1 /* 2 * Luminary Micro Stellaris peripherals 3 * 4 * Copyright (c) 2006 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qapi/error.h" 12 #include "hw/core/split-irq.h" 13 #include "hw/sysbus.h" 14 #include "hw/sd/sd.h" 15 #include "hw/ssi/ssi.h" 16 #include "hw/arm/boot.h" 17 #include "qemu/timer.h" 18 #include "hw/i2c/i2c.h" 19 #include "net/net.h" 20 #include "hw/boards.h" 21 #include "qemu/log.h" 22 #include "exec/address-spaces.h" 23 #include "sysemu/sysemu.h" 24 #include "hw/arm/armv7m.h" 25 #include "hw/char/pl011.h" 26 #include "hw/input/stellaris_gamepad.h" 27 #include "hw/irq.h" 28 #include "hw/watchdog/cmsdk-apb-watchdog.h" 29 #include "migration/vmstate.h" 30 #include "hw/misc/unimp.h" 31 #include "hw/timer/stellaris-gptm.h" 32 #include "hw/qdev-clock.h" 33 #include "qom/object.h" 34 #include "qapi/qmp/qlist.h" 35 #include "ui/input.h" 36 37 #define GPIO_A 0 38 #define GPIO_B 1 39 #define GPIO_C 2 40 #define GPIO_D 3 41 #define GPIO_E 4 42 #define GPIO_F 5 43 #define GPIO_G 6 44 45 #define BP_OLED_I2C 0x01 46 #define BP_OLED_SSI 0x02 47 #define BP_GAMEPAD 0x04 48 49 #define NUM_IRQ_LINES 64 50 #define NUM_PRIO_BITS 3 51 52 typedef const struct { 53 const char *name; 54 uint32_t did0; 55 uint32_t did1; 56 uint32_t dc0; 57 uint32_t dc1; 58 uint32_t dc2; 59 uint32_t dc3; 60 uint32_t dc4; 61 uint32_t peripherals; 62 } stellaris_board_info; 63 64 /* System controller. */ 65 66 #define TYPE_STELLARIS_SYS "stellaris-sys" 67 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS) 68 69 struct ssys_state { 70 SysBusDevice parent_obj; 71 72 MemoryRegion iomem; 73 uint32_t pborctl; 74 uint32_t ldopctl; 75 uint32_t int_status; 76 uint32_t int_mask; 77 uint32_t resc; 78 uint32_t rcc; 79 uint32_t rcc2; 80 uint32_t rcgc[3]; 81 uint32_t scgc[3]; 82 uint32_t dcgc[3]; 83 uint32_t clkvclr; 84 uint32_t ldoarst; 85 qemu_irq irq; 86 Clock *sysclk; 87 /* Properties (all read-only registers) */ 88 uint32_t user0; 89 uint32_t user1; 90 uint32_t did0; 91 uint32_t did1; 92 uint32_t dc0; 93 uint32_t dc1; 94 uint32_t dc2; 95 uint32_t dc3; 96 uint32_t dc4; 97 }; 98 99 static void ssys_update(ssys_state *s) 100 { 101 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0); 102 } 103 104 static uint32_t pllcfg_sandstorm[16] = { 105 0x31c0, /* 1 Mhz */ 106 0x1ae0, /* 1.8432 Mhz */ 107 0x18c0, /* 2 Mhz */ 108 0xd573, /* 2.4576 Mhz */ 109 0x37a6, /* 3.57954 Mhz */ 110 0x1ae2, /* 3.6864 Mhz */ 111 0x0c40, /* 4 Mhz */ 112 0x98bc, /* 4.906 Mhz */ 113 0x935b, /* 4.9152 Mhz */ 114 0x09c0, /* 5 Mhz */ 115 0x4dee, /* 5.12 Mhz */ 116 0x0c41, /* 6 Mhz */ 117 0x75db, /* 6.144 Mhz */ 118 0x1ae6, /* 7.3728 Mhz */ 119 0x0600, /* 8 Mhz */ 120 0x585b /* 8.192 Mhz */ 121 }; 122 123 static uint32_t pllcfg_fury[16] = { 124 0x3200, /* 1 Mhz */ 125 0x1b20, /* 1.8432 Mhz */ 126 0x1900, /* 2 Mhz */ 127 0xf42b, /* 2.4576 Mhz */ 128 0x37e3, /* 3.57954 Mhz */ 129 0x1b21, /* 3.6864 Mhz */ 130 0x0c80, /* 4 Mhz */ 131 0x98ee, /* 4.906 Mhz */ 132 0xd5b4, /* 4.9152 Mhz */ 133 0x0a00, /* 5 Mhz */ 134 0x4e27, /* 5.12 Mhz */ 135 0x1902, /* 6 Mhz */ 136 0xec1c, /* 6.144 Mhz */ 137 0x1b23, /* 7.3728 Mhz */ 138 0x0640, /* 8 Mhz */ 139 0xb11c /* 8.192 Mhz */ 140 }; 141 142 #define DID0_VER_MASK 0x70000000 143 #define DID0_VER_0 0x00000000 144 #define DID0_VER_1 0x10000000 145 146 #define DID0_CLASS_MASK 0x00FF0000 147 #define DID0_CLASS_SANDSTORM 0x00000000 148 #define DID0_CLASS_FURY 0x00010000 149 150 static int ssys_board_class(const ssys_state *s) 151 { 152 uint32_t did0 = s->did0; 153 switch (did0 & DID0_VER_MASK) { 154 case DID0_VER_0: 155 return DID0_CLASS_SANDSTORM; 156 case DID0_VER_1: 157 switch (did0 & DID0_CLASS_MASK) { 158 case DID0_CLASS_SANDSTORM: 159 case DID0_CLASS_FURY: 160 return did0 & DID0_CLASS_MASK; 161 } 162 /* for unknown classes, fall through */ 163 default: 164 /* This can only happen if the hardwired constant did0 value 165 * in this board's stellaris_board_info struct is wrong. 166 */ 167 g_assert_not_reached(); 168 } 169 } 170 171 static uint64_t ssys_read(void *opaque, hwaddr offset, 172 unsigned size) 173 { 174 ssys_state *s = (ssys_state *)opaque; 175 176 switch (offset) { 177 case 0x000: /* DID0 */ 178 return s->did0; 179 case 0x004: /* DID1 */ 180 return s->did1; 181 case 0x008: /* DC0 */ 182 return s->dc0; 183 case 0x010: /* DC1 */ 184 return s->dc1; 185 case 0x014: /* DC2 */ 186 return s->dc2; 187 case 0x018: /* DC3 */ 188 return s->dc3; 189 case 0x01c: /* DC4 */ 190 return s->dc4; 191 case 0x030: /* PBORCTL */ 192 return s->pborctl; 193 case 0x034: /* LDOPCTL */ 194 return s->ldopctl; 195 case 0x040: /* SRCR0 */ 196 return 0; 197 case 0x044: /* SRCR1 */ 198 return 0; 199 case 0x048: /* SRCR2 */ 200 return 0; 201 case 0x050: /* RIS */ 202 return s->int_status; 203 case 0x054: /* IMC */ 204 return s->int_mask; 205 case 0x058: /* MISC */ 206 return s->int_status & s->int_mask; 207 case 0x05c: /* RESC */ 208 return s->resc; 209 case 0x060: /* RCC */ 210 return s->rcc; 211 case 0x064: /* PLLCFG */ 212 { 213 int xtal; 214 xtal = (s->rcc >> 6) & 0xf; 215 switch (ssys_board_class(s)) { 216 case DID0_CLASS_FURY: 217 return pllcfg_fury[xtal]; 218 case DID0_CLASS_SANDSTORM: 219 return pllcfg_sandstorm[xtal]; 220 default: 221 g_assert_not_reached(); 222 } 223 } 224 case 0x070: /* RCC2 */ 225 return s->rcc2; 226 case 0x100: /* RCGC0 */ 227 return s->rcgc[0]; 228 case 0x104: /* RCGC1 */ 229 return s->rcgc[1]; 230 case 0x108: /* RCGC2 */ 231 return s->rcgc[2]; 232 case 0x110: /* SCGC0 */ 233 return s->scgc[0]; 234 case 0x114: /* SCGC1 */ 235 return s->scgc[1]; 236 case 0x118: /* SCGC2 */ 237 return s->scgc[2]; 238 case 0x120: /* DCGC0 */ 239 return s->dcgc[0]; 240 case 0x124: /* DCGC1 */ 241 return s->dcgc[1]; 242 case 0x128: /* DCGC2 */ 243 return s->dcgc[2]; 244 case 0x150: /* CLKVCLR */ 245 return s->clkvclr; 246 case 0x160: /* LDOARST */ 247 return s->ldoarst; 248 case 0x1e0: /* USER0 */ 249 return s->user0; 250 case 0x1e4: /* USER1 */ 251 return s->user1; 252 default: 253 qemu_log_mask(LOG_GUEST_ERROR, 254 "SSYS: read at bad offset 0x%x\n", (int)offset); 255 return 0; 256 } 257 } 258 259 static bool ssys_use_rcc2(ssys_state *s) 260 { 261 return (s->rcc2 >> 31) & 0x1; 262 } 263 264 /* 265 * Calculate the system clock period. We only want to propagate 266 * this change to the rest of the system if we're not being called 267 * from migration post-load. 268 */ 269 static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock) 270 { 271 int period_ns; 272 /* 273 * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc. Input 274 * clock is 200MHz, which is a period of 5 ns. Dividing the clock 275 * frequency by X is the same as multiplying the period by X. 276 */ 277 if (ssys_use_rcc2(s)) { 278 period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1); 279 } else { 280 period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1); 281 } 282 clock_set_ns(s->sysclk, period_ns); 283 if (propagate_clock) { 284 clock_propagate(s->sysclk); 285 } 286 } 287 288 static void ssys_write(void *opaque, hwaddr offset, 289 uint64_t value, unsigned size) 290 { 291 ssys_state *s = (ssys_state *)opaque; 292 293 switch (offset) { 294 case 0x030: /* PBORCTL */ 295 s->pborctl = value & 0xffff; 296 break; 297 case 0x034: /* LDOPCTL */ 298 s->ldopctl = value & 0x1f; 299 break; 300 case 0x040: /* SRCR0 */ 301 case 0x044: /* SRCR1 */ 302 case 0x048: /* SRCR2 */ 303 qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n"); 304 break; 305 case 0x054: /* IMC */ 306 s->int_mask = value & 0x7f; 307 break; 308 case 0x058: /* MISC */ 309 s->int_status &= ~value; 310 break; 311 case 0x05c: /* RESC */ 312 s->resc = value & 0x3f; 313 break; 314 case 0x060: /* RCC */ 315 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { 316 /* PLL enable. */ 317 s->int_status |= (1 << 6); 318 } 319 s->rcc = value; 320 ssys_calculate_system_clock(s, true); 321 break; 322 case 0x070: /* RCC2 */ 323 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { 324 break; 325 } 326 327 if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { 328 /* PLL enable. */ 329 s->int_status |= (1 << 6); 330 } 331 s->rcc2 = value; 332 ssys_calculate_system_clock(s, true); 333 break; 334 case 0x100: /* RCGC0 */ 335 s->rcgc[0] = value; 336 break; 337 case 0x104: /* RCGC1 */ 338 s->rcgc[1] = value; 339 break; 340 case 0x108: /* RCGC2 */ 341 s->rcgc[2] = value; 342 break; 343 case 0x110: /* SCGC0 */ 344 s->scgc[0] = value; 345 break; 346 case 0x114: /* SCGC1 */ 347 s->scgc[1] = value; 348 break; 349 case 0x118: /* SCGC2 */ 350 s->scgc[2] = value; 351 break; 352 case 0x120: /* DCGC0 */ 353 s->dcgc[0] = value; 354 break; 355 case 0x124: /* DCGC1 */ 356 s->dcgc[1] = value; 357 break; 358 case 0x128: /* DCGC2 */ 359 s->dcgc[2] = value; 360 break; 361 case 0x150: /* CLKVCLR */ 362 s->clkvclr = value; 363 break; 364 case 0x160: /* LDOARST */ 365 s->ldoarst = value; 366 break; 367 default: 368 qemu_log_mask(LOG_GUEST_ERROR, 369 "SSYS: write at bad offset 0x%x\n", (int)offset); 370 } 371 ssys_update(s); 372 } 373 374 static const MemoryRegionOps ssys_ops = { 375 .read = ssys_read, 376 .write = ssys_write, 377 .endianness = DEVICE_NATIVE_ENDIAN, 378 }; 379 380 static void stellaris_sys_reset_enter(Object *obj, ResetType type) 381 { 382 ssys_state *s = STELLARIS_SYS(obj); 383 384 s->pborctl = 0x7ffd; 385 s->rcc = 0x078e3ac0; 386 387 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { 388 s->rcc2 = 0; 389 } else { 390 s->rcc2 = 0x07802810; 391 } 392 s->rcgc[0] = 1; 393 s->scgc[0] = 1; 394 s->dcgc[0] = 1; 395 } 396 397 static void stellaris_sys_reset_hold(Object *obj) 398 { 399 ssys_state *s = STELLARIS_SYS(obj); 400 401 /* OK to propagate clocks from the hold phase */ 402 ssys_calculate_system_clock(s, true); 403 } 404 405 static void stellaris_sys_reset_exit(Object *obj) 406 { 407 } 408 409 static int stellaris_sys_post_load(void *opaque, int version_id) 410 { 411 ssys_state *s = opaque; 412 413 ssys_calculate_system_clock(s, false); 414 415 return 0; 416 } 417 418 static const VMStateDescription vmstate_stellaris_sys = { 419 .name = "stellaris_sys", 420 .version_id = 2, 421 .minimum_version_id = 1, 422 .post_load = stellaris_sys_post_load, 423 .fields = (const VMStateField[]) { 424 VMSTATE_UINT32(pborctl, ssys_state), 425 VMSTATE_UINT32(ldopctl, ssys_state), 426 VMSTATE_UINT32(int_mask, ssys_state), 427 VMSTATE_UINT32(int_status, ssys_state), 428 VMSTATE_UINT32(resc, ssys_state), 429 VMSTATE_UINT32(rcc, ssys_state), 430 VMSTATE_UINT32_V(rcc2, ssys_state, 2), 431 VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3), 432 VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3), 433 VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3), 434 VMSTATE_UINT32(clkvclr, ssys_state), 435 VMSTATE_UINT32(ldoarst, ssys_state), 436 /* No field for sysclk -- handled in post-load instead */ 437 VMSTATE_END_OF_LIST() 438 } 439 }; 440 441 static Property stellaris_sys_properties[] = { 442 DEFINE_PROP_UINT32("user0", ssys_state, user0, 0), 443 DEFINE_PROP_UINT32("user1", ssys_state, user1, 0), 444 DEFINE_PROP_UINT32("did0", ssys_state, did0, 0), 445 DEFINE_PROP_UINT32("did1", ssys_state, did1, 0), 446 DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0), 447 DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0), 448 DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0), 449 DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0), 450 DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0), 451 DEFINE_PROP_END_OF_LIST() 452 }; 453 454 static void stellaris_sys_instance_init(Object *obj) 455 { 456 ssys_state *s = STELLARIS_SYS(obj); 457 SysBusDevice *sbd = SYS_BUS_DEVICE(s); 458 459 memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000); 460 sysbus_init_mmio(sbd, &s->iomem); 461 sysbus_init_irq(sbd, &s->irq); 462 s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK"); 463 } 464 465 /* 466 * I2C controller. 467 * ??? For now we only implement the master interface. 468 */ 469 470 #define TYPE_STELLARIS_I2C "stellaris-i2c" 471 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C) 472 473 struct stellaris_i2c_state { 474 SysBusDevice parent_obj; 475 476 I2CBus *bus; 477 qemu_irq irq; 478 MemoryRegion iomem; 479 uint32_t msa; 480 uint32_t mcs; 481 uint32_t mdr; 482 uint32_t mtpr; 483 uint32_t mimr; 484 uint32_t mris; 485 uint32_t mcr; 486 }; 487 488 #define STELLARIS_I2C_MCS_BUSY 0x01 489 #define STELLARIS_I2C_MCS_ERROR 0x02 490 #define STELLARIS_I2C_MCS_ADRACK 0x04 491 #define STELLARIS_I2C_MCS_DATACK 0x08 492 #define STELLARIS_I2C_MCS_ARBLST 0x10 493 #define STELLARIS_I2C_MCS_IDLE 0x20 494 #define STELLARIS_I2C_MCS_BUSBSY 0x40 495 496 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset, 497 unsigned size) 498 { 499 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; 500 501 switch (offset) { 502 case 0x00: /* MSA */ 503 return s->msa; 504 case 0x04: /* MCS */ 505 /* We don't emulate timing, so the controller is never busy. */ 506 return s->mcs | STELLARIS_I2C_MCS_IDLE; 507 case 0x08: /* MDR */ 508 return s->mdr; 509 case 0x0c: /* MTPR */ 510 return s->mtpr; 511 case 0x10: /* MIMR */ 512 return s->mimr; 513 case 0x14: /* MRIS */ 514 return s->mris; 515 case 0x18: /* MMIS */ 516 return s->mris & s->mimr; 517 case 0x20: /* MCR */ 518 return s->mcr; 519 default: 520 qemu_log_mask(LOG_GUEST_ERROR, 521 "stellaris_i2c: read at bad offset 0x%x\n", (int)offset); 522 return 0; 523 } 524 } 525 526 static void stellaris_i2c_update(stellaris_i2c_state *s) 527 { 528 int level; 529 530 level = (s->mris & s->mimr) != 0; 531 qemu_set_irq(s->irq, level); 532 } 533 534 static void stellaris_i2c_write(void *opaque, hwaddr offset, 535 uint64_t value, unsigned size) 536 { 537 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; 538 539 switch (offset) { 540 case 0x00: /* MSA */ 541 s->msa = value & 0xff; 542 break; 543 case 0x04: /* MCS */ 544 if ((s->mcr & 0x10) == 0) { 545 /* Disabled. Do nothing. */ 546 break; 547 } 548 /* Grab the bus if this is starting a transfer. */ 549 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { 550 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) { 551 s->mcs |= STELLARIS_I2C_MCS_ARBLST; 552 } else { 553 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST; 554 s->mcs |= STELLARIS_I2C_MCS_BUSBSY; 555 } 556 } 557 /* If we don't have the bus then indicate an error. */ 558 if (!i2c_bus_busy(s->bus) 559 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { 560 s->mcs |= STELLARIS_I2C_MCS_ERROR; 561 break; 562 } 563 s->mcs &= ~STELLARIS_I2C_MCS_ERROR; 564 if (value & 1) { 565 /* Transfer a byte. */ 566 /* TODO: Handle errors. */ 567 if (s->msa & 1) { 568 /* Recv */ 569 s->mdr = i2c_recv(s->bus); 570 } else { 571 /* Send */ 572 i2c_send(s->bus, s->mdr); 573 } 574 /* Raise an interrupt. */ 575 s->mris |= 1; 576 } 577 if (value & 4) { 578 /* Finish transfer. */ 579 i2c_end_transfer(s->bus); 580 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY; 581 } 582 break; 583 case 0x08: /* MDR */ 584 s->mdr = value & 0xff; 585 break; 586 case 0x0c: /* MTPR */ 587 s->mtpr = value & 0xff; 588 break; 589 case 0x10: /* MIMR */ 590 s->mimr = 1; 591 break; 592 case 0x1c: /* MICR */ 593 s->mris &= ~value; 594 break; 595 case 0x20: /* MCR */ 596 if (value & 1) { 597 qemu_log_mask(LOG_UNIMP, 598 "stellaris_i2c: Loopback not implemented\n"); 599 } 600 if (value & 0x20) { 601 qemu_log_mask(LOG_UNIMP, 602 "stellaris_i2c: Slave mode not implemented\n"); 603 } 604 s->mcr = value & 0x31; 605 break; 606 default: 607 qemu_log_mask(LOG_GUEST_ERROR, 608 "stellaris_i2c: write at bad offset 0x%x\n", (int)offset); 609 } 610 stellaris_i2c_update(s); 611 } 612 613 static void stellaris_i2c_reset_enter(Object *obj, ResetType type) 614 { 615 stellaris_i2c_state *s = STELLARIS_I2C(obj); 616 617 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY) 618 i2c_end_transfer(s->bus); 619 } 620 621 static void stellaris_i2c_reset_hold(Object *obj) 622 { 623 stellaris_i2c_state *s = STELLARIS_I2C(obj); 624 625 s->msa = 0; 626 s->mcs = 0; 627 s->mdr = 0; 628 s->mtpr = 1; 629 s->mimr = 0; 630 s->mris = 0; 631 s->mcr = 0; 632 } 633 634 static void stellaris_i2c_reset_exit(Object *obj) 635 { 636 stellaris_i2c_state *s = STELLARIS_I2C(obj); 637 638 stellaris_i2c_update(s); 639 } 640 641 static const MemoryRegionOps stellaris_i2c_ops = { 642 .read = stellaris_i2c_read, 643 .write = stellaris_i2c_write, 644 .endianness = DEVICE_NATIVE_ENDIAN, 645 }; 646 647 static const VMStateDescription vmstate_stellaris_i2c = { 648 .name = "stellaris_i2c", 649 .version_id = 1, 650 .minimum_version_id = 1, 651 .fields = (const VMStateField[]) { 652 VMSTATE_UINT32(msa, stellaris_i2c_state), 653 VMSTATE_UINT32(mcs, stellaris_i2c_state), 654 VMSTATE_UINT32(mdr, stellaris_i2c_state), 655 VMSTATE_UINT32(mtpr, stellaris_i2c_state), 656 VMSTATE_UINT32(mimr, stellaris_i2c_state), 657 VMSTATE_UINT32(mris, stellaris_i2c_state), 658 VMSTATE_UINT32(mcr, stellaris_i2c_state), 659 VMSTATE_END_OF_LIST() 660 } 661 }; 662 663 static void stellaris_i2c_init(Object *obj) 664 { 665 DeviceState *dev = DEVICE(obj); 666 stellaris_i2c_state *s = STELLARIS_I2C(obj); 667 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 668 I2CBus *bus; 669 670 sysbus_init_irq(sbd, &s->irq); 671 bus = i2c_init_bus(dev, "i2c"); 672 s->bus = bus; 673 674 memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s, 675 "i2c", 0x1000); 676 sysbus_init_mmio(sbd, &s->iomem); 677 } 678 679 /* Analogue to Digital Converter. This is only partially implemented, 680 enough for applications that use a combined ADC and timer tick. */ 681 682 #define STELLARIS_ADC_EM_CONTROLLER 0 683 #define STELLARIS_ADC_EM_COMP 1 684 #define STELLARIS_ADC_EM_EXTERNAL 4 685 #define STELLARIS_ADC_EM_TIMER 5 686 #define STELLARIS_ADC_EM_PWM0 6 687 #define STELLARIS_ADC_EM_PWM1 7 688 #define STELLARIS_ADC_EM_PWM2 8 689 690 #define STELLARIS_ADC_FIFO_EMPTY 0x0100 691 #define STELLARIS_ADC_FIFO_FULL 0x1000 692 693 #define TYPE_STELLARIS_ADC "stellaris-adc" 694 typedef struct StellarisADCState StellarisADCState; 695 DECLARE_INSTANCE_CHECKER(StellarisADCState, STELLARIS_ADC, TYPE_STELLARIS_ADC) 696 697 struct StellarisADCState { 698 SysBusDevice parent_obj; 699 700 MemoryRegion iomem; 701 uint32_t actss; 702 uint32_t ris; 703 uint32_t im; 704 uint32_t emux; 705 uint32_t ostat; 706 uint32_t ustat; 707 uint32_t sspri; 708 uint32_t sac; 709 struct { 710 uint32_t state; 711 uint32_t data[16]; 712 } fifo[4]; 713 uint32_t ssmux[4]; 714 uint32_t ssctl[4]; 715 uint32_t noise; 716 qemu_irq irq[4]; 717 }; 718 719 static uint32_t stellaris_adc_fifo_read(StellarisADCState *s, int n) 720 { 721 int tail; 722 723 tail = s->fifo[n].state & 0xf; 724 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) { 725 s->ustat |= 1 << n; 726 } else { 727 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf); 728 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL; 729 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf)) 730 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY; 731 } 732 return s->fifo[n].data[tail]; 733 } 734 735 static void stellaris_adc_fifo_write(StellarisADCState *s, int n, 736 uint32_t value) 737 { 738 int head; 739 740 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry 741 FIFO fir each sequencer. */ 742 head = (s->fifo[n].state >> 4) & 0xf; 743 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) { 744 s->ostat |= 1 << n; 745 return; 746 } 747 s->fifo[n].data[head] = value; 748 head = (head + 1) & 0xf; 749 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY; 750 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4); 751 if ((s->fifo[n].state & 0xf) == head) 752 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL; 753 } 754 755 static void stellaris_adc_update(StellarisADCState *s) 756 { 757 int level; 758 int n; 759 760 for (n = 0; n < 4; n++) { 761 level = (s->ris & s->im & (1 << n)) != 0; 762 qemu_set_irq(s->irq[n], level); 763 } 764 } 765 766 static void stellaris_adc_trigger(void *opaque, int irq, int level) 767 { 768 StellarisADCState *s = opaque; 769 int n; 770 771 for (n = 0; n < 4; n++) { 772 if ((s->actss & (1 << n)) == 0) { 773 continue; 774 } 775 776 if (((s->emux >> (n * 4)) & 0xff) != 5) { 777 continue; 778 } 779 780 /* Some applications use the ADC as a random number source, so introduce 781 some variation into the signal. */ 782 s->noise = s->noise * 314159 + 1; 783 /* ??? actual inputs not implemented. Return an arbitrary value. */ 784 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7)); 785 s->ris |= (1 << n); 786 stellaris_adc_update(s); 787 } 788 } 789 790 static void stellaris_adc_reset_hold(Object *obj) 791 { 792 StellarisADCState *s = STELLARIS_ADC(obj); 793 int n; 794 795 for (n = 0; n < 4; n++) { 796 s->ssmux[n] = 0; 797 s->ssctl[n] = 0; 798 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY; 799 } 800 } 801 802 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset, 803 unsigned size) 804 { 805 StellarisADCState *s = opaque; 806 807 /* TODO: Implement this. */ 808 if (offset >= 0x40 && offset < 0xc0) { 809 int n; 810 n = (offset - 0x40) >> 5; 811 switch (offset & 0x1f) { 812 case 0x00: /* SSMUX */ 813 return s->ssmux[n]; 814 case 0x04: /* SSCTL */ 815 return s->ssctl[n]; 816 case 0x08: /* SSFIFO */ 817 return stellaris_adc_fifo_read(s, n); 818 case 0x0c: /* SSFSTAT */ 819 return s->fifo[n].state; 820 default: 821 break; 822 } 823 } 824 switch (offset) { 825 case 0x00: /* ACTSS */ 826 return s->actss; 827 case 0x04: /* RIS */ 828 return s->ris; 829 case 0x08: /* IM */ 830 return s->im; 831 case 0x0c: /* ISC */ 832 return s->ris & s->im; 833 case 0x10: /* OSTAT */ 834 return s->ostat; 835 case 0x14: /* EMUX */ 836 return s->emux; 837 case 0x18: /* USTAT */ 838 return s->ustat; 839 case 0x20: /* SSPRI */ 840 return s->sspri; 841 case 0x30: /* SAC */ 842 return s->sac; 843 default: 844 qemu_log_mask(LOG_GUEST_ERROR, 845 "stellaris_adc: read at bad offset 0x%x\n", (int)offset); 846 return 0; 847 } 848 } 849 850 static void stellaris_adc_write(void *opaque, hwaddr offset, 851 uint64_t value, unsigned size) 852 { 853 StellarisADCState *s = opaque; 854 855 /* TODO: Implement this. */ 856 if (offset >= 0x40 && offset < 0xc0) { 857 int n; 858 n = (offset - 0x40) >> 5; 859 switch (offset & 0x1f) { 860 case 0x00: /* SSMUX */ 861 s->ssmux[n] = value & 0x33333333; 862 return; 863 case 0x04: /* SSCTL */ 864 if (value != 6) { 865 qemu_log_mask(LOG_UNIMP, 866 "ADC: Unimplemented sequence %" PRIx64 "\n", 867 value); 868 } 869 s->ssctl[n] = value; 870 return; 871 default: 872 break; 873 } 874 } 875 switch (offset) { 876 case 0x00: /* ACTSS */ 877 s->actss = value & 0xf; 878 break; 879 case 0x08: /* IM */ 880 s->im = value; 881 break; 882 case 0x0c: /* ISC */ 883 s->ris &= ~value; 884 break; 885 case 0x10: /* OSTAT */ 886 s->ostat &= ~value; 887 break; 888 case 0x14: /* EMUX */ 889 s->emux = value; 890 break; 891 case 0x18: /* USTAT */ 892 s->ustat &= ~value; 893 break; 894 case 0x20: /* SSPRI */ 895 s->sspri = value; 896 break; 897 case 0x28: /* PSSI */ 898 qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n"); 899 break; 900 case 0x30: /* SAC */ 901 s->sac = value; 902 break; 903 default: 904 qemu_log_mask(LOG_GUEST_ERROR, 905 "stellaris_adc: write at bad offset 0x%x\n", (int)offset); 906 } 907 stellaris_adc_update(s); 908 } 909 910 static const MemoryRegionOps stellaris_adc_ops = { 911 .read = stellaris_adc_read, 912 .write = stellaris_adc_write, 913 .endianness = DEVICE_NATIVE_ENDIAN, 914 }; 915 916 static const VMStateDescription vmstate_stellaris_adc = { 917 .name = "stellaris_adc", 918 .version_id = 1, 919 .minimum_version_id = 1, 920 .fields = (const VMStateField[]) { 921 VMSTATE_UINT32(actss, StellarisADCState), 922 VMSTATE_UINT32(ris, StellarisADCState), 923 VMSTATE_UINT32(im, StellarisADCState), 924 VMSTATE_UINT32(emux, StellarisADCState), 925 VMSTATE_UINT32(ostat, StellarisADCState), 926 VMSTATE_UINT32(ustat, StellarisADCState), 927 VMSTATE_UINT32(sspri, StellarisADCState), 928 VMSTATE_UINT32(sac, StellarisADCState), 929 VMSTATE_UINT32(fifo[0].state, StellarisADCState), 930 VMSTATE_UINT32_ARRAY(fifo[0].data, StellarisADCState, 16), 931 VMSTATE_UINT32(ssmux[0], StellarisADCState), 932 VMSTATE_UINT32(ssctl[0], StellarisADCState), 933 VMSTATE_UINT32(fifo[1].state, StellarisADCState), 934 VMSTATE_UINT32_ARRAY(fifo[1].data, StellarisADCState, 16), 935 VMSTATE_UINT32(ssmux[1], StellarisADCState), 936 VMSTATE_UINT32(ssctl[1], StellarisADCState), 937 VMSTATE_UINT32(fifo[2].state, StellarisADCState), 938 VMSTATE_UINT32_ARRAY(fifo[2].data, StellarisADCState, 16), 939 VMSTATE_UINT32(ssmux[2], StellarisADCState), 940 VMSTATE_UINT32(ssctl[2], StellarisADCState), 941 VMSTATE_UINT32(fifo[3].state, StellarisADCState), 942 VMSTATE_UINT32_ARRAY(fifo[3].data, StellarisADCState, 16), 943 VMSTATE_UINT32(ssmux[3], StellarisADCState), 944 VMSTATE_UINT32(ssctl[3], StellarisADCState), 945 VMSTATE_UINT32(noise, StellarisADCState), 946 VMSTATE_END_OF_LIST() 947 } 948 }; 949 950 static void stellaris_adc_init(Object *obj) 951 { 952 DeviceState *dev = DEVICE(obj); 953 StellarisADCState *s = STELLARIS_ADC(obj); 954 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 955 int n; 956 957 for (n = 0; n < 4; n++) { 958 sysbus_init_irq(sbd, &s->irq[n]); 959 } 960 961 memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s, 962 "adc", 0x1000); 963 sysbus_init_mmio(sbd, &s->iomem); 964 qdev_init_gpio_in(dev, stellaris_adc_trigger, 1); 965 } 966 967 /* Board init. */ 968 static stellaris_board_info stellaris_boards[] = { 969 { "LM3S811EVB", 970 0, 971 0x0032000e, 972 0x001f001f, /* dc0 */ 973 0x001132bf, 974 0x01071013, 975 0x3f0f01ff, 976 0x0000001f, 977 BP_OLED_I2C 978 }, 979 { "LM3S6965EVB", 980 0x10010002, 981 0x1073402e, 982 0x00ff007f, /* dc0 */ 983 0x001133ff, 984 0x030f5317, 985 0x0f0f87ff, 986 0x5000007f, 987 BP_OLED_SSI | BP_GAMEPAD 988 } 989 }; 990 991 static void stellaris_init(MachineState *ms, stellaris_board_info *board) 992 { 993 static const int uart_irq[] = {5, 6, 33, 34}; 994 static const int timer_irq[] = {19, 21, 23, 35}; 995 static const uint32_t gpio_addr[7] = 996 { 0x40004000, 0x40005000, 0x40006000, 0x40007000, 997 0x40024000, 0x40025000, 0x40026000}; 998 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31}; 999 1000 /* Memory map of SoC devices, from 1001 * Stellaris LM3S6965 Microcontroller Data Sheet (rev I) 1002 * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf 1003 * 1004 * 40000000 wdtimer 1005 * 40002000 i2c (unimplemented) 1006 * 40004000 GPIO 1007 * 40005000 GPIO 1008 * 40006000 GPIO 1009 * 40007000 GPIO 1010 * 40008000 SSI 1011 * 4000c000 UART 1012 * 4000d000 UART 1013 * 4000e000 UART 1014 * 40020000 i2c 1015 * 40021000 i2c (unimplemented) 1016 * 40024000 GPIO 1017 * 40025000 GPIO 1018 * 40026000 GPIO 1019 * 40028000 PWM (unimplemented) 1020 * 4002c000 QEI (unimplemented) 1021 * 4002d000 QEI (unimplemented) 1022 * 40030000 gptimer 1023 * 40031000 gptimer 1024 * 40032000 gptimer 1025 * 40033000 gptimer 1026 * 40038000 ADC 1027 * 4003c000 analogue comparator (unimplemented) 1028 * 40048000 ethernet 1029 * 400fc000 hibernation module (unimplemented) 1030 * 400fd000 flash memory control (unimplemented) 1031 * 400fe000 system control 1032 */ 1033 1034 Object *soc_container; 1035 DeviceState *gpio_dev[7], *nvic; 1036 qemu_irq gpio_in[7][8]; 1037 qemu_irq gpio_out[7][8]; 1038 qemu_irq adc; 1039 int sram_size; 1040 int flash_size; 1041 I2CBus *i2c; 1042 DeviceState *dev; 1043 DeviceState *ssys_dev; 1044 int i; 1045 int j; 1046 NICInfo *nd; 1047 MACAddr mac; 1048 1049 MemoryRegion *sram = g_new(MemoryRegion, 1); 1050 MemoryRegion *flash = g_new(MemoryRegion, 1); 1051 MemoryRegion *system_memory = get_system_memory(); 1052 1053 flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024; 1054 sram_size = ((board->dc0 >> 18) + 1) * 1024; 1055 1056 soc_container = object_new("container"); 1057 object_property_add_child(OBJECT(ms), "soc", soc_container); 1058 1059 /* Flash programming is done via the SCU, so pretend it is ROM. */ 1060 memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size, 1061 &error_fatal); 1062 memory_region_add_subregion(system_memory, 0, flash); 1063 1064 memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size, 1065 &error_fatal); 1066 memory_region_add_subregion(system_memory, 0x20000000, sram); 1067 1068 /* 1069 * Create the system-registers object early, because we will 1070 * need its sysclk output. 1071 */ 1072 ssys_dev = qdev_new(TYPE_STELLARIS_SYS); 1073 object_property_add_child(soc_container, "sys", OBJECT(ssys_dev)); 1074 1075 /* 1076 * Most devices come preprogrammed with a MAC address in the user data. 1077 * Generate a MAC address now, if there isn't a matching -nic for it. 1078 */ 1079 nd = qemu_find_nic_info("stellaris_enet", true, "stellaris"); 1080 if (nd) { 1081 memcpy(mac.a, nd->macaddr.a, sizeof(mac.a)); 1082 } else { 1083 qemu_macaddr_default_if_unset(&mac); 1084 } 1085 1086 qdev_prop_set_uint32(ssys_dev, "user0", 1087 mac.a[0] | (mac.a[1] << 8) | (mac.a[2] << 16)); 1088 qdev_prop_set_uint32(ssys_dev, "user1", 1089 mac.a[3] | (mac.a[4] << 8) | (mac.a[5] << 16)); 1090 qdev_prop_set_uint32(ssys_dev, "did0", board->did0); 1091 qdev_prop_set_uint32(ssys_dev, "did1", board->did1); 1092 qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0); 1093 qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1); 1094 qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2); 1095 qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3); 1096 qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4); 1097 sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal); 1098 1099 nvic = qdev_new(TYPE_ARMV7M); 1100 object_property_add_child(soc_container, "v7m", OBJECT(nvic)); 1101 qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES); 1102 qdev_prop_set_uint8(nvic, "num-prio-bits", NUM_PRIO_BITS); 1103 qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type); 1104 qdev_prop_set_bit(nvic, "enable-bitband", true); 1105 qdev_connect_clock_in(nvic, "cpuclk", 1106 qdev_get_clock_out(ssys_dev, "SYSCLK")); 1107 /* This SoC does not connect the systick reference clock */ 1108 object_property_set_link(OBJECT(nvic), "memory", 1109 OBJECT(get_system_memory()), &error_abort); 1110 /* This will exit with an error if the user passed us a bad cpu_type */ 1111 sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal); 1112 1113 /* Now we can wire up the IRQ and MMIO of the system registers */ 1114 sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000); 1115 sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28)); 1116 1117 if (board->dc1 & (1 << 16)) { 1118 dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000, 1119 qdev_get_gpio_in(nvic, 14), 1120 qdev_get_gpio_in(nvic, 15), 1121 qdev_get_gpio_in(nvic, 16), 1122 qdev_get_gpio_in(nvic, 17), 1123 NULL); 1124 adc = qdev_get_gpio_in(dev, 0); 1125 } else { 1126 adc = NULL; 1127 } 1128 for (i = 0; i < 4; i++) { 1129 if (board->dc2 & (0x10000 << i)) { 1130 SysBusDevice *sbd; 1131 1132 dev = qdev_new(TYPE_STELLARIS_GPTM); 1133 sbd = SYS_BUS_DEVICE(dev); 1134 object_property_add_child(soc_container, "gptm[*]", OBJECT(dev)); 1135 qdev_connect_clock_in(dev, "clk", 1136 qdev_get_clock_out(ssys_dev, "SYSCLK")); 1137 sysbus_realize_and_unref(sbd, &error_fatal); 1138 sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000); 1139 sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i])); 1140 /* TODO: This is incorrect, but we get away with it because 1141 the ADC output is only ever pulsed. */ 1142 qdev_connect_gpio_out(dev, 0, adc); 1143 } 1144 } 1145 1146 if (board->dc1 & (1 << 3)) { /* watchdog present */ 1147 dev = qdev_new(TYPE_LUMINARY_WATCHDOG); 1148 object_property_add_child(soc_container, "wdg", OBJECT(dev)); 1149 qdev_connect_clock_in(dev, "WDOGCLK", 1150 qdev_get_clock_out(ssys_dev, "SYSCLK")); 1151 1152 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1153 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1154 0, 1155 0x40000000u); 1156 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 1157 0, 1158 qdev_get_gpio_in(nvic, 18)); 1159 } 1160 1161 1162 for (i = 0; i < 7; i++) { 1163 if (board->dc4 & (1 << i)) { 1164 gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i], 1165 qdev_get_gpio_in(nvic, 1166 gpio_irq[i])); 1167 for (j = 0; j < 8; j++) { 1168 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j); 1169 gpio_out[i][j] = NULL; 1170 } 1171 } 1172 } 1173 1174 if (board->dc2 & (1 << 12)) { 1175 dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000, 1176 qdev_get_gpio_in(nvic, 8)); 1177 i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c"); 1178 if (board->peripherals & BP_OLED_I2C) { 1179 i2c_slave_create_simple(i2c, "ssd0303", 0x3d); 1180 } 1181 } 1182 1183 for (i = 0; i < 4; i++) { 1184 if (board->dc2 & (1 << i)) { 1185 SysBusDevice *sbd; 1186 1187 dev = qdev_new("pl011_luminary"); 1188 object_property_add_child(soc_container, "uart[*]", OBJECT(dev)); 1189 sbd = SYS_BUS_DEVICE(dev); 1190 qdev_prop_set_chr(dev, "chardev", serial_hd(i)); 1191 sysbus_realize_and_unref(sbd, &error_fatal); 1192 sysbus_mmio_map(sbd, 0, 0x4000c000 + i * 0x1000); 1193 sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, uart_irq[i])); 1194 } 1195 } 1196 if (board->dc2 & (1 << 4)) { 1197 dev = sysbus_create_simple("pl022", 0x40008000, 1198 qdev_get_gpio_in(nvic, 7)); 1199 if (board->peripherals & BP_OLED_SSI) { 1200 void *bus; 1201 DeviceState *sddev; 1202 DeviceState *ssddev; 1203 DriveInfo *dinfo; 1204 DeviceState *carddev; 1205 DeviceState *gpio_d_splitter; 1206 BlockBackend *blk; 1207 1208 /* 1209 * Some boards have both an OLED controller and SD card connected to 1210 * the same SSI port, with the SD card chip select connected to a 1211 * GPIO pin. Technically the OLED chip select is connected to the 1212 * SSI Fss pin. We do not bother emulating that as both devices 1213 * should never be selected simultaneously, and our OLED controller 1214 * ignores stray 0xff commands that occur when deselecting the SD 1215 * card. 1216 * 1217 * The h/w wiring is: 1218 * - GPIO pin D0 is wired to the active-low SD card chip select 1219 * - GPIO pin A3 is wired to the active-low OLED chip select 1220 * - The SoC wiring of the PL061 "auxiliary function" for A3 is 1221 * SSI0Fss ("frame signal"), which is an output from the SoC's 1222 * SSI controller. The SSI controller takes SSI0Fss low when it 1223 * transmits a frame, so it can work as a chip-select signal. 1224 * - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx 1225 * (the OLED never sends data to the CPU, so no wiring needed) 1226 * - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx 1227 * and the OLED display-data-in 1228 * - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED 1229 * serial-clock input 1230 * So a guest that wants to use the OLED can configure the PL061 1231 * to make pins A2, A3, A5 aux-function, so they are connected 1232 * directly to the SSI controller. When the SSI controller sends 1233 * data it asserts SSI0Fss which selects the OLED. 1234 * A guest that wants to use the SD card configures A2, A4 and A5 1235 * as aux-function, but leaves A3 as a software-controlled GPIO 1236 * line. It asserts the SD card chip-select by using the PL061 1237 * to control pin D0, and lets the SSI controller handle Clk, Tx 1238 * and Rx. (The SSI controller asserts Fss during tx cycles as 1239 * usual, but because A3 is not set to aux-function this is not 1240 * forwarded to the OLED, and so the OLED stays unselected.) 1241 * 1242 * The QEMU implementation instead is: 1243 * - GPIO pin D0 is wired to the active-low SD card chip select, 1244 * and also to the OLED chip-select which is implemented 1245 * as *active-high* 1246 * - SSI controller signals go to the devices regardless of 1247 * whether the guest programs A2, A4, A5 as aux-function or not 1248 * 1249 * The problem with this implementation is if the guest doesn't 1250 * care about the SD card and only uses the OLED. In that case it 1251 * may choose never to do anything with D0 (leaving it in its 1252 * default floating state, which reliably leaves the card disabled 1253 * because an SD card has a pullup on CS within the card itself), 1254 * and only set up A2, A3, A5. This for us would mean the OLED 1255 * never gets the chip-select assert it needs. We work around 1256 * this with a manual raise of D0 here (despite board creation 1257 * code being the wrong place to raise IRQ lines) to put the OLED 1258 * into an initially selected state. 1259 * 1260 * In theory the right way to model this would be: 1261 * - Implement aux-function support in the PL061, with an 1262 * extra set of AFIN and AFOUT GPIO lines (set up so that 1263 * if a GPIO line is in auxfn mode the main GPIO in and out 1264 * track the AFIN and AFOUT lines) 1265 * - Wire the AFOUT for D0 up to either a line from the 1266 * SSI controller that's pulled low around every transmit, 1267 * or at least to an always-0 line here on the board 1268 * - Make the ssd0323 OLED controller chipselect active-low 1269 */ 1270 bus = qdev_get_child_bus(dev, "ssi"); 1271 sddev = ssi_create_peripheral(bus, "ssi-sd"); 1272 1273 dinfo = drive_get(IF_SD, 0, 0); 1274 blk = dinfo ? blk_by_legacy_dinfo(dinfo) : NULL; 1275 carddev = qdev_new(TYPE_SD_CARD_SPI); 1276 qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal); 1277 qdev_realize_and_unref(carddev, 1278 qdev_get_child_bus(sddev, "sd-bus"), 1279 &error_fatal); 1280 1281 ssddev = qdev_new("ssd0323"); 1282 object_property_add_child(OBJECT(ms), "oled", OBJECT(ssddev)); 1283 qdev_prop_set_uint8(ssddev, "cs", 1); 1284 qdev_realize_and_unref(ssddev, bus, &error_fatal); 1285 1286 gpio_d_splitter = qdev_new(TYPE_SPLIT_IRQ); 1287 object_property_add_child(OBJECT(ms), "splitter", 1288 OBJECT(gpio_d_splitter)); 1289 qdev_prop_set_uint32(gpio_d_splitter, "num-lines", 2); 1290 qdev_realize_and_unref(gpio_d_splitter, NULL, &error_fatal); 1291 qdev_connect_gpio_out( 1292 gpio_d_splitter, 0, 1293 qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0)); 1294 qdev_connect_gpio_out( 1295 gpio_d_splitter, 1, 1296 qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0)); 1297 gpio_out[GPIO_D][0] = qdev_get_gpio_in(gpio_d_splitter, 0); 1298 1299 gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0); 1300 1301 /* Make sure the select pin is high. */ 1302 qemu_irq_raise(gpio_out[GPIO_D][0]); 1303 } 1304 } 1305 if (board->dc4 & (1 << 28)) { 1306 DeviceState *enet; 1307 1308 enet = qdev_new("stellaris_enet"); 1309 object_property_add_child(soc_container, "enet", OBJECT(enet)); 1310 if (nd) { 1311 qdev_set_nic_properties(enet, nd); 1312 } else { 1313 qdev_prop_set_macaddr(enet, "mac", mac.a); 1314 } 1315 1316 sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal); 1317 sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000); 1318 sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42)); 1319 } 1320 if (board->peripherals & BP_GAMEPAD) { 1321 QList *gpad_keycode_list = qlist_new(); 1322 static const int gpad_keycode[5] = { 1323 Q_KEY_CODE_UP, Q_KEY_CODE_DOWN, Q_KEY_CODE_LEFT, 1324 Q_KEY_CODE_RIGHT, Q_KEY_CODE_CTRL, 1325 }; 1326 DeviceState *gpad; 1327 1328 gpad = qdev_new(TYPE_STELLARIS_GAMEPAD); 1329 object_property_add_child(OBJECT(ms), "gamepad", OBJECT(gpad)); 1330 for (i = 0; i < ARRAY_SIZE(gpad_keycode); i++) { 1331 qlist_append_int(gpad_keycode_list, gpad_keycode[i]); 1332 } 1333 qdev_prop_set_array(gpad, "keycodes", gpad_keycode_list); 1334 sysbus_realize_and_unref(SYS_BUS_DEVICE(gpad), &error_fatal); 1335 1336 qdev_connect_gpio_out(gpad, 0, 1337 qemu_irq_invert(gpio_in[GPIO_E][0])); /* up */ 1338 qdev_connect_gpio_out(gpad, 1, 1339 qemu_irq_invert(gpio_in[GPIO_E][1])); /* down */ 1340 qdev_connect_gpio_out(gpad, 2, 1341 qemu_irq_invert(gpio_in[GPIO_E][2])); /* left */ 1342 qdev_connect_gpio_out(gpad, 3, 1343 qemu_irq_invert(gpio_in[GPIO_E][3])); /* right */ 1344 qdev_connect_gpio_out(gpad, 4, 1345 qemu_irq_invert(gpio_in[GPIO_F][1])); /* select */ 1346 } 1347 for (i = 0; i < 7; i++) { 1348 if (board->dc4 & (1 << i)) { 1349 for (j = 0; j < 8; j++) { 1350 if (gpio_out[i][j]) { 1351 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]); 1352 } 1353 } 1354 } 1355 } 1356 1357 /* Add dummy regions for the devices we don't implement yet, 1358 * so guest accesses don't cause unlogged crashes. 1359 */ 1360 create_unimplemented_device("i2c-0", 0x40002000, 0x1000); 1361 create_unimplemented_device("i2c-2", 0x40021000, 0x1000); 1362 create_unimplemented_device("PWM", 0x40028000, 0x1000); 1363 create_unimplemented_device("QEI-0", 0x4002c000, 0x1000); 1364 create_unimplemented_device("QEI-1", 0x4002d000, 0x1000); 1365 create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000); 1366 create_unimplemented_device("hibernation", 0x400fc000, 0x1000); 1367 create_unimplemented_device("flash-control", 0x400fd000, 0x1000); 1368 1369 armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, 0, flash_size); 1370 } 1371 1372 /* FIXME: Figure out how to generate these from stellaris_boards. */ 1373 static void lm3s811evb_init(MachineState *machine) 1374 { 1375 stellaris_init(machine, &stellaris_boards[0]); 1376 } 1377 1378 static void lm3s6965evb_init(MachineState *machine) 1379 { 1380 stellaris_init(machine, &stellaris_boards[1]); 1381 } 1382 1383 static void lm3s811evb_class_init(ObjectClass *oc, void *data) 1384 { 1385 MachineClass *mc = MACHINE_CLASS(oc); 1386 1387 mc->desc = "Stellaris LM3S811EVB (Cortex-M3)"; 1388 mc->init = lm3s811evb_init; 1389 mc->ignore_memory_transaction_failures = true; 1390 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3"); 1391 } 1392 1393 static const TypeInfo lm3s811evb_type = { 1394 .name = MACHINE_TYPE_NAME("lm3s811evb"), 1395 .parent = TYPE_MACHINE, 1396 .class_init = lm3s811evb_class_init, 1397 }; 1398 1399 static void lm3s6965evb_class_init(ObjectClass *oc, void *data) 1400 { 1401 MachineClass *mc = MACHINE_CLASS(oc); 1402 1403 mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)"; 1404 mc->init = lm3s6965evb_init; 1405 mc->ignore_memory_transaction_failures = true; 1406 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3"); 1407 } 1408 1409 static const TypeInfo lm3s6965evb_type = { 1410 .name = MACHINE_TYPE_NAME("lm3s6965evb"), 1411 .parent = TYPE_MACHINE, 1412 .class_init = lm3s6965evb_class_init, 1413 }; 1414 1415 static void stellaris_machine_init(void) 1416 { 1417 type_register_static(&lm3s811evb_type); 1418 type_register_static(&lm3s6965evb_type); 1419 } 1420 1421 type_init(stellaris_machine_init) 1422 1423 static void stellaris_i2c_class_init(ObjectClass *klass, void *data) 1424 { 1425 DeviceClass *dc = DEVICE_CLASS(klass); 1426 ResettableClass *rc = RESETTABLE_CLASS(klass); 1427 1428 rc->phases.enter = stellaris_i2c_reset_enter; 1429 rc->phases.hold = stellaris_i2c_reset_hold; 1430 rc->phases.exit = stellaris_i2c_reset_exit; 1431 dc->vmsd = &vmstate_stellaris_i2c; 1432 } 1433 1434 static const TypeInfo stellaris_i2c_info = { 1435 .name = TYPE_STELLARIS_I2C, 1436 .parent = TYPE_SYS_BUS_DEVICE, 1437 .instance_size = sizeof(stellaris_i2c_state), 1438 .instance_init = stellaris_i2c_init, 1439 .class_init = stellaris_i2c_class_init, 1440 }; 1441 1442 static void stellaris_adc_class_init(ObjectClass *klass, void *data) 1443 { 1444 DeviceClass *dc = DEVICE_CLASS(klass); 1445 ResettableClass *rc = RESETTABLE_CLASS(klass); 1446 1447 rc->phases.hold = stellaris_adc_reset_hold; 1448 dc->vmsd = &vmstate_stellaris_adc; 1449 } 1450 1451 static const TypeInfo stellaris_adc_info = { 1452 .name = TYPE_STELLARIS_ADC, 1453 .parent = TYPE_SYS_BUS_DEVICE, 1454 .instance_size = sizeof(StellarisADCState), 1455 .instance_init = stellaris_adc_init, 1456 .class_init = stellaris_adc_class_init, 1457 }; 1458 1459 static void stellaris_sys_class_init(ObjectClass *klass, void *data) 1460 { 1461 DeviceClass *dc = DEVICE_CLASS(klass); 1462 ResettableClass *rc = RESETTABLE_CLASS(klass); 1463 1464 dc->vmsd = &vmstate_stellaris_sys; 1465 rc->phases.enter = stellaris_sys_reset_enter; 1466 rc->phases.hold = stellaris_sys_reset_hold; 1467 rc->phases.exit = stellaris_sys_reset_exit; 1468 device_class_set_props(dc, stellaris_sys_properties); 1469 } 1470 1471 static const TypeInfo stellaris_sys_info = { 1472 .name = TYPE_STELLARIS_SYS, 1473 .parent = TYPE_SYS_BUS_DEVICE, 1474 .instance_size = sizeof(ssys_state), 1475 .instance_init = stellaris_sys_instance_init, 1476 .class_init = stellaris_sys_class_init, 1477 }; 1478 1479 static void stellaris_register_types(void) 1480 { 1481 type_register_static(&stellaris_i2c_info); 1482 type_register_static(&stellaris_adc_info); 1483 type_register_static(&stellaris_sys_info); 1484 } 1485 1486 type_init(stellaris_register_types) 1487