xref: /openbmc/qemu/hw/arm/stellaris.c (revision bfb27e60)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "hw/sysbus.h"
11 #include "hw/ssi.h"
12 #include "hw/arm/arm.h"
13 #include "hw/devices.h"
14 #include "qemu/timer.h"
15 #include "hw/i2c/i2c.h"
16 #include "net/net.h"
17 #include "hw/boards.h"
18 #include "exec/address-spaces.h"
19 
20 #define GPIO_A 0
21 #define GPIO_B 1
22 #define GPIO_C 2
23 #define GPIO_D 3
24 #define GPIO_E 4
25 #define GPIO_F 5
26 #define GPIO_G 6
27 
28 #define BP_OLED_I2C  0x01
29 #define BP_OLED_SSI  0x02
30 #define BP_GAMEPAD   0x04
31 
32 typedef const struct {
33     const char *name;
34     uint32_t did0;
35     uint32_t did1;
36     uint32_t dc0;
37     uint32_t dc1;
38     uint32_t dc2;
39     uint32_t dc3;
40     uint32_t dc4;
41     uint32_t peripherals;
42 } stellaris_board_info;
43 
44 /* General purpose timer module.  */
45 
46 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
47 #define STELLARIS_GPTM(obj) \
48     OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM)
49 
50 typedef struct gptm_state {
51     SysBusDevice parent_obj;
52 
53     MemoryRegion iomem;
54     uint32_t config;
55     uint32_t mode[2];
56     uint32_t control;
57     uint32_t state;
58     uint32_t mask;
59     uint32_t load[2];
60     uint32_t match[2];
61     uint32_t prescale[2];
62     uint32_t match_prescale[2];
63     uint32_t rtc;
64     int64_t tick[2];
65     struct gptm_state *opaque[2];
66     QEMUTimer *timer[2];
67     /* The timers have an alternate output used to trigger the ADC.  */
68     qemu_irq trigger;
69     qemu_irq irq;
70 } gptm_state;
71 
72 static void gptm_update_irq(gptm_state *s)
73 {
74     int level;
75     level = (s->state & s->mask) != 0;
76     qemu_set_irq(s->irq, level);
77 }
78 
79 static void gptm_stop(gptm_state *s, int n)
80 {
81     timer_del(s->timer[n]);
82 }
83 
84 static void gptm_reload(gptm_state *s, int n, int reset)
85 {
86     int64_t tick;
87     if (reset)
88         tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
89     else
90         tick = s->tick[n];
91 
92     if (s->config == 0) {
93         /* 32-bit CountDown.  */
94         uint32_t count;
95         count = s->load[0] | (s->load[1] << 16);
96         tick += (int64_t)count * system_clock_scale;
97     } else if (s->config == 1) {
98         /* 32-bit RTC.  1Hz tick.  */
99         tick += get_ticks_per_sec();
100     } else if (s->mode[n] == 0xa) {
101         /* PWM mode.  Not implemented.  */
102     } else {
103         hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
104     }
105     s->tick[n] = tick;
106     timer_mod(s->timer[n], tick);
107 }
108 
109 static void gptm_tick(void *opaque)
110 {
111     gptm_state **p = (gptm_state **)opaque;
112     gptm_state *s;
113     int n;
114 
115     s = *p;
116     n = p - s->opaque;
117     if (s->config == 0) {
118         s->state |= 1;
119         if ((s->control & 0x20)) {
120             /* Output trigger.  */
121 	    qemu_irq_pulse(s->trigger);
122         }
123         if (s->mode[0] & 1) {
124             /* One-shot.  */
125             s->control &= ~1;
126         } else {
127             /* Periodic.  */
128             gptm_reload(s, 0, 0);
129         }
130     } else if (s->config == 1) {
131         /* RTC.  */
132         uint32_t match;
133         s->rtc++;
134         match = s->match[0] | (s->match[1] << 16);
135         if (s->rtc > match)
136             s->rtc = 0;
137         if (s->rtc == 0) {
138             s->state |= 8;
139         }
140         gptm_reload(s, 0, 0);
141     } else if (s->mode[n] == 0xa) {
142         /* PWM mode.  Not implemented.  */
143     } else {
144         hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
145     }
146     gptm_update_irq(s);
147 }
148 
149 static uint64_t gptm_read(void *opaque, hwaddr offset,
150                           unsigned size)
151 {
152     gptm_state *s = (gptm_state *)opaque;
153 
154     switch (offset) {
155     case 0x00: /* CFG */
156         return s->config;
157     case 0x04: /* TAMR */
158         return s->mode[0];
159     case 0x08: /* TBMR */
160         return s->mode[1];
161     case 0x0c: /* CTL */
162         return s->control;
163     case 0x18: /* IMR */
164         return s->mask;
165     case 0x1c: /* RIS */
166         return s->state;
167     case 0x20: /* MIS */
168         return s->state & s->mask;
169     case 0x24: /* CR */
170         return 0;
171     case 0x28: /* TAILR */
172         return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
173     case 0x2c: /* TBILR */
174         return s->load[1];
175     case 0x30: /* TAMARCHR */
176         return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
177     case 0x34: /* TBMATCHR */
178         return s->match[1];
179     case 0x38: /* TAPR */
180         return s->prescale[0];
181     case 0x3c: /* TBPR */
182         return s->prescale[1];
183     case 0x40: /* TAPMR */
184         return s->match_prescale[0];
185     case 0x44: /* TBPMR */
186         return s->match_prescale[1];
187     case 0x48: /* TAR */
188         if (s->config == 1) {
189             return s->rtc;
190         }
191         qemu_log_mask(LOG_UNIMP,
192                       "GPTM: read of TAR but timer read not supported");
193         return 0;
194     case 0x4c: /* TBR */
195         qemu_log_mask(LOG_UNIMP,
196                       "GPTM: read of TBR but timer read not supported");
197         return 0;
198     default:
199         qemu_log_mask(LOG_GUEST_ERROR,
200                       "GPTM: read at bad offset 0x%x\n", (int)offset);
201         return 0;
202     }
203 }
204 
205 static void gptm_write(void *opaque, hwaddr offset,
206                        uint64_t value, unsigned size)
207 {
208     gptm_state *s = (gptm_state *)opaque;
209     uint32_t oldval;
210 
211     /* The timers should be disabled before changing the configuration.
212        We take advantage of this and defer everything until the timer
213        is enabled.  */
214     switch (offset) {
215     case 0x00: /* CFG */
216         s->config = value;
217         break;
218     case 0x04: /* TAMR */
219         s->mode[0] = value;
220         break;
221     case 0x08: /* TBMR */
222         s->mode[1] = value;
223         break;
224     case 0x0c: /* CTL */
225         oldval = s->control;
226         s->control = value;
227         /* TODO: Implement pause.  */
228         if ((oldval ^ value) & 1) {
229             if (value & 1) {
230                 gptm_reload(s, 0, 1);
231             } else {
232                 gptm_stop(s, 0);
233             }
234         }
235         if (((oldval ^ value) & 0x100) && s->config >= 4) {
236             if (value & 0x100) {
237                 gptm_reload(s, 1, 1);
238             } else {
239                 gptm_stop(s, 1);
240             }
241         }
242         break;
243     case 0x18: /* IMR */
244         s->mask = value & 0x77;
245         gptm_update_irq(s);
246         break;
247     case 0x24: /* CR */
248         s->state &= ~value;
249         break;
250     case 0x28: /* TAILR */
251         s->load[0] = value & 0xffff;
252         if (s->config < 4) {
253             s->load[1] = value >> 16;
254         }
255         break;
256     case 0x2c: /* TBILR */
257         s->load[1] = value & 0xffff;
258         break;
259     case 0x30: /* TAMARCHR */
260         s->match[0] = value & 0xffff;
261         if (s->config < 4) {
262             s->match[1] = value >> 16;
263         }
264         break;
265     case 0x34: /* TBMATCHR */
266         s->match[1] = value >> 16;
267         break;
268     case 0x38: /* TAPR */
269         s->prescale[0] = value;
270         break;
271     case 0x3c: /* TBPR */
272         s->prescale[1] = value;
273         break;
274     case 0x40: /* TAPMR */
275         s->match_prescale[0] = value;
276         break;
277     case 0x44: /* TBPMR */
278         s->match_prescale[0] = value;
279         break;
280     default:
281         hw_error("gptm_write: Bad offset 0x%x\n", (int)offset);
282     }
283     gptm_update_irq(s);
284 }
285 
286 static const MemoryRegionOps gptm_ops = {
287     .read = gptm_read,
288     .write = gptm_write,
289     .endianness = DEVICE_NATIVE_ENDIAN,
290 };
291 
292 static const VMStateDescription vmstate_stellaris_gptm = {
293     .name = "stellaris_gptm",
294     .version_id = 1,
295     .minimum_version_id = 1,
296     .fields = (VMStateField[]) {
297         VMSTATE_UINT32(config, gptm_state),
298         VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
299         VMSTATE_UINT32(control, gptm_state),
300         VMSTATE_UINT32(state, gptm_state),
301         VMSTATE_UINT32(mask, gptm_state),
302         VMSTATE_UNUSED(8),
303         VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
304         VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
305         VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
306         VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
307         VMSTATE_UINT32(rtc, gptm_state),
308         VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
309         VMSTATE_TIMER_ARRAY(timer, gptm_state, 2),
310         VMSTATE_END_OF_LIST()
311     }
312 };
313 
314 static int stellaris_gptm_init(SysBusDevice *sbd)
315 {
316     DeviceState *dev = DEVICE(sbd);
317     gptm_state *s = STELLARIS_GPTM(dev);
318 
319     sysbus_init_irq(sbd, &s->irq);
320     qdev_init_gpio_out(dev, &s->trigger, 1);
321 
322     memory_region_init_io(&s->iomem, OBJECT(s), &gptm_ops, s,
323                           "gptm", 0x1000);
324     sysbus_init_mmio(sbd, &s->iomem);
325 
326     s->opaque[0] = s->opaque[1] = s;
327     s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
328     s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
329     vmstate_register(dev, -1, &vmstate_stellaris_gptm, s);
330     return 0;
331 }
332 
333 
334 /* System controller.  */
335 
336 typedef struct {
337     MemoryRegion iomem;
338     uint32_t pborctl;
339     uint32_t ldopctl;
340     uint32_t int_status;
341     uint32_t int_mask;
342     uint32_t resc;
343     uint32_t rcc;
344     uint32_t rcc2;
345     uint32_t rcgc[3];
346     uint32_t scgc[3];
347     uint32_t dcgc[3];
348     uint32_t clkvclr;
349     uint32_t ldoarst;
350     uint32_t user0;
351     uint32_t user1;
352     qemu_irq irq;
353     stellaris_board_info *board;
354 } ssys_state;
355 
356 static void ssys_update(ssys_state *s)
357 {
358   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
359 }
360 
361 static uint32_t pllcfg_sandstorm[16] = {
362     0x31c0, /* 1 Mhz */
363     0x1ae0, /* 1.8432 Mhz */
364     0x18c0, /* 2 Mhz */
365     0xd573, /* 2.4576 Mhz */
366     0x37a6, /* 3.57954 Mhz */
367     0x1ae2, /* 3.6864 Mhz */
368     0x0c40, /* 4 Mhz */
369     0x98bc, /* 4.906 Mhz */
370     0x935b, /* 4.9152 Mhz */
371     0x09c0, /* 5 Mhz */
372     0x4dee, /* 5.12 Mhz */
373     0x0c41, /* 6 Mhz */
374     0x75db, /* 6.144 Mhz */
375     0x1ae6, /* 7.3728 Mhz */
376     0x0600, /* 8 Mhz */
377     0x585b /* 8.192 Mhz */
378 };
379 
380 static uint32_t pllcfg_fury[16] = {
381     0x3200, /* 1 Mhz */
382     0x1b20, /* 1.8432 Mhz */
383     0x1900, /* 2 Mhz */
384     0xf42b, /* 2.4576 Mhz */
385     0x37e3, /* 3.57954 Mhz */
386     0x1b21, /* 3.6864 Mhz */
387     0x0c80, /* 4 Mhz */
388     0x98ee, /* 4.906 Mhz */
389     0xd5b4, /* 4.9152 Mhz */
390     0x0a00, /* 5 Mhz */
391     0x4e27, /* 5.12 Mhz */
392     0x1902, /* 6 Mhz */
393     0xec1c, /* 6.144 Mhz */
394     0x1b23, /* 7.3728 Mhz */
395     0x0640, /* 8 Mhz */
396     0xb11c /* 8.192 Mhz */
397 };
398 
399 #define DID0_VER_MASK        0x70000000
400 #define DID0_VER_0           0x00000000
401 #define DID0_VER_1           0x10000000
402 
403 #define DID0_CLASS_MASK      0x00FF0000
404 #define DID0_CLASS_SANDSTORM 0x00000000
405 #define DID0_CLASS_FURY      0x00010000
406 
407 static int ssys_board_class(const ssys_state *s)
408 {
409     uint32_t did0 = s->board->did0;
410     switch (did0 & DID0_VER_MASK) {
411     case DID0_VER_0:
412         return DID0_CLASS_SANDSTORM;
413     case DID0_VER_1:
414         switch (did0 & DID0_CLASS_MASK) {
415         case DID0_CLASS_SANDSTORM:
416         case DID0_CLASS_FURY:
417             return did0 & DID0_CLASS_MASK;
418         }
419         /* for unknown classes, fall through */
420     default:
421         hw_error("ssys_board_class: Unknown class 0x%08x\n", did0);
422     }
423 }
424 
425 static uint64_t ssys_read(void *opaque, hwaddr offset,
426                           unsigned size)
427 {
428     ssys_state *s = (ssys_state *)opaque;
429 
430     switch (offset) {
431     case 0x000: /* DID0 */
432         return s->board->did0;
433     case 0x004: /* DID1 */
434         return s->board->did1;
435     case 0x008: /* DC0 */
436         return s->board->dc0;
437     case 0x010: /* DC1 */
438         return s->board->dc1;
439     case 0x014: /* DC2 */
440         return s->board->dc2;
441     case 0x018: /* DC3 */
442         return s->board->dc3;
443     case 0x01c: /* DC4 */
444         return s->board->dc4;
445     case 0x030: /* PBORCTL */
446         return s->pborctl;
447     case 0x034: /* LDOPCTL */
448         return s->ldopctl;
449     case 0x040: /* SRCR0 */
450         return 0;
451     case 0x044: /* SRCR1 */
452         return 0;
453     case 0x048: /* SRCR2 */
454         return 0;
455     case 0x050: /* RIS */
456         return s->int_status;
457     case 0x054: /* IMC */
458         return s->int_mask;
459     case 0x058: /* MISC */
460         return s->int_status & s->int_mask;
461     case 0x05c: /* RESC */
462         return s->resc;
463     case 0x060: /* RCC */
464         return s->rcc;
465     case 0x064: /* PLLCFG */
466         {
467             int xtal;
468             xtal = (s->rcc >> 6) & 0xf;
469             switch (ssys_board_class(s)) {
470             case DID0_CLASS_FURY:
471                 return pllcfg_fury[xtal];
472             case DID0_CLASS_SANDSTORM:
473                 return pllcfg_sandstorm[xtal];
474             default:
475                 hw_error("ssys_read: Unhandled class for PLLCFG read.\n");
476                 return 0;
477             }
478         }
479     case 0x070: /* RCC2 */
480         return s->rcc2;
481     case 0x100: /* RCGC0 */
482         return s->rcgc[0];
483     case 0x104: /* RCGC1 */
484         return s->rcgc[1];
485     case 0x108: /* RCGC2 */
486         return s->rcgc[2];
487     case 0x110: /* SCGC0 */
488         return s->scgc[0];
489     case 0x114: /* SCGC1 */
490         return s->scgc[1];
491     case 0x118: /* SCGC2 */
492         return s->scgc[2];
493     case 0x120: /* DCGC0 */
494         return s->dcgc[0];
495     case 0x124: /* DCGC1 */
496         return s->dcgc[1];
497     case 0x128: /* DCGC2 */
498         return s->dcgc[2];
499     case 0x150: /* CLKVCLR */
500         return s->clkvclr;
501     case 0x160: /* LDOARST */
502         return s->ldoarst;
503     case 0x1e0: /* USER0 */
504         return s->user0;
505     case 0x1e4: /* USER1 */
506         return s->user1;
507     default:
508         hw_error("ssys_read: Bad offset 0x%x\n", (int)offset);
509         return 0;
510     }
511 }
512 
513 static bool ssys_use_rcc2(ssys_state *s)
514 {
515     return (s->rcc2 >> 31) & 0x1;
516 }
517 
518 /*
519  * Caculate the sys. clock period in ms.
520  */
521 static void ssys_calculate_system_clock(ssys_state *s)
522 {
523     if (ssys_use_rcc2(s)) {
524         system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
525     } else {
526         system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
527     }
528 }
529 
530 static void ssys_write(void *opaque, hwaddr offset,
531                        uint64_t value, unsigned size)
532 {
533     ssys_state *s = (ssys_state *)opaque;
534 
535     switch (offset) {
536     case 0x030: /* PBORCTL */
537         s->pborctl = value & 0xffff;
538         break;
539     case 0x034: /* LDOPCTL */
540         s->ldopctl = value & 0x1f;
541         break;
542     case 0x040: /* SRCR0 */
543     case 0x044: /* SRCR1 */
544     case 0x048: /* SRCR2 */
545         fprintf(stderr, "Peripheral reset not implemented\n");
546         break;
547     case 0x054: /* IMC */
548         s->int_mask = value & 0x7f;
549         break;
550     case 0x058: /* MISC */
551         s->int_status &= ~value;
552         break;
553     case 0x05c: /* RESC */
554         s->resc = value & 0x3f;
555         break;
556     case 0x060: /* RCC */
557         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
558             /* PLL enable.  */
559             s->int_status |= (1 << 6);
560         }
561         s->rcc = value;
562         ssys_calculate_system_clock(s);
563         break;
564     case 0x070: /* RCC2 */
565         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
566             break;
567         }
568 
569         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
570             /* PLL enable.  */
571             s->int_status |= (1 << 6);
572         }
573         s->rcc2 = value;
574         ssys_calculate_system_clock(s);
575         break;
576     case 0x100: /* RCGC0 */
577         s->rcgc[0] = value;
578         break;
579     case 0x104: /* RCGC1 */
580         s->rcgc[1] = value;
581         break;
582     case 0x108: /* RCGC2 */
583         s->rcgc[2] = value;
584         break;
585     case 0x110: /* SCGC0 */
586         s->scgc[0] = value;
587         break;
588     case 0x114: /* SCGC1 */
589         s->scgc[1] = value;
590         break;
591     case 0x118: /* SCGC2 */
592         s->scgc[2] = value;
593         break;
594     case 0x120: /* DCGC0 */
595         s->dcgc[0] = value;
596         break;
597     case 0x124: /* DCGC1 */
598         s->dcgc[1] = value;
599         break;
600     case 0x128: /* DCGC2 */
601         s->dcgc[2] = value;
602         break;
603     case 0x150: /* CLKVCLR */
604         s->clkvclr = value;
605         break;
606     case 0x160: /* LDOARST */
607         s->ldoarst = value;
608         break;
609     default:
610         hw_error("ssys_write: Bad offset 0x%x\n", (int)offset);
611     }
612     ssys_update(s);
613 }
614 
615 static const MemoryRegionOps ssys_ops = {
616     .read = ssys_read,
617     .write = ssys_write,
618     .endianness = DEVICE_NATIVE_ENDIAN,
619 };
620 
621 static void ssys_reset(void *opaque)
622 {
623     ssys_state *s = (ssys_state *)opaque;
624 
625     s->pborctl = 0x7ffd;
626     s->rcc = 0x078e3ac0;
627 
628     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
629         s->rcc2 = 0;
630     } else {
631         s->rcc2 = 0x07802810;
632     }
633     s->rcgc[0] = 1;
634     s->scgc[0] = 1;
635     s->dcgc[0] = 1;
636     ssys_calculate_system_clock(s);
637 }
638 
639 static int stellaris_sys_post_load(void *opaque, int version_id)
640 {
641     ssys_state *s = opaque;
642 
643     ssys_calculate_system_clock(s);
644 
645     return 0;
646 }
647 
648 static const VMStateDescription vmstate_stellaris_sys = {
649     .name = "stellaris_sys",
650     .version_id = 2,
651     .minimum_version_id = 1,
652     .post_load = stellaris_sys_post_load,
653     .fields = (VMStateField[]) {
654         VMSTATE_UINT32(pborctl, ssys_state),
655         VMSTATE_UINT32(ldopctl, ssys_state),
656         VMSTATE_UINT32(int_mask, ssys_state),
657         VMSTATE_UINT32(int_status, ssys_state),
658         VMSTATE_UINT32(resc, ssys_state),
659         VMSTATE_UINT32(rcc, ssys_state),
660         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
661         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
662         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
663         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
664         VMSTATE_UINT32(clkvclr, ssys_state),
665         VMSTATE_UINT32(ldoarst, ssys_state),
666         VMSTATE_END_OF_LIST()
667     }
668 };
669 
670 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
671                               stellaris_board_info * board,
672                               uint8_t *macaddr)
673 {
674     ssys_state *s;
675 
676     s = (ssys_state *)g_malloc0(sizeof(ssys_state));
677     s->irq = irq;
678     s->board = board;
679     /* Most devices come preprogrammed with a MAC address in the user data. */
680     s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
681     s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
682 
683     memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000);
684     memory_region_add_subregion(get_system_memory(), base, &s->iomem);
685     ssys_reset(s);
686     vmstate_register(NULL, -1, &vmstate_stellaris_sys, s);
687     return 0;
688 }
689 
690 
691 /* I2C controller.  */
692 
693 #define TYPE_STELLARIS_I2C "stellaris-i2c"
694 #define STELLARIS_I2C(obj) \
695     OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C)
696 
697 typedef struct {
698     SysBusDevice parent_obj;
699 
700     I2CBus *bus;
701     qemu_irq irq;
702     MemoryRegion iomem;
703     uint32_t msa;
704     uint32_t mcs;
705     uint32_t mdr;
706     uint32_t mtpr;
707     uint32_t mimr;
708     uint32_t mris;
709     uint32_t mcr;
710 } stellaris_i2c_state;
711 
712 #define STELLARIS_I2C_MCS_BUSY    0x01
713 #define STELLARIS_I2C_MCS_ERROR   0x02
714 #define STELLARIS_I2C_MCS_ADRACK  0x04
715 #define STELLARIS_I2C_MCS_DATACK  0x08
716 #define STELLARIS_I2C_MCS_ARBLST  0x10
717 #define STELLARIS_I2C_MCS_IDLE    0x20
718 #define STELLARIS_I2C_MCS_BUSBSY  0x40
719 
720 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
721                                    unsigned size)
722 {
723     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
724 
725     switch (offset) {
726     case 0x00: /* MSA */
727         return s->msa;
728     case 0x04: /* MCS */
729         /* We don't emulate timing, so the controller is never busy.  */
730         return s->mcs | STELLARIS_I2C_MCS_IDLE;
731     case 0x08: /* MDR */
732         return s->mdr;
733     case 0x0c: /* MTPR */
734         return s->mtpr;
735     case 0x10: /* MIMR */
736         return s->mimr;
737     case 0x14: /* MRIS */
738         return s->mris;
739     case 0x18: /* MMIS */
740         return s->mris & s->mimr;
741     case 0x20: /* MCR */
742         return s->mcr;
743     default:
744         hw_error("strllaris_i2c_read: Bad offset 0x%x\n", (int)offset);
745         return 0;
746     }
747 }
748 
749 static void stellaris_i2c_update(stellaris_i2c_state *s)
750 {
751     int level;
752 
753     level = (s->mris & s->mimr) != 0;
754     qemu_set_irq(s->irq, level);
755 }
756 
757 static void stellaris_i2c_write(void *opaque, hwaddr offset,
758                                 uint64_t value, unsigned size)
759 {
760     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
761 
762     switch (offset) {
763     case 0x00: /* MSA */
764         s->msa = value & 0xff;
765         break;
766     case 0x04: /* MCS */
767         if ((s->mcr & 0x10) == 0) {
768             /* Disabled.  Do nothing.  */
769             break;
770         }
771         /* Grab the bus if this is starting a transfer.  */
772         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
773             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
774                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
775             } else {
776                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
777                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
778             }
779         }
780         /* If we don't have the bus then indicate an error.  */
781         if (!i2c_bus_busy(s->bus)
782                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
783             s->mcs |= STELLARIS_I2C_MCS_ERROR;
784             break;
785         }
786         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
787         if (value & 1) {
788             /* Transfer a byte.  */
789             /* TODO: Handle errors.  */
790             if (s->msa & 1) {
791                 /* Recv */
792                 s->mdr = i2c_recv(s->bus) & 0xff;
793             } else {
794                 /* Send */
795                 i2c_send(s->bus, s->mdr);
796             }
797             /* Raise an interrupt.  */
798             s->mris |= 1;
799         }
800         if (value & 4) {
801             /* Finish transfer.  */
802             i2c_end_transfer(s->bus);
803             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
804         }
805         break;
806     case 0x08: /* MDR */
807         s->mdr = value & 0xff;
808         break;
809     case 0x0c: /* MTPR */
810         s->mtpr = value & 0xff;
811         break;
812     case 0x10: /* MIMR */
813         s->mimr = 1;
814         break;
815     case 0x1c: /* MICR */
816         s->mris &= ~value;
817         break;
818     case 0x20: /* MCR */
819         if (value & 1)
820             hw_error(
821                       "stellaris_i2c_write: Loopback not implemented\n");
822         if (value & 0x20)
823             hw_error(
824                       "stellaris_i2c_write: Slave mode not implemented\n");
825         s->mcr = value & 0x31;
826         break;
827     default:
828         hw_error("stellaris_i2c_write: Bad offset 0x%x\n",
829                   (int)offset);
830     }
831     stellaris_i2c_update(s);
832 }
833 
834 static void stellaris_i2c_reset(stellaris_i2c_state *s)
835 {
836     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
837         i2c_end_transfer(s->bus);
838 
839     s->msa = 0;
840     s->mcs = 0;
841     s->mdr = 0;
842     s->mtpr = 1;
843     s->mimr = 0;
844     s->mris = 0;
845     s->mcr = 0;
846     stellaris_i2c_update(s);
847 }
848 
849 static const MemoryRegionOps stellaris_i2c_ops = {
850     .read = stellaris_i2c_read,
851     .write = stellaris_i2c_write,
852     .endianness = DEVICE_NATIVE_ENDIAN,
853 };
854 
855 static const VMStateDescription vmstate_stellaris_i2c = {
856     .name = "stellaris_i2c",
857     .version_id = 1,
858     .minimum_version_id = 1,
859     .fields = (VMStateField[]) {
860         VMSTATE_UINT32(msa, stellaris_i2c_state),
861         VMSTATE_UINT32(mcs, stellaris_i2c_state),
862         VMSTATE_UINT32(mdr, stellaris_i2c_state),
863         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
864         VMSTATE_UINT32(mimr, stellaris_i2c_state),
865         VMSTATE_UINT32(mris, stellaris_i2c_state),
866         VMSTATE_UINT32(mcr, stellaris_i2c_state),
867         VMSTATE_END_OF_LIST()
868     }
869 };
870 
871 static int stellaris_i2c_init(SysBusDevice *sbd)
872 {
873     DeviceState *dev = DEVICE(sbd);
874     stellaris_i2c_state *s = STELLARIS_I2C(dev);
875     I2CBus *bus;
876 
877     sysbus_init_irq(sbd, &s->irq);
878     bus = i2c_init_bus(dev, "i2c");
879     s->bus = bus;
880 
881     memory_region_init_io(&s->iomem, OBJECT(s), &stellaris_i2c_ops, s,
882                           "i2c", 0x1000);
883     sysbus_init_mmio(sbd, &s->iomem);
884     /* ??? For now we only implement the master interface.  */
885     stellaris_i2c_reset(s);
886     vmstate_register(dev, -1, &vmstate_stellaris_i2c, s);
887     return 0;
888 }
889 
890 /* Analogue to Digital Converter.  This is only partially implemented,
891    enough for applications that use a combined ADC and timer tick.  */
892 
893 #define STELLARIS_ADC_EM_CONTROLLER 0
894 #define STELLARIS_ADC_EM_COMP       1
895 #define STELLARIS_ADC_EM_EXTERNAL   4
896 #define STELLARIS_ADC_EM_TIMER      5
897 #define STELLARIS_ADC_EM_PWM0       6
898 #define STELLARIS_ADC_EM_PWM1       7
899 #define STELLARIS_ADC_EM_PWM2       8
900 
901 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
902 #define STELLARIS_ADC_FIFO_FULL     0x1000
903 
904 #define TYPE_STELLARIS_ADC "stellaris-adc"
905 #define STELLARIS_ADC(obj) \
906     OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC)
907 
908 typedef struct StellarisADCState {
909     SysBusDevice parent_obj;
910 
911     MemoryRegion iomem;
912     uint32_t actss;
913     uint32_t ris;
914     uint32_t im;
915     uint32_t emux;
916     uint32_t ostat;
917     uint32_t ustat;
918     uint32_t sspri;
919     uint32_t sac;
920     struct {
921         uint32_t state;
922         uint32_t data[16];
923     } fifo[4];
924     uint32_t ssmux[4];
925     uint32_t ssctl[4];
926     uint32_t noise;
927     qemu_irq irq[4];
928 } stellaris_adc_state;
929 
930 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
931 {
932     int tail;
933 
934     tail = s->fifo[n].state & 0xf;
935     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
936         s->ustat |= 1 << n;
937     } else {
938         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
939         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
940         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
941             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
942     }
943     return s->fifo[n].data[tail];
944 }
945 
946 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
947                                      uint32_t value)
948 {
949     int head;
950 
951     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
952        FIFO fir each sequencer.  */
953     head = (s->fifo[n].state >> 4) & 0xf;
954     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
955         s->ostat |= 1 << n;
956         return;
957     }
958     s->fifo[n].data[head] = value;
959     head = (head + 1) & 0xf;
960     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
961     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
962     if ((s->fifo[n].state & 0xf) == head)
963         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
964 }
965 
966 static void stellaris_adc_update(stellaris_adc_state *s)
967 {
968     int level;
969     int n;
970 
971     for (n = 0; n < 4; n++) {
972         level = (s->ris & s->im & (1 << n)) != 0;
973         qemu_set_irq(s->irq[n], level);
974     }
975 }
976 
977 static void stellaris_adc_trigger(void *opaque, int irq, int level)
978 {
979     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
980     int n;
981 
982     for (n = 0; n < 4; n++) {
983         if ((s->actss & (1 << n)) == 0) {
984             continue;
985         }
986 
987         if (((s->emux >> (n * 4)) & 0xff) != 5) {
988             continue;
989         }
990 
991         /* Some applications use the ADC as a random number source, so introduce
992            some variation into the signal.  */
993         s->noise = s->noise * 314159 + 1;
994         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
995         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
996         s->ris |= (1 << n);
997         stellaris_adc_update(s);
998     }
999 }
1000 
1001 static void stellaris_adc_reset(stellaris_adc_state *s)
1002 {
1003     int n;
1004 
1005     for (n = 0; n < 4; n++) {
1006         s->ssmux[n] = 0;
1007         s->ssctl[n] = 0;
1008         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1009     }
1010 }
1011 
1012 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1013                                    unsigned size)
1014 {
1015     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1016 
1017     /* TODO: Implement this.  */
1018     if (offset >= 0x40 && offset < 0xc0) {
1019         int n;
1020         n = (offset - 0x40) >> 5;
1021         switch (offset & 0x1f) {
1022         case 0x00: /* SSMUX */
1023             return s->ssmux[n];
1024         case 0x04: /* SSCTL */
1025             return s->ssctl[n];
1026         case 0x08: /* SSFIFO */
1027             return stellaris_adc_fifo_read(s, n);
1028         case 0x0c: /* SSFSTAT */
1029             return s->fifo[n].state;
1030         default:
1031             break;
1032         }
1033     }
1034     switch (offset) {
1035     case 0x00: /* ACTSS */
1036         return s->actss;
1037     case 0x04: /* RIS */
1038         return s->ris;
1039     case 0x08: /* IM */
1040         return s->im;
1041     case 0x0c: /* ISC */
1042         return s->ris & s->im;
1043     case 0x10: /* OSTAT */
1044         return s->ostat;
1045     case 0x14: /* EMUX */
1046         return s->emux;
1047     case 0x18: /* USTAT */
1048         return s->ustat;
1049     case 0x20: /* SSPRI */
1050         return s->sspri;
1051     case 0x30: /* SAC */
1052         return s->sac;
1053     default:
1054         hw_error("strllaris_adc_read: Bad offset 0x%x\n",
1055                   (int)offset);
1056         return 0;
1057     }
1058 }
1059 
1060 static void stellaris_adc_write(void *opaque, hwaddr offset,
1061                                 uint64_t value, unsigned size)
1062 {
1063     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1064 
1065     /* TODO: Implement this.  */
1066     if (offset >= 0x40 && offset < 0xc0) {
1067         int n;
1068         n = (offset - 0x40) >> 5;
1069         switch (offset & 0x1f) {
1070         case 0x00: /* SSMUX */
1071             s->ssmux[n] = value & 0x33333333;
1072             return;
1073         case 0x04: /* SSCTL */
1074             if (value != 6) {
1075                 hw_error("ADC: Unimplemented sequence %" PRIx64 "\n",
1076                           value);
1077             }
1078             s->ssctl[n] = value;
1079             return;
1080         default:
1081             break;
1082         }
1083     }
1084     switch (offset) {
1085     case 0x00: /* ACTSS */
1086         s->actss = value & 0xf;
1087         break;
1088     case 0x08: /* IM */
1089         s->im = value;
1090         break;
1091     case 0x0c: /* ISC */
1092         s->ris &= ~value;
1093         break;
1094     case 0x10: /* OSTAT */
1095         s->ostat &= ~value;
1096         break;
1097     case 0x14: /* EMUX */
1098         s->emux = value;
1099         break;
1100     case 0x18: /* USTAT */
1101         s->ustat &= ~value;
1102         break;
1103     case 0x20: /* SSPRI */
1104         s->sspri = value;
1105         break;
1106     case 0x28: /* PSSI */
1107         hw_error("Not implemented:  ADC sample initiate\n");
1108         break;
1109     case 0x30: /* SAC */
1110         s->sac = value;
1111         break;
1112     default:
1113         hw_error("stellaris_adc_write: Bad offset 0x%x\n", (int)offset);
1114     }
1115     stellaris_adc_update(s);
1116 }
1117 
1118 static const MemoryRegionOps stellaris_adc_ops = {
1119     .read = stellaris_adc_read,
1120     .write = stellaris_adc_write,
1121     .endianness = DEVICE_NATIVE_ENDIAN,
1122 };
1123 
1124 static const VMStateDescription vmstate_stellaris_adc = {
1125     .name = "stellaris_adc",
1126     .version_id = 1,
1127     .minimum_version_id = 1,
1128     .fields = (VMStateField[]) {
1129         VMSTATE_UINT32(actss, stellaris_adc_state),
1130         VMSTATE_UINT32(ris, stellaris_adc_state),
1131         VMSTATE_UINT32(im, stellaris_adc_state),
1132         VMSTATE_UINT32(emux, stellaris_adc_state),
1133         VMSTATE_UINT32(ostat, stellaris_adc_state),
1134         VMSTATE_UINT32(ustat, stellaris_adc_state),
1135         VMSTATE_UINT32(sspri, stellaris_adc_state),
1136         VMSTATE_UINT32(sac, stellaris_adc_state),
1137         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1138         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1139         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1140         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1141         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1142         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1143         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1144         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1145         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1146         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1147         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1148         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1149         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1150         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1151         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1152         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1153         VMSTATE_UINT32(noise, stellaris_adc_state),
1154         VMSTATE_END_OF_LIST()
1155     }
1156 };
1157 
1158 static int stellaris_adc_init(SysBusDevice *sbd)
1159 {
1160     DeviceState *dev = DEVICE(sbd);
1161     stellaris_adc_state *s = STELLARIS_ADC(dev);
1162     int n;
1163 
1164     for (n = 0; n < 4; n++) {
1165         sysbus_init_irq(sbd, &s->irq[n]);
1166     }
1167 
1168     memory_region_init_io(&s->iomem, OBJECT(s), &stellaris_adc_ops, s,
1169                           "adc", 0x1000);
1170     sysbus_init_mmio(sbd, &s->iomem);
1171     stellaris_adc_reset(s);
1172     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1173     vmstate_register(dev, -1, &vmstate_stellaris_adc, s);
1174     return 0;
1175 }
1176 
1177 /* Board init.  */
1178 static stellaris_board_info stellaris_boards[] = {
1179   { "LM3S811EVB",
1180     0,
1181     0x0032000e,
1182     0x001f001f, /* dc0 */
1183     0x001132bf,
1184     0x01071013,
1185     0x3f0f01ff,
1186     0x0000001f,
1187     BP_OLED_I2C
1188   },
1189   { "LM3S6965EVB",
1190     0x10010002,
1191     0x1073402e,
1192     0x00ff007f, /* dc0 */
1193     0x001133ff,
1194     0x030f5317,
1195     0x0f0f87ff,
1196     0x5000007f,
1197     BP_OLED_SSI | BP_GAMEPAD
1198   }
1199 };
1200 
1201 static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1202                            stellaris_board_info *board)
1203 {
1204     static const int uart_irq[] = {5, 6, 33, 34};
1205     static const int timer_irq[] = {19, 21, 23, 35};
1206     static const uint32_t gpio_addr[7] =
1207       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1208         0x40024000, 0x40025000, 0x40026000};
1209     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1210 
1211     qemu_irq *pic;
1212     DeviceState *gpio_dev[7];
1213     qemu_irq gpio_in[7][8];
1214     qemu_irq gpio_out[7][8];
1215     qemu_irq adc;
1216     int sram_size;
1217     int flash_size;
1218     I2CBus *i2c;
1219     DeviceState *dev;
1220     int i;
1221     int j;
1222 
1223     flash_size = ((board->dc0 & 0xffff) + 1) << 1;
1224     sram_size = (board->dc0 >> 18) + 1;
1225     pic = armv7m_init(get_system_memory(),
1226                       flash_size, sram_size, kernel_filename, cpu_model);
1227 
1228     if (board->dc1 & (1 << 16)) {
1229         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1230                                     pic[14], pic[15], pic[16], pic[17], NULL);
1231         adc = qdev_get_gpio_in(dev, 0);
1232     } else {
1233         adc = NULL;
1234     }
1235     for (i = 0; i < 4; i++) {
1236         if (board->dc2 & (0x10000 << i)) {
1237             dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1238                                        0x40030000 + i * 0x1000,
1239                                        pic[timer_irq[i]]);
1240             /* TODO: This is incorrect, but we get away with it because
1241                the ADC output is only ever pulsed.  */
1242             qdev_connect_gpio_out(dev, 0, adc);
1243         }
1244     }
1245 
1246     stellaris_sys_init(0x400fe000, pic[28], board, nd_table[0].macaddr.a);
1247 
1248     for (i = 0; i < 7; i++) {
1249         if (board->dc4 & (1 << i)) {
1250             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1251                                                pic[gpio_irq[i]]);
1252             for (j = 0; j < 8; j++) {
1253                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1254                 gpio_out[i][j] = NULL;
1255             }
1256         }
1257     }
1258 
1259     if (board->dc2 & (1 << 12)) {
1260         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000, pic[8]);
1261         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1262         if (board->peripherals & BP_OLED_I2C) {
1263             i2c_create_slave(i2c, "ssd0303", 0x3d);
1264         }
1265     }
1266 
1267     for (i = 0; i < 4; i++) {
1268         if (board->dc2 & (1 << i)) {
1269             sysbus_create_simple("pl011_luminary", 0x4000c000 + i * 0x1000,
1270                                  pic[uart_irq[i]]);
1271         }
1272     }
1273     if (board->dc2 & (1 << 4)) {
1274         dev = sysbus_create_simple("pl022", 0x40008000, pic[7]);
1275         if (board->peripherals & BP_OLED_SSI) {
1276             void *bus;
1277             DeviceState *sddev;
1278             DeviceState *ssddev;
1279 
1280             /* Some boards have both an OLED controller and SD card connected to
1281              * the same SSI port, with the SD card chip select connected to a
1282              * GPIO pin.  Technically the OLED chip select is connected to the
1283              * SSI Fss pin.  We do not bother emulating that as both devices
1284              * should never be selected simultaneously, and our OLED controller
1285              * ignores stray 0xff commands that occur when deselecting the SD
1286              * card.
1287              */
1288             bus = qdev_get_child_bus(dev, "ssi");
1289 
1290             sddev = ssi_create_slave(bus, "ssi-sd");
1291             ssddev = ssi_create_slave(bus, "ssd0323");
1292             gpio_out[GPIO_D][0] = qemu_irq_split(
1293                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1294                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1295             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1296 
1297             /* Make sure the select pin is high.  */
1298             qemu_irq_raise(gpio_out[GPIO_D][0]);
1299         }
1300     }
1301     if (board->dc4 & (1 << 28)) {
1302         DeviceState *enet;
1303 
1304         qemu_check_nic_model(&nd_table[0], "stellaris");
1305 
1306         enet = qdev_create(NULL, "stellaris_enet");
1307         qdev_set_nic_properties(enet, &nd_table[0]);
1308         qdev_init_nofail(enet);
1309         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1310         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, pic[42]);
1311     }
1312     if (board->peripherals & BP_GAMEPAD) {
1313         qemu_irq gpad_irq[5];
1314         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1315 
1316         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1317         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1318         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1319         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1320         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1321 
1322         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1323     }
1324     for (i = 0; i < 7; i++) {
1325         if (board->dc4 & (1 << i)) {
1326             for (j = 0; j < 8; j++) {
1327                 if (gpio_out[i][j]) {
1328                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1329                 }
1330             }
1331         }
1332     }
1333 }
1334 
1335 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1336 static void lm3s811evb_init(MachineState *machine)
1337 {
1338     const char *cpu_model = machine->cpu_model;
1339     const char *kernel_filename = machine->kernel_filename;
1340     stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]);
1341 }
1342 
1343 static void lm3s6965evb_init(MachineState *machine)
1344 {
1345     const char *cpu_model = machine->cpu_model;
1346     const char *kernel_filename = machine->kernel_filename;
1347     stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]);
1348 }
1349 
1350 static QEMUMachine lm3s811evb_machine = {
1351     .name = "lm3s811evb",
1352     .desc = "Stellaris LM3S811EVB",
1353     .init = lm3s811evb_init,
1354 };
1355 
1356 static QEMUMachine lm3s6965evb_machine = {
1357     .name = "lm3s6965evb",
1358     .desc = "Stellaris LM3S6965EVB",
1359     .init = lm3s6965evb_init,
1360 };
1361 
1362 static void stellaris_machine_init(void)
1363 {
1364     qemu_register_machine(&lm3s811evb_machine);
1365     qemu_register_machine(&lm3s6965evb_machine);
1366 }
1367 
1368 machine_init(stellaris_machine_init);
1369 
1370 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1371 {
1372     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1373 
1374     sdc->init = stellaris_i2c_init;
1375 }
1376 
1377 static const TypeInfo stellaris_i2c_info = {
1378     .name          = TYPE_STELLARIS_I2C,
1379     .parent        = TYPE_SYS_BUS_DEVICE,
1380     .instance_size = sizeof(stellaris_i2c_state),
1381     .class_init    = stellaris_i2c_class_init,
1382 };
1383 
1384 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1385 {
1386     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1387 
1388     sdc->init = stellaris_gptm_init;
1389 }
1390 
1391 static const TypeInfo stellaris_gptm_info = {
1392     .name          = TYPE_STELLARIS_GPTM,
1393     .parent        = TYPE_SYS_BUS_DEVICE,
1394     .instance_size = sizeof(gptm_state),
1395     .class_init    = stellaris_gptm_class_init,
1396 };
1397 
1398 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1399 {
1400     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1401 
1402     sdc->init = stellaris_adc_init;
1403 }
1404 
1405 static const TypeInfo stellaris_adc_info = {
1406     .name          = TYPE_STELLARIS_ADC,
1407     .parent        = TYPE_SYS_BUS_DEVICE,
1408     .instance_size = sizeof(stellaris_adc_state),
1409     .class_init    = stellaris_adc_class_init,
1410 };
1411 
1412 static void stellaris_register_types(void)
1413 {
1414     type_register_static(&stellaris_i2c_info);
1415     type_register_static(&stellaris_gptm_info);
1416     type_register_static(&stellaris_adc_info);
1417 }
1418 
1419 type_init(stellaris_register_types)
1420