xref: /openbmc/qemu/hw/arm/stellaris.c (revision af531756)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/sysbus.h"
13 #include "hw/ssi/ssi.h"
14 #include "hw/arm/boot.h"
15 #include "qemu/timer.h"
16 #include "hw/i2c/i2c.h"
17 #include "net/net.h"
18 #include "hw/boards.h"
19 #include "qemu/log.h"
20 #include "exec/address-spaces.h"
21 #include "sysemu/sysemu.h"
22 #include "hw/arm/armv7m.h"
23 #include "hw/char/pl011.h"
24 #include "hw/input/gamepad.h"
25 #include "hw/irq.h"
26 #include "hw/watchdog/cmsdk-apb-watchdog.h"
27 #include "migration/vmstate.h"
28 #include "hw/misc/unimp.h"
29 #include "hw/timer/stellaris-gptm.h"
30 #include "hw/qdev-clock.h"
31 #include "qom/object.h"
32 
33 #define GPIO_A 0
34 #define GPIO_B 1
35 #define GPIO_C 2
36 #define GPIO_D 3
37 #define GPIO_E 4
38 #define GPIO_F 5
39 #define GPIO_G 6
40 
41 #define BP_OLED_I2C  0x01
42 #define BP_OLED_SSI  0x02
43 #define BP_GAMEPAD   0x04
44 
45 #define NUM_IRQ_LINES 64
46 
47 typedef const struct {
48     const char *name;
49     uint32_t did0;
50     uint32_t did1;
51     uint32_t dc0;
52     uint32_t dc1;
53     uint32_t dc2;
54     uint32_t dc3;
55     uint32_t dc4;
56     uint32_t peripherals;
57 } stellaris_board_info;
58 
59 /* System controller.  */
60 
61 #define TYPE_STELLARIS_SYS "stellaris-sys"
62 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
63 
64 struct ssys_state {
65     SysBusDevice parent_obj;
66 
67     MemoryRegion iomem;
68     uint32_t pborctl;
69     uint32_t ldopctl;
70     uint32_t int_status;
71     uint32_t int_mask;
72     uint32_t resc;
73     uint32_t rcc;
74     uint32_t rcc2;
75     uint32_t rcgc[3];
76     uint32_t scgc[3];
77     uint32_t dcgc[3];
78     uint32_t clkvclr;
79     uint32_t ldoarst;
80     qemu_irq irq;
81     Clock *sysclk;
82     /* Properties (all read-only registers) */
83     uint32_t user0;
84     uint32_t user1;
85     uint32_t did0;
86     uint32_t did1;
87     uint32_t dc0;
88     uint32_t dc1;
89     uint32_t dc2;
90     uint32_t dc3;
91     uint32_t dc4;
92 };
93 
94 static void ssys_update(ssys_state *s)
95 {
96   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
97 }
98 
99 static uint32_t pllcfg_sandstorm[16] = {
100     0x31c0, /* 1 Mhz */
101     0x1ae0, /* 1.8432 Mhz */
102     0x18c0, /* 2 Mhz */
103     0xd573, /* 2.4576 Mhz */
104     0x37a6, /* 3.57954 Mhz */
105     0x1ae2, /* 3.6864 Mhz */
106     0x0c40, /* 4 Mhz */
107     0x98bc, /* 4.906 Mhz */
108     0x935b, /* 4.9152 Mhz */
109     0x09c0, /* 5 Mhz */
110     0x4dee, /* 5.12 Mhz */
111     0x0c41, /* 6 Mhz */
112     0x75db, /* 6.144 Mhz */
113     0x1ae6, /* 7.3728 Mhz */
114     0x0600, /* 8 Mhz */
115     0x585b /* 8.192 Mhz */
116 };
117 
118 static uint32_t pllcfg_fury[16] = {
119     0x3200, /* 1 Mhz */
120     0x1b20, /* 1.8432 Mhz */
121     0x1900, /* 2 Mhz */
122     0xf42b, /* 2.4576 Mhz */
123     0x37e3, /* 3.57954 Mhz */
124     0x1b21, /* 3.6864 Mhz */
125     0x0c80, /* 4 Mhz */
126     0x98ee, /* 4.906 Mhz */
127     0xd5b4, /* 4.9152 Mhz */
128     0x0a00, /* 5 Mhz */
129     0x4e27, /* 5.12 Mhz */
130     0x1902, /* 6 Mhz */
131     0xec1c, /* 6.144 Mhz */
132     0x1b23, /* 7.3728 Mhz */
133     0x0640, /* 8 Mhz */
134     0xb11c /* 8.192 Mhz */
135 };
136 
137 #define DID0_VER_MASK        0x70000000
138 #define DID0_VER_0           0x00000000
139 #define DID0_VER_1           0x10000000
140 
141 #define DID0_CLASS_MASK      0x00FF0000
142 #define DID0_CLASS_SANDSTORM 0x00000000
143 #define DID0_CLASS_FURY      0x00010000
144 
145 static int ssys_board_class(const ssys_state *s)
146 {
147     uint32_t did0 = s->did0;
148     switch (did0 & DID0_VER_MASK) {
149     case DID0_VER_0:
150         return DID0_CLASS_SANDSTORM;
151     case DID0_VER_1:
152         switch (did0 & DID0_CLASS_MASK) {
153         case DID0_CLASS_SANDSTORM:
154         case DID0_CLASS_FURY:
155             return did0 & DID0_CLASS_MASK;
156         }
157         /* for unknown classes, fall through */
158     default:
159         /* This can only happen if the hardwired constant did0 value
160          * in this board's stellaris_board_info struct is wrong.
161          */
162         g_assert_not_reached();
163     }
164 }
165 
166 static uint64_t ssys_read(void *opaque, hwaddr offset,
167                           unsigned size)
168 {
169     ssys_state *s = (ssys_state *)opaque;
170 
171     switch (offset) {
172     case 0x000: /* DID0 */
173         return s->did0;
174     case 0x004: /* DID1 */
175         return s->did1;
176     case 0x008: /* DC0 */
177         return s->dc0;
178     case 0x010: /* DC1 */
179         return s->dc1;
180     case 0x014: /* DC2 */
181         return s->dc2;
182     case 0x018: /* DC3 */
183         return s->dc3;
184     case 0x01c: /* DC4 */
185         return s->dc4;
186     case 0x030: /* PBORCTL */
187         return s->pborctl;
188     case 0x034: /* LDOPCTL */
189         return s->ldopctl;
190     case 0x040: /* SRCR0 */
191         return 0;
192     case 0x044: /* SRCR1 */
193         return 0;
194     case 0x048: /* SRCR2 */
195         return 0;
196     case 0x050: /* RIS */
197         return s->int_status;
198     case 0x054: /* IMC */
199         return s->int_mask;
200     case 0x058: /* MISC */
201         return s->int_status & s->int_mask;
202     case 0x05c: /* RESC */
203         return s->resc;
204     case 0x060: /* RCC */
205         return s->rcc;
206     case 0x064: /* PLLCFG */
207         {
208             int xtal;
209             xtal = (s->rcc >> 6) & 0xf;
210             switch (ssys_board_class(s)) {
211             case DID0_CLASS_FURY:
212                 return pllcfg_fury[xtal];
213             case DID0_CLASS_SANDSTORM:
214                 return pllcfg_sandstorm[xtal];
215             default:
216                 g_assert_not_reached();
217             }
218         }
219     case 0x070: /* RCC2 */
220         return s->rcc2;
221     case 0x100: /* RCGC0 */
222         return s->rcgc[0];
223     case 0x104: /* RCGC1 */
224         return s->rcgc[1];
225     case 0x108: /* RCGC2 */
226         return s->rcgc[2];
227     case 0x110: /* SCGC0 */
228         return s->scgc[0];
229     case 0x114: /* SCGC1 */
230         return s->scgc[1];
231     case 0x118: /* SCGC2 */
232         return s->scgc[2];
233     case 0x120: /* DCGC0 */
234         return s->dcgc[0];
235     case 0x124: /* DCGC1 */
236         return s->dcgc[1];
237     case 0x128: /* DCGC2 */
238         return s->dcgc[2];
239     case 0x150: /* CLKVCLR */
240         return s->clkvclr;
241     case 0x160: /* LDOARST */
242         return s->ldoarst;
243     case 0x1e0: /* USER0 */
244         return s->user0;
245     case 0x1e4: /* USER1 */
246         return s->user1;
247     default:
248         qemu_log_mask(LOG_GUEST_ERROR,
249                       "SSYS: read at bad offset 0x%x\n", (int)offset);
250         return 0;
251     }
252 }
253 
254 static bool ssys_use_rcc2(ssys_state *s)
255 {
256     return (s->rcc2 >> 31) & 0x1;
257 }
258 
259 /*
260  * Calculate the system clock period. We only want to propagate
261  * this change to the rest of the system if we're not being called
262  * from migration post-load.
263  */
264 static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
265 {
266     int period_ns;
267     /*
268      * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
269      * clock is 200MHz, which is a period of 5 ns. Dividing the clock
270      * frequency by X is the same as multiplying the period by X.
271      */
272     if (ssys_use_rcc2(s)) {
273         period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
274     } else {
275         period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1);
276     }
277     clock_set_ns(s->sysclk, period_ns);
278     if (propagate_clock) {
279         clock_propagate(s->sysclk);
280     }
281 }
282 
283 static void ssys_write(void *opaque, hwaddr offset,
284                        uint64_t value, unsigned size)
285 {
286     ssys_state *s = (ssys_state *)opaque;
287 
288     switch (offset) {
289     case 0x030: /* PBORCTL */
290         s->pborctl = value & 0xffff;
291         break;
292     case 0x034: /* LDOPCTL */
293         s->ldopctl = value & 0x1f;
294         break;
295     case 0x040: /* SRCR0 */
296     case 0x044: /* SRCR1 */
297     case 0x048: /* SRCR2 */
298         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
299         break;
300     case 0x054: /* IMC */
301         s->int_mask = value & 0x7f;
302         break;
303     case 0x058: /* MISC */
304         s->int_status &= ~value;
305         break;
306     case 0x05c: /* RESC */
307         s->resc = value & 0x3f;
308         break;
309     case 0x060: /* RCC */
310         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
311             /* PLL enable.  */
312             s->int_status |= (1 << 6);
313         }
314         s->rcc = value;
315         ssys_calculate_system_clock(s, true);
316         break;
317     case 0x070: /* RCC2 */
318         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
319             break;
320         }
321 
322         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
323             /* PLL enable.  */
324             s->int_status |= (1 << 6);
325         }
326         s->rcc2 = value;
327         ssys_calculate_system_clock(s, true);
328         break;
329     case 0x100: /* RCGC0 */
330         s->rcgc[0] = value;
331         break;
332     case 0x104: /* RCGC1 */
333         s->rcgc[1] = value;
334         break;
335     case 0x108: /* RCGC2 */
336         s->rcgc[2] = value;
337         break;
338     case 0x110: /* SCGC0 */
339         s->scgc[0] = value;
340         break;
341     case 0x114: /* SCGC1 */
342         s->scgc[1] = value;
343         break;
344     case 0x118: /* SCGC2 */
345         s->scgc[2] = value;
346         break;
347     case 0x120: /* DCGC0 */
348         s->dcgc[0] = value;
349         break;
350     case 0x124: /* DCGC1 */
351         s->dcgc[1] = value;
352         break;
353     case 0x128: /* DCGC2 */
354         s->dcgc[2] = value;
355         break;
356     case 0x150: /* CLKVCLR */
357         s->clkvclr = value;
358         break;
359     case 0x160: /* LDOARST */
360         s->ldoarst = value;
361         break;
362     default:
363         qemu_log_mask(LOG_GUEST_ERROR,
364                       "SSYS: write at bad offset 0x%x\n", (int)offset);
365     }
366     ssys_update(s);
367 }
368 
369 static const MemoryRegionOps ssys_ops = {
370     .read = ssys_read,
371     .write = ssys_write,
372     .endianness = DEVICE_NATIVE_ENDIAN,
373 };
374 
375 static void stellaris_sys_reset_enter(Object *obj, ResetType type)
376 {
377     ssys_state *s = STELLARIS_SYS(obj);
378 
379     s->pborctl = 0x7ffd;
380     s->rcc = 0x078e3ac0;
381 
382     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
383         s->rcc2 = 0;
384     } else {
385         s->rcc2 = 0x07802810;
386     }
387     s->rcgc[0] = 1;
388     s->scgc[0] = 1;
389     s->dcgc[0] = 1;
390 }
391 
392 static void stellaris_sys_reset_hold(Object *obj)
393 {
394     ssys_state *s = STELLARIS_SYS(obj);
395 
396     /* OK to propagate clocks from the hold phase */
397     ssys_calculate_system_clock(s, true);
398 }
399 
400 static void stellaris_sys_reset_exit(Object *obj)
401 {
402 }
403 
404 static int stellaris_sys_post_load(void *opaque, int version_id)
405 {
406     ssys_state *s = opaque;
407 
408     ssys_calculate_system_clock(s, false);
409 
410     return 0;
411 }
412 
413 static const VMStateDescription vmstate_stellaris_sys = {
414     .name = "stellaris_sys",
415     .version_id = 2,
416     .minimum_version_id = 1,
417     .post_load = stellaris_sys_post_load,
418     .fields = (VMStateField[]) {
419         VMSTATE_UINT32(pborctl, ssys_state),
420         VMSTATE_UINT32(ldopctl, ssys_state),
421         VMSTATE_UINT32(int_mask, ssys_state),
422         VMSTATE_UINT32(int_status, ssys_state),
423         VMSTATE_UINT32(resc, ssys_state),
424         VMSTATE_UINT32(rcc, ssys_state),
425         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
426         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
427         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
428         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
429         VMSTATE_UINT32(clkvclr, ssys_state),
430         VMSTATE_UINT32(ldoarst, ssys_state),
431         /* No field for sysclk -- handled in post-load instead */
432         VMSTATE_END_OF_LIST()
433     }
434 };
435 
436 static Property stellaris_sys_properties[] = {
437     DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
438     DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
439     DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
440     DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
441     DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
442     DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
443     DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
444     DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
445     DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
446     DEFINE_PROP_END_OF_LIST()
447 };
448 
449 static void stellaris_sys_instance_init(Object *obj)
450 {
451     ssys_state *s = STELLARIS_SYS(obj);
452     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
453 
454     memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
455     sysbus_init_mmio(sbd, &s->iomem);
456     sysbus_init_irq(sbd, &s->irq);
457     s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
458 }
459 
460 /* I2C controller.  */
461 
462 #define TYPE_STELLARIS_I2C "stellaris-i2c"
463 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
464 
465 struct stellaris_i2c_state {
466     SysBusDevice parent_obj;
467 
468     I2CBus *bus;
469     qemu_irq irq;
470     MemoryRegion iomem;
471     uint32_t msa;
472     uint32_t mcs;
473     uint32_t mdr;
474     uint32_t mtpr;
475     uint32_t mimr;
476     uint32_t mris;
477     uint32_t mcr;
478 };
479 
480 #define STELLARIS_I2C_MCS_BUSY    0x01
481 #define STELLARIS_I2C_MCS_ERROR   0x02
482 #define STELLARIS_I2C_MCS_ADRACK  0x04
483 #define STELLARIS_I2C_MCS_DATACK  0x08
484 #define STELLARIS_I2C_MCS_ARBLST  0x10
485 #define STELLARIS_I2C_MCS_IDLE    0x20
486 #define STELLARIS_I2C_MCS_BUSBSY  0x40
487 
488 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
489                                    unsigned size)
490 {
491     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
492 
493     switch (offset) {
494     case 0x00: /* MSA */
495         return s->msa;
496     case 0x04: /* MCS */
497         /* We don't emulate timing, so the controller is never busy.  */
498         return s->mcs | STELLARIS_I2C_MCS_IDLE;
499     case 0x08: /* MDR */
500         return s->mdr;
501     case 0x0c: /* MTPR */
502         return s->mtpr;
503     case 0x10: /* MIMR */
504         return s->mimr;
505     case 0x14: /* MRIS */
506         return s->mris;
507     case 0x18: /* MMIS */
508         return s->mris & s->mimr;
509     case 0x20: /* MCR */
510         return s->mcr;
511     default:
512         qemu_log_mask(LOG_GUEST_ERROR,
513                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
514         return 0;
515     }
516 }
517 
518 static void stellaris_i2c_update(stellaris_i2c_state *s)
519 {
520     int level;
521 
522     level = (s->mris & s->mimr) != 0;
523     qemu_set_irq(s->irq, level);
524 }
525 
526 static void stellaris_i2c_write(void *opaque, hwaddr offset,
527                                 uint64_t value, unsigned size)
528 {
529     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
530 
531     switch (offset) {
532     case 0x00: /* MSA */
533         s->msa = value & 0xff;
534         break;
535     case 0x04: /* MCS */
536         if ((s->mcr & 0x10) == 0) {
537             /* Disabled.  Do nothing.  */
538             break;
539         }
540         /* Grab the bus if this is starting a transfer.  */
541         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
542             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
543                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
544             } else {
545                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
546                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
547             }
548         }
549         /* If we don't have the bus then indicate an error.  */
550         if (!i2c_bus_busy(s->bus)
551                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
552             s->mcs |= STELLARIS_I2C_MCS_ERROR;
553             break;
554         }
555         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
556         if (value & 1) {
557             /* Transfer a byte.  */
558             /* TODO: Handle errors.  */
559             if (s->msa & 1) {
560                 /* Recv */
561                 s->mdr = i2c_recv(s->bus);
562             } else {
563                 /* Send */
564                 i2c_send(s->bus, s->mdr);
565             }
566             /* Raise an interrupt.  */
567             s->mris |= 1;
568         }
569         if (value & 4) {
570             /* Finish transfer.  */
571             i2c_end_transfer(s->bus);
572             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
573         }
574         break;
575     case 0x08: /* MDR */
576         s->mdr = value & 0xff;
577         break;
578     case 0x0c: /* MTPR */
579         s->mtpr = value & 0xff;
580         break;
581     case 0x10: /* MIMR */
582         s->mimr = 1;
583         break;
584     case 0x1c: /* MICR */
585         s->mris &= ~value;
586         break;
587     case 0x20: /* MCR */
588         if (value & 1) {
589             qemu_log_mask(LOG_UNIMP,
590                           "stellaris_i2c: Loopback not implemented\n");
591         }
592         if (value & 0x20) {
593             qemu_log_mask(LOG_UNIMP,
594                           "stellaris_i2c: Slave mode not implemented\n");
595         }
596         s->mcr = value & 0x31;
597         break;
598     default:
599         qemu_log_mask(LOG_GUEST_ERROR,
600                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
601     }
602     stellaris_i2c_update(s);
603 }
604 
605 static void stellaris_i2c_reset(stellaris_i2c_state *s)
606 {
607     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
608         i2c_end_transfer(s->bus);
609 
610     s->msa = 0;
611     s->mcs = 0;
612     s->mdr = 0;
613     s->mtpr = 1;
614     s->mimr = 0;
615     s->mris = 0;
616     s->mcr = 0;
617     stellaris_i2c_update(s);
618 }
619 
620 static const MemoryRegionOps stellaris_i2c_ops = {
621     .read = stellaris_i2c_read,
622     .write = stellaris_i2c_write,
623     .endianness = DEVICE_NATIVE_ENDIAN,
624 };
625 
626 static const VMStateDescription vmstate_stellaris_i2c = {
627     .name = "stellaris_i2c",
628     .version_id = 1,
629     .minimum_version_id = 1,
630     .fields = (VMStateField[]) {
631         VMSTATE_UINT32(msa, stellaris_i2c_state),
632         VMSTATE_UINT32(mcs, stellaris_i2c_state),
633         VMSTATE_UINT32(mdr, stellaris_i2c_state),
634         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
635         VMSTATE_UINT32(mimr, stellaris_i2c_state),
636         VMSTATE_UINT32(mris, stellaris_i2c_state),
637         VMSTATE_UINT32(mcr, stellaris_i2c_state),
638         VMSTATE_END_OF_LIST()
639     }
640 };
641 
642 static void stellaris_i2c_init(Object *obj)
643 {
644     DeviceState *dev = DEVICE(obj);
645     stellaris_i2c_state *s = STELLARIS_I2C(obj);
646     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
647     I2CBus *bus;
648 
649     sysbus_init_irq(sbd, &s->irq);
650     bus = i2c_init_bus(dev, "i2c");
651     s->bus = bus;
652 
653     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
654                           "i2c", 0x1000);
655     sysbus_init_mmio(sbd, &s->iomem);
656     /* ??? For now we only implement the master interface.  */
657     stellaris_i2c_reset(s);
658 }
659 
660 /* Analogue to Digital Converter.  This is only partially implemented,
661    enough for applications that use a combined ADC and timer tick.  */
662 
663 #define STELLARIS_ADC_EM_CONTROLLER 0
664 #define STELLARIS_ADC_EM_COMP       1
665 #define STELLARIS_ADC_EM_EXTERNAL   4
666 #define STELLARIS_ADC_EM_TIMER      5
667 #define STELLARIS_ADC_EM_PWM0       6
668 #define STELLARIS_ADC_EM_PWM1       7
669 #define STELLARIS_ADC_EM_PWM2       8
670 
671 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
672 #define STELLARIS_ADC_FIFO_FULL     0x1000
673 
674 #define TYPE_STELLARIS_ADC "stellaris-adc"
675 typedef struct StellarisADCState stellaris_adc_state;
676 DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC,
677                          TYPE_STELLARIS_ADC)
678 
679 struct StellarisADCState {
680     SysBusDevice parent_obj;
681 
682     MemoryRegion iomem;
683     uint32_t actss;
684     uint32_t ris;
685     uint32_t im;
686     uint32_t emux;
687     uint32_t ostat;
688     uint32_t ustat;
689     uint32_t sspri;
690     uint32_t sac;
691     struct {
692         uint32_t state;
693         uint32_t data[16];
694     } fifo[4];
695     uint32_t ssmux[4];
696     uint32_t ssctl[4];
697     uint32_t noise;
698     qemu_irq irq[4];
699 };
700 
701 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
702 {
703     int tail;
704 
705     tail = s->fifo[n].state & 0xf;
706     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
707         s->ustat |= 1 << n;
708     } else {
709         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
710         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
711         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
712             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
713     }
714     return s->fifo[n].data[tail];
715 }
716 
717 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
718                                      uint32_t value)
719 {
720     int head;
721 
722     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
723        FIFO fir each sequencer.  */
724     head = (s->fifo[n].state >> 4) & 0xf;
725     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
726         s->ostat |= 1 << n;
727         return;
728     }
729     s->fifo[n].data[head] = value;
730     head = (head + 1) & 0xf;
731     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
732     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
733     if ((s->fifo[n].state & 0xf) == head)
734         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
735 }
736 
737 static void stellaris_adc_update(stellaris_adc_state *s)
738 {
739     int level;
740     int n;
741 
742     for (n = 0; n < 4; n++) {
743         level = (s->ris & s->im & (1 << n)) != 0;
744         qemu_set_irq(s->irq[n], level);
745     }
746 }
747 
748 static void stellaris_adc_trigger(void *opaque, int irq, int level)
749 {
750     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
751     int n;
752 
753     for (n = 0; n < 4; n++) {
754         if ((s->actss & (1 << n)) == 0) {
755             continue;
756         }
757 
758         if (((s->emux >> (n * 4)) & 0xff) != 5) {
759             continue;
760         }
761 
762         /* Some applications use the ADC as a random number source, so introduce
763            some variation into the signal.  */
764         s->noise = s->noise * 314159 + 1;
765         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
766         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
767         s->ris |= (1 << n);
768         stellaris_adc_update(s);
769     }
770 }
771 
772 static void stellaris_adc_reset(stellaris_adc_state *s)
773 {
774     int n;
775 
776     for (n = 0; n < 4; n++) {
777         s->ssmux[n] = 0;
778         s->ssctl[n] = 0;
779         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
780     }
781 }
782 
783 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
784                                    unsigned size)
785 {
786     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
787 
788     /* TODO: Implement this.  */
789     if (offset >= 0x40 && offset < 0xc0) {
790         int n;
791         n = (offset - 0x40) >> 5;
792         switch (offset & 0x1f) {
793         case 0x00: /* SSMUX */
794             return s->ssmux[n];
795         case 0x04: /* SSCTL */
796             return s->ssctl[n];
797         case 0x08: /* SSFIFO */
798             return stellaris_adc_fifo_read(s, n);
799         case 0x0c: /* SSFSTAT */
800             return s->fifo[n].state;
801         default:
802             break;
803         }
804     }
805     switch (offset) {
806     case 0x00: /* ACTSS */
807         return s->actss;
808     case 0x04: /* RIS */
809         return s->ris;
810     case 0x08: /* IM */
811         return s->im;
812     case 0x0c: /* ISC */
813         return s->ris & s->im;
814     case 0x10: /* OSTAT */
815         return s->ostat;
816     case 0x14: /* EMUX */
817         return s->emux;
818     case 0x18: /* USTAT */
819         return s->ustat;
820     case 0x20: /* SSPRI */
821         return s->sspri;
822     case 0x30: /* SAC */
823         return s->sac;
824     default:
825         qemu_log_mask(LOG_GUEST_ERROR,
826                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
827         return 0;
828     }
829 }
830 
831 static void stellaris_adc_write(void *opaque, hwaddr offset,
832                                 uint64_t value, unsigned size)
833 {
834     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
835 
836     /* TODO: Implement this.  */
837     if (offset >= 0x40 && offset < 0xc0) {
838         int n;
839         n = (offset - 0x40) >> 5;
840         switch (offset & 0x1f) {
841         case 0x00: /* SSMUX */
842             s->ssmux[n] = value & 0x33333333;
843             return;
844         case 0x04: /* SSCTL */
845             if (value != 6) {
846                 qemu_log_mask(LOG_UNIMP,
847                               "ADC: Unimplemented sequence %" PRIx64 "\n",
848                               value);
849             }
850             s->ssctl[n] = value;
851             return;
852         default:
853             break;
854         }
855     }
856     switch (offset) {
857     case 0x00: /* ACTSS */
858         s->actss = value & 0xf;
859         break;
860     case 0x08: /* IM */
861         s->im = value;
862         break;
863     case 0x0c: /* ISC */
864         s->ris &= ~value;
865         break;
866     case 0x10: /* OSTAT */
867         s->ostat &= ~value;
868         break;
869     case 0x14: /* EMUX */
870         s->emux = value;
871         break;
872     case 0x18: /* USTAT */
873         s->ustat &= ~value;
874         break;
875     case 0x20: /* SSPRI */
876         s->sspri = value;
877         break;
878     case 0x28: /* PSSI */
879         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
880         break;
881     case 0x30: /* SAC */
882         s->sac = value;
883         break;
884     default:
885         qemu_log_mask(LOG_GUEST_ERROR,
886                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
887     }
888     stellaris_adc_update(s);
889 }
890 
891 static const MemoryRegionOps stellaris_adc_ops = {
892     .read = stellaris_adc_read,
893     .write = stellaris_adc_write,
894     .endianness = DEVICE_NATIVE_ENDIAN,
895 };
896 
897 static const VMStateDescription vmstate_stellaris_adc = {
898     .name = "stellaris_adc",
899     .version_id = 1,
900     .minimum_version_id = 1,
901     .fields = (VMStateField[]) {
902         VMSTATE_UINT32(actss, stellaris_adc_state),
903         VMSTATE_UINT32(ris, stellaris_adc_state),
904         VMSTATE_UINT32(im, stellaris_adc_state),
905         VMSTATE_UINT32(emux, stellaris_adc_state),
906         VMSTATE_UINT32(ostat, stellaris_adc_state),
907         VMSTATE_UINT32(ustat, stellaris_adc_state),
908         VMSTATE_UINT32(sspri, stellaris_adc_state),
909         VMSTATE_UINT32(sac, stellaris_adc_state),
910         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
911         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
912         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
913         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
914         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
915         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
916         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
917         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
918         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
919         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
920         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
921         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
922         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
923         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
924         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
925         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
926         VMSTATE_UINT32(noise, stellaris_adc_state),
927         VMSTATE_END_OF_LIST()
928     }
929 };
930 
931 static void stellaris_adc_init(Object *obj)
932 {
933     DeviceState *dev = DEVICE(obj);
934     stellaris_adc_state *s = STELLARIS_ADC(obj);
935     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
936     int n;
937 
938     for (n = 0; n < 4; n++) {
939         sysbus_init_irq(sbd, &s->irq[n]);
940     }
941 
942     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
943                           "adc", 0x1000);
944     sysbus_init_mmio(sbd, &s->iomem);
945     stellaris_adc_reset(s);
946     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
947 }
948 
949 /* Board init.  */
950 static stellaris_board_info stellaris_boards[] = {
951   { "LM3S811EVB",
952     0,
953     0x0032000e,
954     0x001f001f, /* dc0 */
955     0x001132bf,
956     0x01071013,
957     0x3f0f01ff,
958     0x0000001f,
959     BP_OLED_I2C
960   },
961   { "LM3S6965EVB",
962     0x10010002,
963     0x1073402e,
964     0x00ff007f, /* dc0 */
965     0x001133ff,
966     0x030f5317,
967     0x0f0f87ff,
968     0x5000007f,
969     BP_OLED_SSI | BP_GAMEPAD
970   }
971 };
972 
973 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
974 {
975     static const int uart_irq[] = {5, 6, 33, 34};
976     static const int timer_irq[] = {19, 21, 23, 35};
977     static const uint32_t gpio_addr[7] =
978       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
979         0x40024000, 0x40025000, 0x40026000};
980     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
981 
982     /* Memory map of SoC devices, from
983      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
984      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
985      *
986      * 40000000 wdtimer
987      * 40002000 i2c (unimplemented)
988      * 40004000 GPIO
989      * 40005000 GPIO
990      * 40006000 GPIO
991      * 40007000 GPIO
992      * 40008000 SSI
993      * 4000c000 UART
994      * 4000d000 UART
995      * 4000e000 UART
996      * 40020000 i2c
997      * 40021000 i2c (unimplemented)
998      * 40024000 GPIO
999      * 40025000 GPIO
1000      * 40026000 GPIO
1001      * 40028000 PWM (unimplemented)
1002      * 4002c000 QEI (unimplemented)
1003      * 4002d000 QEI (unimplemented)
1004      * 40030000 gptimer
1005      * 40031000 gptimer
1006      * 40032000 gptimer
1007      * 40033000 gptimer
1008      * 40038000 ADC
1009      * 4003c000 analogue comparator (unimplemented)
1010      * 40048000 ethernet
1011      * 400fc000 hibernation module (unimplemented)
1012      * 400fd000 flash memory control (unimplemented)
1013      * 400fe000 system control
1014      */
1015 
1016     DeviceState *gpio_dev[7], *nvic;
1017     qemu_irq gpio_in[7][8];
1018     qemu_irq gpio_out[7][8];
1019     qemu_irq adc;
1020     int sram_size;
1021     int flash_size;
1022     I2CBus *i2c;
1023     DeviceState *dev;
1024     DeviceState *ssys_dev;
1025     int i;
1026     int j;
1027     const uint8_t *macaddr;
1028 
1029     MemoryRegion *sram = g_new(MemoryRegion, 1);
1030     MemoryRegion *flash = g_new(MemoryRegion, 1);
1031     MemoryRegion *system_memory = get_system_memory();
1032 
1033     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1034     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1035 
1036     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1037     memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1038                            &error_fatal);
1039     memory_region_add_subregion(system_memory, 0, flash);
1040 
1041     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1042                            &error_fatal);
1043     memory_region_add_subregion(system_memory, 0x20000000, sram);
1044 
1045     /*
1046      * Create the system-registers object early, because we will
1047      * need its sysclk output.
1048      */
1049     ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
1050     /* Most devices come preprogrammed with a MAC address in the user data. */
1051     macaddr = nd_table[0].macaddr.a;
1052     qdev_prop_set_uint32(ssys_dev, "user0",
1053                          macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
1054     qdev_prop_set_uint32(ssys_dev, "user1",
1055                          macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
1056     qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
1057     qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
1058     qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
1059     qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
1060     qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
1061     qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
1062     qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
1063     sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
1064 
1065     nvic = qdev_new(TYPE_ARMV7M);
1066     qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1067     qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1068     qdev_prop_set_bit(nvic, "enable-bitband", true);
1069     qdev_connect_clock_in(nvic, "cpuclk",
1070                           qdev_get_clock_out(ssys_dev, "SYSCLK"));
1071     /* This SoC does not connect the systick reference clock */
1072     object_property_set_link(OBJECT(nvic), "memory",
1073                              OBJECT(get_system_memory()), &error_abort);
1074     /* This will exit with an error if the user passed us a bad cpu_type */
1075     sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
1076 
1077     /* Now we can wire up the IRQ and MMIO of the system registers */
1078     sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
1079     sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
1080 
1081     if (board->dc1 & (1 << 16)) {
1082         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1083                                     qdev_get_gpio_in(nvic, 14),
1084                                     qdev_get_gpio_in(nvic, 15),
1085                                     qdev_get_gpio_in(nvic, 16),
1086                                     qdev_get_gpio_in(nvic, 17),
1087                                     NULL);
1088         adc = qdev_get_gpio_in(dev, 0);
1089     } else {
1090         adc = NULL;
1091     }
1092     for (i = 0; i < 4; i++) {
1093         if (board->dc2 & (0x10000 << i)) {
1094             SysBusDevice *sbd;
1095 
1096             dev = qdev_new(TYPE_STELLARIS_GPTM);
1097             sbd = SYS_BUS_DEVICE(dev);
1098             qdev_connect_clock_in(dev, "clk",
1099                                   qdev_get_clock_out(ssys_dev, "SYSCLK"));
1100             sysbus_realize_and_unref(sbd, &error_fatal);
1101             sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000);
1102             sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i]));
1103             /* TODO: This is incorrect, but we get away with it because
1104                the ADC output is only ever pulsed.  */
1105             qdev_connect_gpio_out(dev, 0, adc);
1106         }
1107     }
1108 
1109     if (board->dc1 & (1 << 3)) { /* watchdog present */
1110         dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1111 
1112         qdev_connect_clock_in(dev, "WDOGCLK",
1113                               qdev_get_clock_out(ssys_dev, "SYSCLK"));
1114 
1115         sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1116         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1117                         0,
1118                         0x40000000u);
1119         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1120                            0,
1121                            qdev_get_gpio_in(nvic, 18));
1122     }
1123 
1124 
1125     for (i = 0; i < 7; i++) {
1126         if (board->dc4 & (1 << i)) {
1127             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1128                                                qdev_get_gpio_in(nvic,
1129                                                                 gpio_irq[i]));
1130             for (j = 0; j < 8; j++) {
1131                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1132                 gpio_out[i][j] = NULL;
1133             }
1134         }
1135     }
1136 
1137     if (board->dc2 & (1 << 12)) {
1138         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1139                                    qdev_get_gpio_in(nvic, 8));
1140         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1141         if (board->peripherals & BP_OLED_I2C) {
1142             i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1143         }
1144     }
1145 
1146     for (i = 0; i < 4; i++) {
1147         if (board->dc2 & (1 << i)) {
1148             pl011_luminary_create(0x4000c000 + i * 0x1000,
1149                                   qdev_get_gpio_in(nvic, uart_irq[i]),
1150                                   serial_hd(i));
1151         }
1152     }
1153     if (board->dc2 & (1 << 4)) {
1154         dev = sysbus_create_simple("pl022", 0x40008000,
1155                                    qdev_get_gpio_in(nvic, 7));
1156         if (board->peripherals & BP_OLED_SSI) {
1157             void *bus;
1158             DeviceState *sddev;
1159             DeviceState *ssddev;
1160 
1161             /*
1162              * Some boards have both an OLED controller and SD card connected to
1163              * the same SSI port, with the SD card chip select connected to a
1164              * GPIO pin.  Technically the OLED chip select is connected to the
1165              * SSI Fss pin.  We do not bother emulating that as both devices
1166              * should never be selected simultaneously, and our OLED controller
1167              * ignores stray 0xff commands that occur when deselecting the SD
1168              * card.
1169              *
1170              * The h/w wiring is:
1171              *  - GPIO pin D0 is wired to the active-low SD card chip select
1172              *  - GPIO pin A3 is wired to the active-low OLED chip select
1173              *  - The SoC wiring of the PL061 "auxiliary function" for A3 is
1174              *    SSI0Fss ("frame signal"), which is an output from the SoC's
1175              *    SSI controller. The SSI controller takes SSI0Fss low when it
1176              *    transmits a frame, so it can work as a chip-select signal.
1177              *  - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
1178              *    (the OLED never sends data to the CPU, so no wiring needed)
1179              *  - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
1180              *    and the OLED display-data-in
1181              *  - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
1182              *    serial-clock input
1183              * So a guest that wants to use the OLED can configure the PL061
1184              * to make pins A2, A3, A5 aux-function, so they are connected
1185              * directly to the SSI controller. When the SSI controller sends
1186              * data it asserts SSI0Fss which selects the OLED.
1187              * A guest that wants to use the SD card configures A2, A4 and A5
1188              * as aux-function, but leaves A3 as a software-controlled GPIO
1189              * line. It asserts the SD card chip-select by using the PL061
1190              * to control pin D0, and lets the SSI controller handle Clk, Tx
1191              * and Rx. (The SSI controller asserts Fss during tx cycles as
1192              * usual, but because A3 is not set to aux-function this is not
1193              * forwarded to the OLED, and so the OLED stays unselected.)
1194              *
1195              * The QEMU implementation instead is:
1196              *  - GPIO pin D0 is wired to the active-low SD card chip select,
1197              *    and also to the OLED chip-select which is implemented
1198              *    as *active-high*
1199              *  - SSI controller signals go to the devices regardless of
1200              *    whether the guest programs A2, A4, A5 as aux-function or not
1201              *
1202              * The problem with this implementation is if the guest doesn't
1203              * care about the SD card and only uses the OLED. In that case it
1204              * may choose never to do anything with D0 (leaving it in its
1205              * default floating state, which reliably leaves the card disabled
1206              * because an SD card has a pullup on CS within the card itself),
1207              * and only set up A2, A3, A5. This for us would mean the OLED
1208              * never gets the chip-select assert it needs. We work around
1209              * this with a manual raise of D0 here (despite board creation
1210              * code being the wrong place to raise IRQ lines) to put the OLED
1211              * into an initially selected state.
1212              *
1213              * In theory the right way to model this would be:
1214              *  - Implement aux-function support in the PL061, with an
1215              *    extra set of AFIN and AFOUT GPIO lines (set up so that
1216              *    if a GPIO line is in auxfn mode the main GPIO in and out
1217              *    track the AFIN and AFOUT lines)
1218              *  - Wire the AFOUT for D0 up to either a line from the
1219              *    SSI controller that's pulled low around every transmit,
1220              *    or at least to an always-0 line here on the board
1221              *  - Make the ssd0323 OLED controller chipselect active-low
1222              */
1223             bus = qdev_get_child_bus(dev, "ssi");
1224 
1225             sddev = ssi_create_peripheral(bus, "ssi-sd");
1226             ssddev = ssi_create_peripheral(bus, "ssd0323");
1227             gpio_out[GPIO_D][0] = qemu_irq_split(
1228                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1229                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1230             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1231 
1232             /* Make sure the select pin is high.  */
1233             qemu_irq_raise(gpio_out[GPIO_D][0]);
1234         }
1235     }
1236     if (board->dc4 & (1 << 28)) {
1237         DeviceState *enet;
1238 
1239         qemu_check_nic_model(&nd_table[0], "stellaris");
1240 
1241         enet = qdev_new("stellaris_enet");
1242         qdev_set_nic_properties(enet, &nd_table[0]);
1243         sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1244         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1245         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1246     }
1247     if (board->peripherals & BP_GAMEPAD) {
1248         qemu_irq gpad_irq[5];
1249         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1250 
1251         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1252         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1253         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1254         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1255         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1256 
1257         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1258     }
1259     for (i = 0; i < 7; i++) {
1260         if (board->dc4 & (1 << i)) {
1261             for (j = 0; j < 8; j++) {
1262                 if (gpio_out[i][j]) {
1263                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1264                 }
1265             }
1266         }
1267     }
1268 
1269     /* Add dummy regions for the devices we don't implement yet,
1270      * so guest accesses don't cause unlogged crashes.
1271      */
1272     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1273     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1274     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1275     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1276     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1277     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1278     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1279     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1280 
1281     armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1282 }
1283 
1284 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1285 static void lm3s811evb_init(MachineState *machine)
1286 {
1287     stellaris_init(machine, &stellaris_boards[0]);
1288 }
1289 
1290 static void lm3s6965evb_init(MachineState *machine)
1291 {
1292     stellaris_init(machine, &stellaris_boards[1]);
1293 }
1294 
1295 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1296 {
1297     MachineClass *mc = MACHINE_CLASS(oc);
1298 
1299     mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
1300     mc->init = lm3s811evb_init;
1301     mc->ignore_memory_transaction_failures = true;
1302     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1303 }
1304 
1305 static const TypeInfo lm3s811evb_type = {
1306     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1307     .parent = TYPE_MACHINE,
1308     .class_init = lm3s811evb_class_init,
1309 };
1310 
1311 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1312 {
1313     MachineClass *mc = MACHINE_CLASS(oc);
1314 
1315     mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
1316     mc->init = lm3s6965evb_init;
1317     mc->ignore_memory_transaction_failures = true;
1318     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1319 }
1320 
1321 static const TypeInfo lm3s6965evb_type = {
1322     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1323     .parent = TYPE_MACHINE,
1324     .class_init = lm3s6965evb_class_init,
1325 };
1326 
1327 static void stellaris_machine_init(void)
1328 {
1329     type_register_static(&lm3s811evb_type);
1330     type_register_static(&lm3s6965evb_type);
1331 }
1332 
1333 type_init(stellaris_machine_init)
1334 
1335 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1336 {
1337     DeviceClass *dc = DEVICE_CLASS(klass);
1338 
1339     dc->vmsd = &vmstate_stellaris_i2c;
1340 }
1341 
1342 static const TypeInfo stellaris_i2c_info = {
1343     .name          = TYPE_STELLARIS_I2C,
1344     .parent        = TYPE_SYS_BUS_DEVICE,
1345     .instance_size = sizeof(stellaris_i2c_state),
1346     .instance_init = stellaris_i2c_init,
1347     .class_init    = stellaris_i2c_class_init,
1348 };
1349 
1350 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1351 {
1352     DeviceClass *dc = DEVICE_CLASS(klass);
1353 
1354     dc->vmsd = &vmstate_stellaris_adc;
1355 }
1356 
1357 static const TypeInfo stellaris_adc_info = {
1358     .name          = TYPE_STELLARIS_ADC,
1359     .parent        = TYPE_SYS_BUS_DEVICE,
1360     .instance_size = sizeof(stellaris_adc_state),
1361     .instance_init = stellaris_adc_init,
1362     .class_init    = stellaris_adc_class_init,
1363 };
1364 
1365 static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1366 {
1367     DeviceClass *dc = DEVICE_CLASS(klass);
1368     ResettableClass *rc = RESETTABLE_CLASS(klass);
1369 
1370     dc->vmsd = &vmstate_stellaris_sys;
1371     rc->phases.enter = stellaris_sys_reset_enter;
1372     rc->phases.hold = stellaris_sys_reset_hold;
1373     rc->phases.exit = stellaris_sys_reset_exit;
1374     device_class_set_props(dc, stellaris_sys_properties);
1375 }
1376 
1377 static const TypeInfo stellaris_sys_info = {
1378     .name = TYPE_STELLARIS_SYS,
1379     .parent = TYPE_SYS_BUS_DEVICE,
1380     .instance_size = sizeof(ssys_state),
1381     .instance_init = stellaris_sys_instance_init,
1382     .class_init = stellaris_sys_class_init,
1383 };
1384 
1385 static void stellaris_register_types(void)
1386 {
1387     type_register_static(&stellaris_i2c_info);
1388     type_register_static(&stellaris_adc_info);
1389     type_register_static(&stellaris_sys_info);
1390 }
1391 
1392 type_init(stellaris_register_types)
1393