289 break; 290 case 0x3c: /* TBPR */ 291 s->prescale[1] = value; 292 break; 293 case 0x40: /* TAPMR */ 294 s->match_prescale[0] = value; 295 break; 296 case 0x44: /* TBPMR */ 297 s->match_prescale[0] = value; 298 break; 299 default: 300 qemu_log_mask(LOG_GUEST_ERROR, 301 "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n", 302 offset); 303 } 304 gptm_update_irq(s); 305 } 306 307 static const MemoryRegionOps gptm_ops = { 308 .read = gptm_read, 309 .write = gptm_write, 310 .endianness = DEVICE_NATIVE_ENDIAN, 311 }; 312 313 static const VMStateDescription vmstate_stellaris_gptm = { 314 .name = "stellaris_gptm", 315 .version_id = 1, 316 .minimum_version_id = 1, 317 .fields = (VMStateField[]) { 318 VMSTATE_UINT32(config, gptm_state), 319 VMSTATE_UINT32_ARRAY(mode, gptm_state, 2), 320 VMSTATE_UINT32(control, gptm_state), 321 VMSTATE_UINT32(state, gptm_state), 322 VMSTATE_UINT32(mask, gptm_state), 323 VMSTATE_UNUSED(8), 324 VMSTATE_UINT32_ARRAY(load, gptm_state, 2), 325 VMSTATE_UINT32_ARRAY(match, gptm_state, 2), 326 VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2), 327 VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2), 328 VMSTATE_UINT32(rtc, gptm_state), 329 VMSTATE_INT64_ARRAY(tick, gptm_state, 2), 330 VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2), 331 VMSTATE_END_OF_LIST() 332 } 333 }; 334 335 static void stellaris_gptm_init(Object *obj) 336 { 337 DeviceState *dev = DEVICE(obj); 338 gptm_state *s = STELLARIS_GPTM(obj); 339 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 340 341 sysbus_init_irq(sbd, &s->irq); 342 qdev_init_gpio_out(dev, &s->trigger, 1); 343 344 memory_region_init_io(&s->iomem, obj, &gptm_ops, s, 345 "gptm", 0x1000); 346 sysbus_init_mmio(sbd, &s->iomem); 347 348 s->opaque[0] = s->opaque[1] = s; 349 } 350 351 static void stellaris_gptm_realize(DeviceState *dev, Error **errp) 352 { 353 gptm_state *s = STELLARIS_GPTM(dev); 354 s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]); 355 s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]); 356 } 357 358 /* System controller. */ 359 360 typedef struct { 361 MemoryRegion iomem; 362 uint32_t pborctl; 363 uint32_t ldopctl; 364 uint32_t int_status; 365 uint32_t int_mask; 366 uint32_t resc; 367 uint32_t rcc; 368 uint32_t rcc2; 369 uint32_t rcgc[3]; 370 uint32_t scgc[3]; 371 uint32_t dcgc[3]; 372 uint32_t clkvclr; 373 uint32_t ldoarst; 374 uint32_t user0; 375 uint32_t user1; 376 qemu_irq irq; 377 stellaris_board_info *board; 378 } ssys_state; 379 380 static void ssys_update(ssys_state *s) 381 { 382 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0); 383 } 384 385 static uint32_t pllcfg_sandstorm[16] = { 386 0x31c0, /* 1 Mhz */ 387 0x1ae0, /* 1.8432 Mhz */ 388 0x18c0, /* 2 Mhz */ 389 0xd573, /* 2.4576 Mhz */ 390 0x37a6, /* 3.57954 Mhz */ 391 0x1ae2, /* 3.6864 Mhz */ 392 0x0c40, /* 4 Mhz */ 393 0x98bc, /* 4.906 Mhz */ 394 0x935b, /* 4.9152 Mhz */ 395 0x09c0, /* 5 Mhz */ 396 0x4dee, /* 5.12 Mhz */ 397 0x0c41, /* 6 Mhz */ 398 0x75db, /* 6.144 Mhz */ 399 0x1ae6, /* 7.3728 Mhz */ 400 0x0600, /* 8 Mhz */ 401 0x585b /* 8.192 Mhz */ 402 }; 403 404 static uint32_t pllcfg_fury[16] = { 405 0x3200, /* 1 Mhz */ 406 0x1b20, /* 1.8432 Mhz */ 407 0x1900, /* 2 Mhz */ 408 0xf42b, /* 2.4576 Mhz */ 409 0x37e3, /* 3.57954 Mhz */ 410 0x1b21, /* 3.6864 Mhz */ 411 0x0c80, /* 4 Mhz */ 412 0x98ee, /* 4.906 Mhz */ 413 0xd5b4, /* 4.9152 Mhz */ 414 0x0a00, /* 5 Mhz */ 415 0x4e27, /* 5.12 Mhz */ 416 0x1902, /* 6 Mhz */ 417 0xec1c, /* 6.144 Mhz */ 418 0x1b23, /* 7.3728 Mhz */ 419 0x0640, /* 8 Mhz */ 420 0xb11c /* 8.192 Mhz */ 421 }; 422 423 #define DID0_VER_MASK 0x70000000 424 #define DID0_VER_0 0x00000000 425 #define DID0_VER_1 0x10000000 426 427 #define DID0_CLASS_MASK 0x00FF0000 428 #define DID0_CLASS_SANDSTORM 0x00000000 429 #define DID0_CLASS_FURY 0x00010000 430 431 static int ssys_board_class(const ssys_state *s) 432 { 433 uint32_t did0 = s->board->did0; 434 switch (did0 & DID0_VER_MASK) { 435 case DID0_VER_0: 436 return DID0_CLASS_SANDSTORM; 437 case DID0_VER_1: 438 switch (did0 & DID0_CLASS_MASK) { 439 case DID0_CLASS_SANDSTORM: 440 case DID0_CLASS_FURY: 441 return did0 & DID0_CLASS_MASK; 442 } 443 /* for unknown classes, fall through */ 444 default: 445 /* This can only happen if the hardwired constant did0 value 446 * in this board's stellaris_board_info struct is wrong. 447 */ 448 g_assert_not_reached(); 449 } 450 } 451 452 static uint64_t ssys_read(void *opaque, hwaddr offset, 453 unsigned size) 454 { 455 ssys_state *s = (ssys_state *)opaque; 456 457 switch (offset) { 458 case 0x000: /* DID0 */ 459 return s->board->did0; 460 case 0x004: /* DID1 */ 461 return s->board->did1; 462 case 0x008: /* DC0 */ 463 return s->board->dc0; 464 case 0x010: /* DC1 */ 465 return s->board->dc1; 466 case 0x014: /* DC2 */ 467 return s->board->dc2; 468 case 0x018: /* DC3 */ 469 return s->board->dc3; 470 case 0x01c: /* DC4 */ 471 return s->board->dc4; 472 case 0x030: /* PBORCTL */ 473 return s->pborctl; 474 case 0x034: /* LDOPCTL */ 475 return s->ldopctl; 476 case 0x040: /* SRCR0 */ 477 return 0; 478 case 0x044: /* SRCR1 */ 479 return 0; 480 case 0x048: /* SRCR2 */ 481 return 0; 482 case 0x050: /* RIS */ 483 return s->int_status; 484 case 0x054: /* IMC */ 485 return s->int_mask; 486 case 0x058: /* MISC */ 487 return s->int_status & s->int_mask; 488 case 0x05c: /* RESC */ 489 return s->resc; 490 case 0x060: /* RCC */ 491 return s->rcc; 492 case 0x064: /* PLLCFG */ 493 { 494 int xtal; 495 xtal = (s->rcc >> 6) & 0xf; 496 switch (ssys_board_class(s)) { 497 case DID0_CLASS_FURY: 498 return pllcfg_fury[xtal]; 499 case DID0_CLASS_SANDSTORM: 500 return pllcfg_sandstorm[xtal]; 501 default: 502 g_assert_not_reached(); 503 } 504 } 505 case 0x070: /* RCC2 */ 506 return s->rcc2; 507 case 0x100: /* RCGC0 */ 508 return s->rcgc[0]; 509 case 0x104: /* RCGC1 */ 510 return s->rcgc[1]; 511 case 0x108: /* RCGC2 */ 512 return s->rcgc[2]; 513 case 0x110: /* SCGC0 */ 514 return s->scgc[0]; 515 case 0x114: /* SCGC1 */ 516 return s->scgc[1]; 517 case 0x118: /* SCGC2 */ 518 return s->scgc[2]; 519 case 0x120: /* DCGC0 */ 520 return s->dcgc[0]; 521 case 0x124: /* DCGC1 */ 522 return s->dcgc[1]; 523 case 0x128: /* DCGC2 */ 524 return s->dcgc[2]; 525 case 0x150: /* CLKVCLR */ 526 return s->clkvclr; 527 case 0x160: /* LDOARST */ 528 return s->ldoarst; 529 case 0x1e0: /* USER0 */ 530 return s->user0; 531 case 0x1e4: /* USER1 */ 532 return s->user1; 533 default: 534 qemu_log_mask(LOG_GUEST_ERROR, 535 "SSYS: read at bad offset 0x%x\n", (int)offset); 536 return 0; 537 } 538 } 539 540 static bool ssys_use_rcc2(ssys_state *s) 541 { 542 return (s->rcc2 >> 31) & 0x1; 543 } 544 545 /* 546 * Caculate the sys. clock period in ms. 547 */ 548 static void ssys_calculate_system_clock(ssys_state *s) 549 { 550 if (ssys_use_rcc2(s)) { 551 system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1); 552 } else { 553 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1); 554 } 555 } 556 557 static void ssys_write(void *opaque, hwaddr offset, 558 uint64_t value, unsigned size) 559 { 560 ssys_state *s = (ssys_state *)opaque; 561 562 switch (offset) { 563 case 0x030: /* PBORCTL */ 564 s->pborctl = value & 0xffff; 565 break; 566 case 0x034: /* LDOPCTL */ 567 s->ldopctl = value & 0x1f; 568 break; 569 case 0x040: /* SRCR0 */ 570 case 0x044: /* SRCR1 */ 571 case 0x048: /* SRCR2 */ 572 qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n"); 573 break; 574 case 0x054: /* IMC */ 575 s->int_mask = value & 0x7f; 576 break; 577 case 0x058: /* MISC */ 578 s->int_status &= ~value; 579 break; 580 case 0x05c: /* RESC */ 581 s->resc = value & 0x3f; 582 break; 583 case 0x060: /* RCC */ 584 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { 585 /* PLL enable. */ 586 s->int_status |= (1 << 6); 587 } 588 s->rcc = value; 589 ssys_calculate_system_clock(s); 590 break; 591 case 0x070: /* RCC2 */ 592 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { 593 break; 594 } 595 596 if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { 597 /* PLL enable. */ 598 s->int_status |= (1 << 6); 599 } 600 s->rcc2 = value; 601 ssys_calculate_system_clock(s); 602 break; 603 case 0x100: /* RCGC0 */ 604 s->rcgc[0] = value; 605 break; 606 case 0x104: /* RCGC1 */ 607 s->rcgc[1] = value; 608 break; 609 case 0x108: /* RCGC2 */ 610 s->rcgc[2] = value; 611 break; 612 case 0x110: /* SCGC0 */ 613 s->scgc[0] = value; 614 break; 615 case 0x114: /* SCGC1 */ 616 s->scgc[1] = value; 617 break; 618 case 0x118: /* SCGC2 */ 619 s->scgc[2] = value; 620 break; 621 case 0x120: /* DCGC0 */ 622 s->dcgc[0] = value; 623 break; 624 case 0x124: /* DCGC1 */ 625 s->dcgc[1] = value; 626 break; 627 case 0x128: /* DCGC2 */ 628 s->dcgc[2] = value; 629 break; 630 case 0x150: /* CLKVCLR */ 631 s->clkvclr = value; 632 break; 633 case 0x160: /* LDOARST */ 634 s->ldoarst = value; 635 break; 636 default: 637 qemu_log_mask(LOG_GUEST_ERROR, 638 "SSYS: write at bad offset 0x%x\n", (int)offset); 639 } 640 ssys_update(s); 641 } 642 643 static const MemoryRegionOps ssys_ops = { 644 .read = ssys_read, 645 .write = ssys_write, 646 .endianness = DEVICE_NATIVE_ENDIAN, 647 }; 648 649 static void ssys_reset(void *opaque) 650 { 651 ssys_state *s = (ssys_state *)opaque; 652 653 s->pborctl = 0x7ffd; 654 s->rcc = 0x078e3ac0; 655 656 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { 657 s->rcc2 = 0; 658 } else { 659 s->rcc2 = 0x07802810; 660 } 661 s->rcgc[0] = 1; 662 s->scgc[0] = 1; 663 s->dcgc[0] = 1; 664 ssys_calculate_system_clock(s); 665 } 666 667 static int stellaris_sys_post_load(void *opaque, int version_id) 668 { 669 ssys_state *s = opaque; 670 671 ssys_calculate_system_clock(s); 672 673 return 0; 674 } 675 676 static const VMStateDescription vmstate_stellaris_sys = { 677 .name = "stellaris_sys", 678 .version_id = 2, 679 .minimum_version_id = 1, 680 .post_load = stellaris_sys_post_load, 681 .fields = (VMStateField[]) { 682 VMSTATE_UINT32(pborctl, ssys_state), 683 VMSTATE_UINT32(ldopctl, ssys_state), 684 VMSTATE_UINT32(int_mask, ssys_state), 685 VMSTATE_UINT32(int_status, ssys_state), 686 VMSTATE_UINT32(resc, ssys_state), 687 VMSTATE_UINT32(rcc, ssys_state), 688 VMSTATE_UINT32_V(rcc2, ssys_state, 2), 689 VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3), 690 VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3), 691 VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3), 692 VMSTATE_UINT32(clkvclr, ssys_state), 693 VMSTATE_UINT32(ldoarst, ssys_state), 694 VMSTATE_END_OF_LIST() 695 } 696 }; 697 698 static int stellaris_sys_init(uint32_t base, qemu_irq irq, 699 stellaris_board_info * board, 700 uint8_t *macaddr) 701 { 702 ssys_state *s; 703 704 s = g_new0(ssys_state, 1); 705 s->irq = irq; 706 s->board = board; 707 /* Most devices come preprogrammed with a MAC address in the user data. */ 708 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16); 709 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16); 710 711 memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000); 712 memory_region_add_subregion(get_system_memory(), base, &s->iomem); 713 ssys_reset(s); 714 vmstate_register(NULL, VMSTATE_INSTANCE_ID_ANY, &vmstate_stellaris_sys, s); 715 return 0; 716 } 717 718 719 /* I2C controller. */ 720 721 #define TYPE_STELLARIS_I2C "stellaris-i2c" 722 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C) 723 724 struct stellaris_i2c_state { 725 SysBusDevice parent_obj; 726 727 I2CBus *bus; 728 qemu_irq irq; 729 MemoryRegion iomem; 730 uint32_t msa; 731 uint32_t mcs; 732 uint32_t mdr; 733 uint32_t mtpr; 734 uint32_t mimr; 735 uint32_t mris; 736 uint32_t mcr; 737 }; 738 739 #define STELLARIS_I2C_MCS_BUSY 0x01 740 #define STELLARIS_I2C_MCS_ERROR 0x02 741 #define STELLARIS_I2C_MCS_ADRACK 0x04 742 #define STELLARIS_I2C_MCS_DATACK 0x08 743 #define STELLARIS_I2C_MCS_ARBLST 0x10 744 #define STELLARIS_I2C_MCS_IDLE 0x20 745 #define STELLARIS_I2C_MCS_BUSBSY 0x40 746 747 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset, 748 unsigned size) 749 { 750 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; 751 752 switch (offset) { 753 case 0x00: /* MSA */ 754 return s->msa; 755 case 0x04: /* MCS */ 756 /* We don't emulate timing, so the controller is never busy. */ 757 return s->mcs | STELLARIS_I2C_MCS_IDLE; 758 case 0x08: /* MDR */ 759 return s->mdr; 760 case 0x0c: /* MTPR */ 761 return s->mtpr; 762 case 0x10: /* MIMR */ 763 return s->mimr; 764 case 0x14: /* MRIS */ 765 return s->mris; 766 case 0x18: /* MMIS */ 767 return s->mris & s->mimr; 768 case 0x20: /* MCR */ 769 return s->mcr; 770 default: 771 qemu_log_mask(LOG_GUEST_ERROR, 772 "stellaris_i2c: read at bad offset 0x%x\n", (int)offset); 773 return 0; 774 } 775 } 776 777 static void stellaris_i2c_update(stellaris_i2c_state *s) 778 { 779 int level; 780 781 level = (s->mris & s->mimr) != 0; 782 qemu_set_irq(s->irq, level); 783 } 784 785 static void stellaris_i2c_write(void *opaque, hwaddr offset, 786 uint64_t value, unsigned size) 787 { 788 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; 789 790 switch (offset) { 791 case 0x00: /* MSA */ 792 s->msa = value & 0xff; 793 break; 794 case 0x04: /* MCS */ 795 if ((s->mcr & 0x10) == 0) { 796 /* Disabled. Do nothing. */ 797 break; 798 } 799 /* Grab the bus if this is starting a transfer. */ 800 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { 801 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) { 802 s->mcs |= STELLARIS_I2C_MCS_ARBLST; 803 } else { 804 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST; 805 s->mcs |= STELLARIS_I2C_MCS_BUSBSY; 806 } 807 } 808 /* If we don't have the bus then indicate an error. */ 809 if (!i2c_bus_busy(s->bus) 810 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { 811 s->mcs |= STELLARIS_I2C_MCS_ERROR; 812 break; 813 } 814 s->mcs &= ~STELLARIS_I2C_MCS_ERROR; 815 if (value & 1) { 816 /* Transfer a byte. */ 817 /* TODO: Handle errors. */ 818 if (s->msa & 1) { 819 /* Recv */ 820 s->mdr = i2c_recv(s->bus); 821 } else { 822 /* Send */ 823 i2c_send(s->bus, s->mdr); 824 } 825 /* Raise an interrupt. */ 826 s->mris |= 1; 827 } 828 if (value & 4) { 829 /* Finish transfer. */ 830 i2c_end_transfer(s->bus); 831 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY; 832 } 833 break; 834 case 0x08: /* MDR */ 835 s->mdr = value & 0xff; 836 break; 837 case 0x0c: /* MTPR */ 838 s->mtpr = value & 0xff; 839 break; 840 case 0x10: /* MIMR */ 841 s->mimr = 1; 842 break; 843 case 0x1c: /* MICR */ 844 s->mris &= ~value; 845 break; 846 case 0x20: /* MCR */ 847 if (value & 1) { 848 qemu_log_mask(LOG_UNIMP, 849 "stellaris_i2c: Loopback not implemented\n"); 850 } 851 if (value & 0x20) { 852 qemu_log_mask(LOG_UNIMP, 853 "stellaris_i2c: Slave mode not implemented\n"); 854 } 855 s->mcr = value & 0x31; 856 break; 857 default: 858 qemu_log_mask(LOG_GUEST_ERROR, 859 "stellaris_i2c: write at bad offset 0x%x\n", (int)offset); 860 } 861 stellaris_i2c_update(s); 862 } 863 864 static void stellaris_i2c_reset(stellaris_i2c_state *s) 865 { 866 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY) 867 i2c_end_transfer(s->bus); 868 869 s->msa = 0; 870 s->mcs = 0; 871 s->mdr = 0; 872 s->mtpr = 1; 873 s->mimr = 0; 874 s->mris = 0; 875 s->mcr = 0; 876 stellaris_i2c_update(s); 877 } 878 879 static const MemoryRegionOps stellaris_i2c_ops = { 880 .read = stellaris_i2c_read, 881 .write = stellaris_i2c_write, 882 .endianness = DEVICE_NATIVE_ENDIAN, 883 }; 884 885 static const VMStateDescription vmstate_stellaris_i2c = { 886 .name = "stellaris_i2c", 887 .version_id = 1, 888 .minimum_version_id = 1, 889 .fields = (VMStateField[]) { 890 VMSTATE_UINT32(msa, stellaris_i2c_state), 891 VMSTATE_UINT32(mcs, stellaris_i2c_state), 892 VMSTATE_UINT32(mdr, stellaris_i2c_state), 893 VMSTATE_UINT32(mtpr, stellaris_i2c_state), 894 VMSTATE_UINT32(mimr, stellaris_i2c_state), 895 VMSTATE_UINT32(mris, stellaris_i2c_state), 896 VMSTATE_UINT32(mcr, stellaris_i2c_state), 897 VMSTATE_END_OF_LIST() 898 } 899 }; 900 901 static void stellaris_i2c_init(Object *obj) 902 { 903 DeviceState *dev = DEVICE(obj); 904 stellaris_i2c_state *s = STELLARIS_I2C(obj); 905 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 906 I2CBus *bus; 907 908 sysbus_init_irq(sbd, &s->irq); 909 bus = i2c_init_bus(dev, "i2c"); 910 s->bus = bus; 911 912 memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s, 913 "i2c", 0x1000); 914 sysbus_init_mmio(sbd, &s->iomem); 915 /* ??? For now we only implement the master interface. */ 916 stellaris_i2c_reset(s); 917 } 918 919 /* Analogue to Digital Converter. This is only partially implemented, 920 enough for applications that use a combined ADC and timer tick. */ 921 922 #define STELLARIS_ADC_EM_CONTROLLER 0 923 #define STELLARIS_ADC_EM_COMP 1 924 #define STELLARIS_ADC_EM_EXTERNAL 4 925 #define STELLARIS_ADC_EM_TIMER 5 926 #define STELLARIS_ADC_EM_PWM0 6 927 #define STELLARIS_ADC_EM_PWM1 7 928 #define STELLARIS_ADC_EM_PWM2 8 929 930 #define STELLARIS_ADC_FIFO_EMPTY 0x0100 931 #define STELLARIS_ADC_FIFO_FULL 0x1000 932 933 #define TYPE_STELLARIS_ADC "stellaris-adc" 934 typedef struct StellarisADCState stellaris_adc_state; 935 DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC, 936 TYPE_STELLARIS_ADC) 937 938 struct StellarisADCState { 939 SysBusDevice parent_obj; 940 941 MemoryRegion iomem; 942 uint32_t actss; 943 uint32_t ris; 944 uint32_t im; 945 uint32_t emux; 946 uint32_t ostat; 947 uint32_t ustat; 948 uint32_t sspri; 949 uint32_t sac; 950 struct { 951 uint32_t state; 952 uint32_t data[16]; 953 } fifo[4]; 954 uint32_t ssmux[4]; 955 uint32_t ssctl[4]; 956 uint32_t noise; 957 qemu_irq irq[4]; 958 }; 959 960 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n) 961 { 962 int tail; 963 964 tail = s->fifo[n].state & 0xf; 965 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) { 966 s->ustat |= 1 << n; 967 } else { 968 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf); 969 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL; 970 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf)) 971 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY; 972 } 973 return s->fifo[n].data[tail]; 974 } 975 976 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n, 977 uint32_t value) 978 { 979 int head; 980 981 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry 982 FIFO fir each sequencer. */ 983 head = (s->fifo[n].state >> 4) & 0xf; 984 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) { 985 s->ostat |= 1 << n; 986 return; 987 } 988 s->fifo[n].data[head] = value; 989 head = (head + 1) & 0xf; 990 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY; 991 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4); 992 if ((s->fifo[n].state & 0xf) == head) 993 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL; 994 } 995 996 static void stellaris_adc_update(stellaris_adc_state *s) 997 { 998 int level; 999 int n; 1000 1001 for (n = 0; n < 4; n++) { 1002 level = (s->ris & s->im & (1 << n)) != 0; 1003 qemu_set_irq(s->irq[n], level); 1004 } 1005 } 1006 1007 static void stellaris_adc_trigger(void *opaque, int irq, int level) 1008 { 1009 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 1010 int n; 1011 1012 for (n = 0; n < 4; n++) { 1013 if ((s->actss & (1 << n)) == 0) { 1014 continue; 1015 } 1016 1017 if (((s->emux >> (n * 4)) & 0xff) != 5) { 1018 continue; 1019 } 1020 1021 /* Some applications use the ADC as a random number source, so introduce 1022 some variation into the signal. */ 1023 s->noise = s->noise * 314159 + 1; 1024 /* ??? actual inputs not implemented. Return an arbitrary value. */ 1025 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7)); 1026 s->ris |= (1 << n); 1027 stellaris_adc_update(s); 1028 } 1029 } 1030 1031 static void stellaris_adc_reset(stellaris_adc_state *s) 1032 { 1033 int n; 1034 1035 for (n = 0; n < 4; n++) { 1036 s->ssmux[n] = 0; 1037 s->ssctl[n] = 0; 1038 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY; 1039 } 1040 } 1041 1042 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset, 1043 unsigned size) 1044 { 1045 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 1046 1047 /* TODO: Implement this. */ 1048 if (offset >= 0x40 && offset < 0xc0) { 1049 int n; 1050 n = (offset - 0x40) >> 5; 1051 switch (offset & 0x1f) { 1052 case 0x00: /* SSMUX */ 1053 return s->ssmux[n]; 1054 case 0x04: /* SSCTL */ 1055 return s->ssctl[n]; 1056 case 0x08: /* SSFIFO */ 1057 return stellaris_adc_fifo_read(s, n); 1058 case 0x0c: /* SSFSTAT */ 1059 return s->fifo[n].state; 1060 default: 1061 break; 1062 } 1063 } 1064 switch (offset) { 1065 case 0x00: /* ACTSS */ 1066 return s->actss; 1067 case 0x04: /* RIS */ 1068 return s->ris; 1069 case 0x08: /* IM */ 1070 return s->im; 1071 case 0x0c: /* ISC */ 1072 return s->ris & s->im; 1073 case 0x10: /* OSTAT */ 1074 return s->ostat; 1075 case 0x14: /* EMUX */ 1076 return s->emux; 1077 case 0x18: /* USTAT */ 1078 return s->ustat; 1079 case 0x20: /* SSPRI */ 1080 return s->sspri; 1081 case 0x30: /* SAC */ 1082 return s->sac; 1083 default: 1084 qemu_log_mask(LOG_GUEST_ERROR, 1085 "stellaris_adc: read at bad offset 0x%x\n", (int)offset); 1086 return 0; 1087 } 1088 } 1089 1090 static void stellaris_adc_write(void *opaque, hwaddr offset, 1091 uint64_t value, unsigned size) 1092 { 1093 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 1094 1095 /* TODO: Implement this. */ 1096 if (offset >= 0x40 && offset < 0xc0) { 1097 int n; 1098 n = (offset - 0x40) >> 5; 1099 switch (offset & 0x1f) { 1100 case 0x00: /* SSMUX */ 1101 s->ssmux[n] = value & 0x33333333; 1102 return; 1103 case 0x04: /* SSCTL */ 1104 if (value != 6) { 1105 qemu_log_mask(LOG_UNIMP, 1106 "ADC: Unimplemented sequence %" PRIx64 "\n", 1107 value); 1108 } 1109 s->ssctl[n] = value; 1110 return; 1111 default: 1112 break; 1113 } 1114 } 1115 switch (offset) { 1116 case 0x00: /* ACTSS */ 1117 s->actss = value & 0xf; 1118 break; 1119 case 0x08: /* IM */ 1120 s->im = value; 1121 break; 1122 case 0x0c: /* ISC */ 1123 s->ris &= ~value; 1124 break; 1125 case 0x10: /* OSTAT */ 1126 s->ostat &= ~value; 1127 break; 1128 case 0x14: /* EMUX */ 1129 s->emux = value; 1130 break; 1131 case 0x18: /* USTAT */ 1132 s->ustat &= ~value; 1133 break; 1134 case 0x20: /* SSPRI */ 1135 s->sspri = value; 1136 break; 1137 case 0x28: /* PSSI */ 1138 qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n"); 1139 break; 1140 case 0x30: /* SAC */ 1141 s->sac = value; 1142 break; 1143 default: 1144 qemu_log_mask(LOG_GUEST_ERROR, 1145 "stellaris_adc: write at bad offset 0x%x\n", (int)offset); 1146 } 1147 stellaris_adc_update(s); 1148 } 1149 1150 static const MemoryRegionOps stellaris_adc_ops = { 1151 .read = stellaris_adc_read, 1152 .write = stellaris_adc_write, 1153 .endianness = DEVICE_NATIVE_ENDIAN, 1154 }; 1155 1156 static const VMStateDescription vmstate_stellaris_adc = { 1157 .name = "stellaris_adc", 1158 .version_id = 1, 1159 .minimum_version_id = 1, 1160 .fields = (VMStateField[]) { 1161 VMSTATE_UINT32(actss, stellaris_adc_state), 1162 VMSTATE_UINT32(ris, stellaris_adc_state), 1163 VMSTATE_UINT32(im, stellaris_adc_state), 1164 VMSTATE_UINT32(emux, stellaris_adc_state), 1165 VMSTATE_UINT32(ostat, stellaris_adc_state), 1166 VMSTATE_UINT32(ustat, stellaris_adc_state), 1167 VMSTATE_UINT32(sspri, stellaris_adc_state), 1168 VMSTATE_UINT32(sac, stellaris_adc_state), 1169 VMSTATE_UINT32(fifo[0].state, stellaris_adc_state), 1170 VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16), 1171 VMSTATE_UINT32(ssmux[0], stellaris_adc_state), 1172 VMSTATE_UINT32(ssctl[0], stellaris_adc_state), 1173 VMSTATE_UINT32(fifo[1].state, stellaris_adc_state), 1174 VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16), 1175 VMSTATE_UINT32(ssmux[1], stellaris_adc_state), 1176 VMSTATE_UINT32(ssctl[1], stellaris_adc_state), 1177 VMSTATE_UINT32(fifo[2].state, stellaris_adc_state), 1178 VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16), 1179 VMSTATE_UINT32(ssmux[2], stellaris_adc_state), 1180 VMSTATE_UINT32(ssctl[2], stellaris_adc_state), 1181 VMSTATE_UINT32(fifo[3].state, stellaris_adc_state), 1182 VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16), 1183 VMSTATE_UINT32(ssmux[3], stellaris_adc_state), 1184 VMSTATE_UINT32(ssctl[3], stellaris_adc_state), 1185 VMSTATE_UINT32(noise, stellaris_adc_state), 1186 VMSTATE_END_OF_LIST() 1187 } 1188 }; 1189 1190 static void stellaris_adc_init(Object *obj) 1191 { 1192 DeviceState *dev = DEVICE(obj); 1193 stellaris_adc_state *s = STELLARIS_ADC(obj); 1194 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 1195 int n; 1196 1197 for (n = 0; n < 4; n++) { 1198 sysbus_init_irq(sbd, &s->irq[n]); 1199 } 1200 1201 memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s, 1202 "adc", 0x1000); 1203 sysbus_init_mmio(sbd, &s->iomem); 1204 stellaris_adc_reset(s); 1205 qdev_init_gpio_in(dev, stellaris_adc_trigger, 1); 1206 } 1207 1208 /* Board init. */ 1209 static stellaris_board_info stellaris_boards[] = { 1210 { "LM3S811EVB", 1211 0, 1212 0x0032000e, 1213 0x001f001f, /* dc0 */ 1214 0x001132bf, 1215 0x01071013, 1216 0x3f0f01ff, 1217 0x0000001f, 1218 BP_OLED_I2C 1219 }, 1220 { "LM3S6965EVB", 1221 0x10010002, 1222 0x1073402e, 1223 0x00ff007f, /* dc0 */ 1224 0x001133ff, 1225 0x030f5317, 1226 0x0f0f87ff, 1227 0x5000007f, 1228 BP_OLED_SSI | BP_GAMEPAD 1229 } 1230 }; 1231 1232 static void stellaris_init(MachineState *ms, stellaris_board_info *board) 1233 { 1234 static const int uart_irq[] = {5, 6, 33, 34}; 1235 static const int timer_irq[] = {19, 21, 23, 35}; 1236 static const uint32_t gpio_addr[7] = 1237 { 0x40004000, 0x40005000, 0x40006000, 0x40007000, 1238 0x40024000, 0x40025000, 0x40026000}; 1239 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31}; 1240 1241 /* Memory map of SoC devices, from 1242 * Stellaris LM3S6965 Microcontroller Data Sheet (rev I) 1243 * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf 1244 * 1245 * 40000000 wdtimer 1246 * 40002000 i2c (unimplemented) 1247 * 40004000 GPIO 1248 * 40005000 GPIO 1249 * 40006000 GPIO 1250 * 40007000 GPIO 1251 * 40008000 SSI 1252 * 4000c000 UART 1253 * 4000d000 UART 1254 * 4000e000 UART 1255 * 40020000 i2c 1256 * 40021000 i2c (unimplemented) 1257 * 40024000 GPIO 1258 * 40025000 GPIO 1259 * 40026000 GPIO 1260 * 40028000 PWM (unimplemented) 1261 * 4002c000 QEI (unimplemented) 1262 * 4002d000 QEI (unimplemented) 1263 * 40030000 gptimer 1264 * 40031000 gptimer 1265 * 40032000 gptimer 1266 * 40033000 gptimer 1267 * 40038000 ADC 1268 * 4003c000 analogue comparator (unimplemented) 1269 * 40048000 ethernet 1270 * 400fc000 hibernation module (unimplemented) 1271 * 400fd000 flash memory control (unimplemented) 1272 * 400fe000 system control 1273 */ 1274 1275 DeviceState *gpio_dev[7], *nvic; 1276 qemu_irq gpio_in[7][8]; 1277 qemu_irq gpio_out[7][8]; 1278 qemu_irq adc; 1279 int sram_size; 1280 int flash_size; 1281 I2CBus *i2c; 1282 DeviceState *dev; 1283 int i; 1284 int j; 1285 1286 MemoryRegion *sram = g_new(MemoryRegion, 1); 1287 MemoryRegion *flash = g_new(MemoryRegion, 1); 1288 MemoryRegion *system_memory = get_system_memory(); 1289 1290 flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024; 1291 sram_size = ((board->dc0 >> 18) + 1) * 1024; 1292 1293 /* Flash programming is done via the SCU, so pretend it is ROM. */ 1294 memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size, 1295 &error_fatal); 1296 memory_region_add_subregion(system_memory, 0, flash); 1297 1298 memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size, 1299 &error_fatal); 1300 memory_region_add_subregion(system_memory, 0x20000000, sram); 1301 1302 nvic = qdev_new(TYPE_ARMV7M); 1303 qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES); 1304 qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type); 1305 qdev_prop_set_bit(nvic, "enable-bitband", true); 1306 object_property_set_link(OBJECT(nvic), "memory", 1307 OBJECT(get_system_memory()), &error_abort); 1308 /* This will exit with an error if the user passed us a bad cpu_type */ 1309 sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal); 1310 1311 if (board->dc1 & (1 << 16)) { 1312 dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000, 1313 qdev_get_gpio_in(nvic, 14), 1314 qdev_get_gpio_in(nvic, 15), 1315 qdev_get_gpio_in(nvic, 16), 1316 qdev_get_gpio_in(nvic, 17), 1317 NULL); 1318 adc = qdev_get_gpio_in(dev, 0); 1319 } else { 1320 adc = NULL; 1321 } 1322 for (i = 0; i < 4; i++) { 1323 if (board->dc2 & (0x10000 << i)) { 1324 dev = sysbus_create_simple(TYPE_STELLARIS_GPTM, 1325 0x40030000 + i * 0x1000, 1326 qdev_get_gpio_in(nvic, timer_irq[i])); 1327 /* TODO: This is incorrect, but we get away with it because 1328 the ADC output is only ever pulsed. */ 1329 qdev_connect_gpio_out(dev, 0, adc); 1330 } 1331 } 1332 1333 stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28), 1334 board, nd_table[0].macaddr.a); 1335 1336 1337 if (board->dc1 & (1 << 3)) { /* watchdog present */ 1338 dev = qdev_new(TYPE_LUMINARY_WATCHDOG); 1339 1340 /* system_clock_scale is valid now */ 1341 uint32_t mainclk = NANOSECONDS_PER_SECOND / system_clock_scale; 1342 qdev_prop_set_uint32(dev, "wdogclk-frq", mainclk); 1343 1344 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1345 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1346 0, 1347 0x40000000u); 1348 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 1349 0, 1350 qdev_get_gpio_in(nvic, 18)); 1351 } 1352 1353 1354 for (i = 0; i < 7; i++) { 1355 if (board->dc4 & (1 << i)) { 1356 gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i], 1357 qdev_get_gpio_in(nvic, 1358 gpio_irq[i])); 1359 for (j = 0; j < 8; j++) { 1360 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j); 1361 gpio_out[i][j] = NULL; 1362 } 1363 } 1364 } 1365 1366 if (board->dc2 & (1 << 12)) { 1367 dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000, 1368 qdev_get_gpio_in(nvic, 8)); 1369 i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c"); 1370 if (board->peripherals & BP_OLED_I2C) { 1371 i2c_slave_create_simple(i2c, "ssd0303", 0x3d); 1372 } 1373 } 1374 1375 for (i = 0; i < 4; i++) { 1376 if (board->dc2 & (1 << i)) { 1377 pl011_luminary_create(0x4000c000 + i * 0x1000, 1378 qdev_get_gpio_in(nvic, uart_irq[i]), 1379 serial_hd(i)); 1380 } 1381 } 1382 if (board->dc2 & (1 << 4)) { 1383 dev = sysbus_create_simple("pl022", 0x40008000, 1384 qdev_get_gpio_in(nvic, 7)); 1385 if (board->peripherals & BP_OLED_SSI) { 1386 void *bus; 1387 DeviceState *sddev; 1388 DeviceState *ssddev; 1389 1390 /* Some boards have both an OLED controller and SD card connected to 1391 * the same SSI port, with the SD card chip select connected to a 1392 * GPIO pin. Technically the OLED chip select is connected to the 1393 * SSI Fss pin. We do not bother emulating that as both devices 1394 * should never be selected simultaneously, and our OLED controller 1395 * ignores stray 0xff commands that occur when deselecting the SD 1396 * card. 1397 */ 1398 bus = qdev_get_child_bus(dev, "ssi"); 1399 1400 sddev = ssi_create_peripheral(bus, "ssi-sd"); 1401 ssddev = ssi_create_peripheral(bus, "ssd0323"); 1402 gpio_out[GPIO_D][0] = qemu_irq_split( 1403 qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0), 1404 qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0)); 1405 gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0); 1406 1407 /* Make sure the select pin is high. */ 1408 qemu_irq_raise(gpio_out[GPIO_D][0]); 1409 } 1410 } 1411 if (board->dc4 & (1 << 28)) { 1412 DeviceState *enet; 1413 1414 qemu_check_nic_model(&nd_table[0], "stellaris"); 1415 1416 enet = qdev_new("stellaris_enet"); 1417 qdev_set_nic_properties(enet, &nd_table[0]); 1418 sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal); 1419 sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000); 1420 sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42)); 1421 } 1422 if (board->peripherals & BP_GAMEPAD) { 1423 qemu_irq gpad_irq[5]; 1424 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d }; 1425 1426 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */ 1427 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */ 1428 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */ 1429 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */ 1430 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */ 1431 1432 stellaris_gamepad_init(5, gpad_irq, gpad_keycode); 1433 } 1434 for (i = 0; i < 7; i++) { 1435 if (board->dc4 & (1 << i)) { 1436 for (j = 0; j < 8; j++) { 1437 if (gpio_out[i][j]) { 1438 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]); 1439 } 1440 } 1441 } 1442 } 1443 1444 /* Add dummy regions for the devices we don't implement yet, 1445 * so guest accesses don't cause unlogged crashes. 1446 */ 1447 create_unimplemented_device("i2c-0", 0x40002000, 0x1000); 1448 create_unimplemented_device("i2c-2", 0x40021000, 0x1000); 1449 create_unimplemented_device("PWM", 0x40028000, 0x1000); 1450 create_unimplemented_device("QEI-0", 0x4002c000, 0x1000); 1451 create_unimplemented_device("QEI-1", 0x4002d000, 0x1000); 1452 create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000); 1453 create_unimplemented_device("hibernation", 0x400fc000, 0x1000); 1454 create_unimplemented_device("flash-control", 0x400fd000, 0x1000); 1455 1456 armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size); 1457 } 1458 1459 /* FIXME: Figure out how to generate these from stellaris_boards. */ 1460 static void lm3s811evb_init(MachineState *machine) 1461 { 1462 stellaris_init(machine, &stellaris_boards[0]); 1463 } 1464 1465 static void lm3s6965evb_init(MachineState *machine) 1466 { 1467 stellaris_init(machine, &stellaris_boards[1]); 1468 } 1469 1470 static void lm3s811evb_class_init(ObjectClass *oc, void *data) 1471 { 1472 MachineClass *mc = MACHINE_CLASS(oc); 1473 1474 mc->desc = "Stellaris LM3S811EVB"; 1475 mc->init = lm3s811evb_init; 1476 mc->ignore_memory_transaction_failures = true; 1477 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3"); 1478 } 1479 1480 static const TypeInfo lm3s811evb_type = { 1481 .name = MACHINE_TYPE_NAME("lm3s811evb"), 1482 .parent = TYPE_MACHINE, 1483 .class_init = lm3s811evb_class_init, 1484 }; 1485 1486 static void lm3s6965evb_class_init(ObjectClass *oc, void *data) 1487 { 1488 MachineClass *mc = MACHINE_CLASS(oc); 1489 1490 mc->desc = "Stellaris LM3S6965EVB"; 1491 mc->init = lm3s6965evb_init; 1492 mc->ignore_memory_transaction_failures = true; 1493 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3"); 1494 } 1495 1496 static const TypeInfo lm3s6965evb_type = { 1497 .name = MACHINE_TYPE_NAME("lm3s6965evb"), 1498 .parent = TYPE_MACHINE, 1499 .class_init = lm3s6965evb_class_init, 1500 }; 1501 1502 static void stellaris_machine_init(void) 1503 { 1504 type_register_static(&lm3s811evb_type); 1505 type_register_static(&lm3s6965evb_type); 1506 } 1507 1508 type_init(stellaris_machine_init) 1509 1510 static void stellaris_i2c_class_init(ObjectClass *klass, void *data) 1511 { 1512 DeviceClass *dc = DEVICE_CLASS(klass); 1513 1514 dc->vmsd = &vmstate_stellaris_i2c; 1515 } 1516 1517 static const TypeInfo stellaris_i2c_info = { 1518 .name = TYPE_STELLARIS_I2C, 1519 .parent = TYPE_SYS_BUS_DEVICE, 1520 .instance_size = sizeof(stellaris_i2c_state), 1521 .instance_init = stellaris_i2c_init, 1522 .class_init = stellaris_i2c_class_init, 1523 }; 1524 1525 static void stellaris_gptm_class_init(ObjectClass *klass, void *data) 1526 { 1527 DeviceClass *dc = DEVICE_CLASS(klass); 1528 1529 dc->vmsd = &vmstate_stellaris_gptm; 1530 dc->realize = stellaris_gptm_realize; 1531 } 1532 1533 static const TypeInfo stellaris_gptm_info = { 1534 .name = TYPE_STELLARIS_GPTM, 1535 .parent = TYPE_SYS_BUS_DEVICE, 1536 .instance_size = sizeof(gptm_state), 1537 .instance_init = stellaris_gptm_init, 1538 .class_init = stellaris_gptm_class_init, 1539 }; 1540 1541 static void stellaris_adc_class_init(ObjectClass *klass, void *data) 1542 { 1543 DeviceClass *dc = DEVICE_CLASS(klass); 1544 1545 dc->vmsd = &vmstate_stellaris_adc; 1546 } 1547 1548 static const TypeInfo stellaris_adc_info = { 1549 .name = TYPE_STELLARIS_ADC, 1550 .parent = TYPE_SYS_BUS_DEVICE, 1551 .instance_size = sizeof(stellaris_adc_state), 1552 .instance_init = stellaris_adc_init, 1553 .class_init = stellaris_adc_class_init, 1554 }; 1555 1556 static void stellaris_register_types(void) 1557 { 1558 type_register_static(&stellaris_i2c_info); 1559 type_register_static(&stellaris_gptm_info); 1560 type_register_static(&stellaris_adc_info); 1561 } 1562 1563 type_init(stellaris_register_types) 1564