xref: /openbmc/qemu/hw/arm/stellaris.c (revision 9c707525)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/core/split-irq.h"
13 #include "hw/sysbus.h"
14 #include "hw/sd/sd.h"
15 #include "hw/ssi/ssi.h"
16 #include "hw/arm/boot.h"
17 #include "qemu/timer.h"
18 #include "hw/i2c/i2c.h"
19 #include "net/net.h"
20 #include "hw/boards.h"
21 #include "qemu/log.h"
22 #include "exec/address-spaces.h"
23 #include "sysemu/sysemu.h"
24 #include "hw/arm/armv7m.h"
25 #include "hw/char/pl011.h"
26 #include "hw/input/stellaris_gamepad.h"
27 #include "hw/irq.h"
28 #include "hw/watchdog/cmsdk-apb-watchdog.h"
29 #include "migration/vmstate.h"
30 #include "hw/misc/unimp.h"
31 #include "hw/timer/stellaris-gptm.h"
32 #include "hw/qdev-clock.h"
33 #include "qom/object.h"
34 #include "qapi/qmp/qlist.h"
35 #include "ui/input.h"
36 
37 #define GPIO_A 0
38 #define GPIO_B 1
39 #define GPIO_C 2
40 #define GPIO_D 3
41 #define GPIO_E 4
42 #define GPIO_F 5
43 #define GPIO_G 6
44 
45 #define BP_OLED_I2C  0x01
46 #define BP_OLED_SSI  0x02
47 #define BP_GAMEPAD   0x04
48 
49 #define NUM_IRQ_LINES 64
50 #define NUM_PRIO_BITS 3
51 
52 typedef const struct {
53     const char *name;
54     uint32_t did0;
55     uint32_t did1;
56     uint32_t dc0;
57     uint32_t dc1;
58     uint32_t dc2;
59     uint32_t dc3;
60     uint32_t dc4;
61     uint32_t peripherals;
62 } stellaris_board_info;
63 
64 /* System controller.  */
65 
66 #define TYPE_STELLARIS_SYS "stellaris-sys"
67 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
68 
69 struct ssys_state {
70     SysBusDevice parent_obj;
71 
72     MemoryRegion iomem;
73     uint32_t pborctl;
74     uint32_t ldopctl;
75     uint32_t int_status;
76     uint32_t int_mask;
77     uint32_t resc;
78     uint32_t rcc;
79     uint32_t rcc2;
80     uint32_t rcgc[3];
81     uint32_t scgc[3];
82     uint32_t dcgc[3];
83     uint32_t clkvclr;
84     uint32_t ldoarst;
85     qemu_irq irq;
86     Clock *sysclk;
87     /* Properties (all read-only registers) */
88     uint32_t user0;
89     uint32_t user1;
90     uint32_t did0;
91     uint32_t did1;
92     uint32_t dc0;
93     uint32_t dc1;
94     uint32_t dc2;
95     uint32_t dc3;
96     uint32_t dc4;
97 };
98 
99 static void ssys_update(ssys_state *s)
100 {
101   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
102 }
103 
104 static uint32_t pllcfg_sandstorm[16] = {
105     0x31c0, /* 1 Mhz */
106     0x1ae0, /* 1.8432 Mhz */
107     0x18c0, /* 2 Mhz */
108     0xd573, /* 2.4576 Mhz */
109     0x37a6, /* 3.57954 Mhz */
110     0x1ae2, /* 3.6864 Mhz */
111     0x0c40, /* 4 Mhz */
112     0x98bc, /* 4.906 Mhz */
113     0x935b, /* 4.9152 Mhz */
114     0x09c0, /* 5 Mhz */
115     0x4dee, /* 5.12 Mhz */
116     0x0c41, /* 6 Mhz */
117     0x75db, /* 6.144 Mhz */
118     0x1ae6, /* 7.3728 Mhz */
119     0x0600, /* 8 Mhz */
120     0x585b /* 8.192 Mhz */
121 };
122 
123 static uint32_t pllcfg_fury[16] = {
124     0x3200, /* 1 Mhz */
125     0x1b20, /* 1.8432 Mhz */
126     0x1900, /* 2 Mhz */
127     0xf42b, /* 2.4576 Mhz */
128     0x37e3, /* 3.57954 Mhz */
129     0x1b21, /* 3.6864 Mhz */
130     0x0c80, /* 4 Mhz */
131     0x98ee, /* 4.906 Mhz */
132     0xd5b4, /* 4.9152 Mhz */
133     0x0a00, /* 5 Mhz */
134     0x4e27, /* 5.12 Mhz */
135     0x1902, /* 6 Mhz */
136     0xec1c, /* 6.144 Mhz */
137     0x1b23, /* 7.3728 Mhz */
138     0x0640, /* 8 Mhz */
139     0xb11c /* 8.192 Mhz */
140 };
141 
142 #define DID0_VER_MASK        0x70000000
143 #define DID0_VER_0           0x00000000
144 #define DID0_VER_1           0x10000000
145 
146 #define DID0_CLASS_MASK      0x00FF0000
147 #define DID0_CLASS_SANDSTORM 0x00000000
148 #define DID0_CLASS_FURY      0x00010000
149 
150 static int ssys_board_class(const ssys_state *s)
151 {
152     uint32_t did0 = s->did0;
153     switch (did0 & DID0_VER_MASK) {
154     case DID0_VER_0:
155         return DID0_CLASS_SANDSTORM;
156     case DID0_VER_1:
157         switch (did0 & DID0_CLASS_MASK) {
158         case DID0_CLASS_SANDSTORM:
159         case DID0_CLASS_FURY:
160             return did0 & DID0_CLASS_MASK;
161         }
162         /* for unknown classes, fall through */
163     default:
164         /* This can only happen if the hardwired constant did0 value
165          * in this board's stellaris_board_info struct is wrong.
166          */
167         g_assert_not_reached();
168     }
169 }
170 
171 static uint64_t ssys_read(void *opaque, hwaddr offset,
172                           unsigned size)
173 {
174     ssys_state *s = (ssys_state *)opaque;
175 
176     switch (offset) {
177     case 0x000: /* DID0 */
178         return s->did0;
179     case 0x004: /* DID1 */
180         return s->did1;
181     case 0x008: /* DC0 */
182         return s->dc0;
183     case 0x010: /* DC1 */
184         return s->dc1;
185     case 0x014: /* DC2 */
186         return s->dc2;
187     case 0x018: /* DC3 */
188         return s->dc3;
189     case 0x01c: /* DC4 */
190         return s->dc4;
191     case 0x030: /* PBORCTL */
192         return s->pborctl;
193     case 0x034: /* LDOPCTL */
194         return s->ldopctl;
195     case 0x040: /* SRCR0 */
196         return 0;
197     case 0x044: /* SRCR1 */
198         return 0;
199     case 0x048: /* SRCR2 */
200         return 0;
201     case 0x050: /* RIS */
202         return s->int_status;
203     case 0x054: /* IMC */
204         return s->int_mask;
205     case 0x058: /* MISC */
206         return s->int_status & s->int_mask;
207     case 0x05c: /* RESC */
208         return s->resc;
209     case 0x060: /* RCC */
210         return s->rcc;
211     case 0x064: /* PLLCFG */
212         {
213             int xtal;
214             xtal = (s->rcc >> 6) & 0xf;
215             switch (ssys_board_class(s)) {
216             case DID0_CLASS_FURY:
217                 return pllcfg_fury[xtal];
218             case DID0_CLASS_SANDSTORM:
219                 return pllcfg_sandstorm[xtal];
220             default:
221                 g_assert_not_reached();
222             }
223         }
224     case 0x070: /* RCC2 */
225         return s->rcc2;
226     case 0x100: /* RCGC0 */
227         return s->rcgc[0];
228     case 0x104: /* RCGC1 */
229         return s->rcgc[1];
230     case 0x108: /* RCGC2 */
231         return s->rcgc[2];
232     case 0x110: /* SCGC0 */
233         return s->scgc[0];
234     case 0x114: /* SCGC1 */
235         return s->scgc[1];
236     case 0x118: /* SCGC2 */
237         return s->scgc[2];
238     case 0x120: /* DCGC0 */
239         return s->dcgc[0];
240     case 0x124: /* DCGC1 */
241         return s->dcgc[1];
242     case 0x128: /* DCGC2 */
243         return s->dcgc[2];
244     case 0x150: /* CLKVCLR */
245         return s->clkvclr;
246     case 0x160: /* LDOARST */
247         return s->ldoarst;
248     case 0x1e0: /* USER0 */
249         return s->user0;
250     case 0x1e4: /* USER1 */
251         return s->user1;
252     default:
253         qemu_log_mask(LOG_GUEST_ERROR,
254                       "SSYS: read at bad offset 0x%x\n", (int)offset);
255         return 0;
256     }
257 }
258 
259 static bool ssys_use_rcc2(ssys_state *s)
260 {
261     return (s->rcc2 >> 31) & 0x1;
262 }
263 
264 /*
265  * Calculate the system clock period. We only want to propagate
266  * this change to the rest of the system if we're not being called
267  * from migration post-load.
268  */
269 static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
270 {
271     int period_ns;
272     /*
273      * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
274      * clock is 200MHz, which is a period of 5 ns. Dividing the clock
275      * frequency by X is the same as multiplying the period by X.
276      */
277     if (ssys_use_rcc2(s)) {
278         period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
279     } else {
280         period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1);
281     }
282     clock_set_ns(s->sysclk, period_ns);
283     if (propagate_clock) {
284         clock_propagate(s->sysclk);
285     }
286 }
287 
288 static void ssys_write(void *opaque, hwaddr offset,
289                        uint64_t value, unsigned size)
290 {
291     ssys_state *s = (ssys_state *)opaque;
292 
293     switch (offset) {
294     case 0x030: /* PBORCTL */
295         s->pborctl = value & 0xffff;
296         break;
297     case 0x034: /* LDOPCTL */
298         s->ldopctl = value & 0x1f;
299         break;
300     case 0x040: /* SRCR0 */
301     case 0x044: /* SRCR1 */
302     case 0x048: /* SRCR2 */
303         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
304         break;
305     case 0x054: /* IMC */
306         s->int_mask = value & 0x7f;
307         break;
308     case 0x058: /* MISC */
309         s->int_status &= ~value;
310         break;
311     case 0x05c: /* RESC */
312         s->resc = value & 0x3f;
313         break;
314     case 0x060: /* RCC */
315         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
316             /* PLL enable.  */
317             s->int_status |= (1 << 6);
318         }
319         s->rcc = value;
320         ssys_calculate_system_clock(s, true);
321         break;
322     case 0x070: /* RCC2 */
323         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
324             break;
325         }
326 
327         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
328             /* PLL enable.  */
329             s->int_status |= (1 << 6);
330         }
331         s->rcc2 = value;
332         ssys_calculate_system_clock(s, true);
333         break;
334     case 0x100: /* RCGC0 */
335         s->rcgc[0] = value;
336         break;
337     case 0x104: /* RCGC1 */
338         s->rcgc[1] = value;
339         break;
340     case 0x108: /* RCGC2 */
341         s->rcgc[2] = value;
342         break;
343     case 0x110: /* SCGC0 */
344         s->scgc[0] = value;
345         break;
346     case 0x114: /* SCGC1 */
347         s->scgc[1] = value;
348         break;
349     case 0x118: /* SCGC2 */
350         s->scgc[2] = value;
351         break;
352     case 0x120: /* DCGC0 */
353         s->dcgc[0] = value;
354         break;
355     case 0x124: /* DCGC1 */
356         s->dcgc[1] = value;
357         break;
358     case 0x128: /* DCGC2 */
359         s->dcgc[2] = value;
360         break;
361     case 0x150: /* CLKVCLR */
362         s->clkvclr = value;
363         break;
364     case 0x160: /* LDOARST */
365         s->ldoarst = value;
366         break;
367     default:
368         qemu_log_mask(LOG_GUEST_ERROR,
369                       "SSYS: write at bad offset 0x%x\n", (int)offset);
370     }
371     ssys_update(s);
372 }
373 
374 static const MemoryRegionOps ssys_ops = {
375     .read = ssys_read,
376     .write = ssys_write,
377     .endianness = DEVICE_NATIVE_ENDIAN,
378 };
379 
380 static void stellaris_sys_reset_enter(Object *obj, ResetType type)
381 {
382     ssys_state *s = STELLARIS_SYS(obj);
383 
384     s->pborctl = 0x7ffd;
385     s->rcc = 0x078e3ac0;
386 
387     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
388         s->rcc2 = 0;
389     } else {
390         s->rcc2 = 0x07802810;
391     }
392     s->rcgc[0] = 1;
393     s->scgc[0] = 1;
394     s->dcgc[0] = 1;
395 }
396 
397 static void stellaris_sys_reset_hold(Object *obj)
398 {
399     ssys_state *s = STELLARIS_SYS(obj);
400 
401     /* OK to propagate clocks from the hold phase */
402     ssys_calculate_system_clock(s, true);
403 }
404 
405 static void stellaris_sys_reset_exit(Object *obj)
406 {
407 }
408 
409 static int stellaris_sys_post_load(void *opaque, int version_id)
410 {
411     ssys_state *s = opaque;
412 
413     ssys_calculate_system_clock(s, false);
414 
415     return 0;
416 }
417 
418 static const VMStateDescription vmstate_stellaris_sys = {
419     .name = "stellaris_sys",
420     .version_id = 2,
421     .minimum_version_id = 1,
422     .post_load = stellaris_sys_post_load,
423     .fields = (const VMStateField[]) {
424         VMSTATE_UINT32(pborctl, ssys_state),
425         VMSTATE_UINT32(ldopctl, ssys_state),
426         VMSTATE_UINT32(int_mask, ssys_state),
427         VMSTATE_UINT32(int_status, ssys_state),
428         VMSTATE_UINT32(resc, ssys_state),
429         VMSTATE_UINT32(rcc, ssys_state),
430         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
431         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
432         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
433         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
434         VMSTATE_UINT32(clkvclr, ssys_state),
435         VMSTATE_UINT32(ldoarst, ssys_state),
436         /* No field for sysclk -- handled in post-load instead */
437         VMSTATE_END_OF_LIST()
438     }
439 };
440 
441 static Property stellaris_sys_properties[] = {
442     DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
443     DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
444     DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
445     DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
446     DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
447     DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
448     DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
449     DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
450     DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
451     DEFINE_PROP_END_OF_LIST()
452 };
453 
454 static void stellaris_sys_instance_init(Object *obj)
455 {
456     ssys_state *s = STELLARIS_SYS(obj);
457     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
458 
459     memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
460     sysbus_init_mmio(sbd, &s->iomem);
461     sysbus_init_irq(sbd, &s->irq);
462     s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
463 }
464 
465 /*
466  * I2C controller.
467  * ??? For now we only implement the master interface.
468  */
469 
470 #define TYPE_STELLARIS_I2C "stellaris-i2c"
471 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
472 
473 struct stellaris_i2c_state {
474     SysBusDevice parent_obj;
475 
476     I2CBus *bus;
477     qemu_irq irq;
478     MemoryRegion iomem;
479     uint32_t msa;
480     uint32_t mcs;
481     uint32_t mdr;
482     uint32_t mtpr;
483     uint32_t mimr;
484     uint32_t mris;
485     uint32_t mcr;
486 };
487 
488 #define STELLARIS_I2C_MCS_BUSY    0x01
489 #define STELLARIS_I2C_MCS_ERROR   0x02
490 #define STELLARIS_I2C_MCS_ADRACK  0x04
491 #define STELLARIS_I2C_MCS_DATACK  0x08
492 #define STELLARIS_I2C_MCS_ARBLST  0x10
493 #define STELLARIS_I2C_MCS_IDLE    0x20
494 #define STELLARIS_I2C_MCS_BUSBSY  0x40
495 
496 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
497                                    unsigned size)
498 {
499     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
500 
501     switch (offset) {
502     case 0x00: /* MSA */
503         return s->msa;
504     case 0x04: /* MCS */
505         /* We don't emulate timing, so the controller is never busy.  */
506         return s->mcs | STELLARIS_I2C_MCS_IDLE;
507     case 0x08: /* MDR */
508         return s->mdr;
509     case 0x0c: /* MTPR */
510         return s->mtpr;
511     case 0x10: /* MIMR */
512         return s->mimr;
513     case 0x14: /* MRIS */
514         return s->mris;
515     case 0x18: /* MMIS */
516         return s->mris & s->mimr;
517     case 0x20: /* MCR */
518         return s->mcr;
519     default:
520         qemu_log_mask(LOG_GUEST_ERROR,
521                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
522         return 0;
523     }
524 }
525 
526 static void stellaris_i2c_update(stellaris_i2c_state *s)
527 {
528     int level;
529 
530     level = (s->mris & s->mimr) != 0;
531     qemu_set_irq(s->irq, level);
532 }
533 
534 static void stellaris_i2c_write(void *opaque, hwaddr offset,
535                                 uint64_t value, unsigned size)
536 {
537     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
538 
539     switch (offset) {
540     case 0x00: /* MSA */
541         s->msa = value & 0xff;
542         break;
543     case 0x04: /* MCS */
544         if ((s->mcr & 0x10) == 0) {
545             /* Disabled.  Do nothing.  */
546             break;
547         }
548         /* Grab the bus if this is starting a transfer.  */
549         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
550             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
551                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
552             } else {
553                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
554                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
555             }
556         }
557         /* If we don't have the bus then indicate an error.  */
558         if (!i2c_bus_busy(s->bus)
559                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
560             s->mcs |= STELLARIS_I2C_MCS_ERROR;
561             break;
562         }
563         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
564         if (value & 1) {
565             /* Transfer a byte.  */
566             /* TODO: Handle errors.  */
567             if (s->msa & 1) {
568                 /* Recv */
569                 s->mdr = i2c_recv(s->bus);
570             } else {
571                 /* Send */
572                 i2c_send(s->bus, s->mdr);
573             }
574             /* Raise an interrupt.  */
575             s->mris |= 1;
576         }
577         if (value & 4) {
578             /* Finish transfer.  */
579             i2c_end_transfer(s->bus);
580             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
581         }
582         break;
583     case 0x08: /* MDR */
584         s->mdr = value & 0xff;
585         break;
586     case 0x0c: /* MTPR */
587         s->mtpr = value & 0xff;
588         break;
589     case 0x10: /* MIMR */
590         s->mimr = 1;
591         break;
592     case 0x1c: /* MICR */
593         s->mris &= ~value;
594         break;
595     case 0x20: /* MCR */
596         if (value & 1) {
597             qemu_log_mask(LOG_UNIMP,
598                           "stellaris_i2c: Loopback not implemented\n");
599         }
600         if (value & 0x20) {
601             qemu_log_mask(LOG_UNIMP,
602                           "stellaris_i2c: Slave mode not implemented\n");
603         }
604         s->mcr = value & 0x31;
605         break;
606     default:
607         qemu_log_mask(LOG_GUEST_ERROR,
608                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
609     }
610     stellaris_i2c_update(s);
611 }
612 
613 static void stellaris_i2c_reset_enter(Object *obj, ResetType type)
614 {
615     stellaris_i2c_state *s = STELLARIS_I2C(obj);
616 
617     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
618         i2c_end_transfer(s->bus);
619 }
620 
621 static void stellaris_i2c_reset_hold(Object *obj)
622 {
623     stellaris_i2c_state *s = STELLARIS_I2C(obj);
624 
625     s->msa = 0;
626     s->mcs = 0;
627     s->mdr = 0;
628     s->mtpr = 1;
629     s->mimr = 0;
630     s->mris = 0;
631     s->mcr = 0;
632 }
633 
634 static void stellaris_i2c_reset_exit(Object *obj)
635 {
636     stellaris_i2c_state *s = STELLARIS_I2C(obj);
637 
638     stellaris_i2c_update(s);
639 }
640 
641 static const MemoryRegionOps stellaris_i2c_ops = {
642     .read = stellaris_i2c_read,
643     .write = stellaris_i2c_write,
644     .endianness = DEVICE_NATIVE_ENDIAN,
645 };
646 
647 static const VMStateDescription vmstate_stellaris_i2c = {
648     .name = "stellaris_i2c",
649     .version_id = 1,
650     .minimum_version_id = 1,
651     .fields = (const VMStateField[]) {
652         VMSTATE_UINT32(msa, stellaris_i2c_state),
653         VMSTATE_UINT32(mcs, stellaris_i2c_state),
654         VMSTATE_UINT32(mdr, stellaris_i2c_state),
655         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
656         VMSTATE_UINT32(mimr, stellaris_i2c_state),
657         VMSTATE_UINT32(mris, stellaris_i2c_state),
658         VMSTATE_UINT32(mcr, stellaris_i2c_state),
659         VMSTATE_END_OF_LIST()
660     }
661 };
662 
663 static void stellaris_i2c_init(Object *obj)
664 {
665     DeviceState *dev = DEVICE(obj);
666     stellaris_i2c_state *s = STELLARIS_I2C(obj);
667     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
668     I2CBus *bus;
669 
670     sysbus_init_irq(sbd, &s->irq);
671     bus = i2c_init_bus(dev, "i2c");
672     s->bus = bus;
673 
674     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
675                           "i2c", 0x1000);
676     sysbus_init_mmio(sbd, &s->iomem);
677 }
678 
679 /* Analogue to Digital Converter.  This is only partially implemented,
680    enough for applications that use a combined ADC and timer tick.  */
681 
682 #define STELLARIS_ADC_EM_CONTROLLER 0
683 #define STELLARIS_ADC_EM_COMP       1
684 #define STELLARIS_ADC_EM_EXTERNAL   4
685 #define STELLARIS_ADC_EM_TIMER      5
686 #define STELLARIS_ADC_EM_PWM0       6
687 #define STELLARIS_ADC_EM_PWM1       7
688 #define STELLARIS_ADC_EM_PWM2       8
689 
690 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
691 #define STELLARIS_ADC_FIFO_FULL     0x1000
692 
693 #define TYPE_STELLARIS_ADC "stellaris-adc"
694 typedef struct StellarisADCState StellarisADCState;
695 DECLARE_INSTANCE_CHECKER(StellarisADCState, STELLARIS_ADC, TYPE_STELLARIS_ADC)
696 
697 struct StellarisADCState {
698     SysBusDevice parent_obj;
699 
700     MemoryRegion iomem;
701     uint32_t actss;
702     uint32_t ris;
703     uint32_t im;
704     uint32_t emux;
705     uint32_t ostat;
706     uint32_t ustat;
707     uint32_t sspri;
708     uint32_t sac;
709     struct {
710         uint32_t state;
711         uint32_t data[16];
712     } fifo[4];
713     uint32_t ssmux[4];
714     uint32_t ssctl[4];
715     uint32_t noise;
716     qemu_irq irq[4];
717 };
718 
719 static uint32_t stellaris_adc_fifo_read(StellarisADCState *s, int n)
720 {
721     int tail;
722 
723     tail = s->fifo[n].state & 0xf;
724     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
725         s->ustat |= 1 << n;
726     } else {
727         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
728         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
729         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
730             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
731     }
732     return s->fifo[n].data[tail];
733 }
734 
735 static void stellaris_adc_fifo_write(StellarisADCState *s, int n,
736                                      uint32_t value)
737 {
738     int head;
739 
740     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
741        FIFO fir each sequencer.  */
742     head = (s->fifo[n].state >> 4) & 0xf;
743     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
744         s->ostat |= 1 << n;
745         return;
746     }
747     s->fifo[n].data[head] = value;
748     head = (head + 1) & 0xf;
749     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
750     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
751     if ((s->fifo[n].state & 0xf) == head)
752         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
753 }
754 
755 static void stellaris_adc_update(StellarisADCState *s)
756 {
757     int level;
758     int n;
759 
760     for (n = 0; n < 4; n++) {
761         level = (s->ris & s->im & (1 << n)) != 0;
762         qemu_set_irq(s->irq[n], level);
763     }
764 }
765 
766 static void stellaris_adc_trigger(void *opaque, int irq, int level)
767 {
768     StellarisADCState *s = opaque;
769     int n;
770 
771     for (n = 0; n < 4; n++) {
772         if ((s->actss & (1 << n)) == 0) {
773             continue;
774         }
775 
776         if (((s->emux >> (n * 4)) & 0xff) != 5) {
777             continue;
778         }
779 
780         /* Some applications use the ADC as a random number source, so introduce
781            some variation into the signal.  */
782         s->noise = s->noise * 314159 + 1;
783         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
784         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
785         s->ris |= (1 << n);
786         stellaris_adc_update(s);
787     }
788 }
789 
790 static void stellaris_adc_reset_hold(Object *obj)
791 {
792     StellarisADCState *s = STELLARIS_ADC(obj);
793     int n;
794 
795     for (n = 0; n < 4; n++) {
796         s->ssmux[n] = 0;
797         s->ssctl[n] = 0;
798         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
799     }
800 }
801 
802 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
803                                    unsigned size)
804 {
805     StellarisADCState *s = opaque;
806 
807     /* TODO: Implement this.  */
808     if (offset >= 0x40 && offset < 0xc0) {
809         int n;
810         n = (offset - 0x40) >> 5;
811         switch (offset & 0x1f) {
812         case 0x00: /* SSMUX */
813             return s->ssmux[n];
814         case 0x04: /* SSCTL */
815             return s->ssctl[n];
816         case 0x08: /* SSFIFO */
817             return stellaris_adc_fifo_read(s, n);
818         case 0x0c: /* SSFSTAT */
819             return s->fifo[n].state;
820         default:
821             break;
822         }
823     }
824     switch (offset) {
825     case 0x00: /* ACTSS */
826         return s->actss;
827     case 0x04: /* RIS */
828         return s->ris;
829     case 0x08: /* IM */
830         return s->im;
831     case 0x0c: /* ISC */
832         return s->ris & s->im;
833     case 0x10: /* OSTAT */
834         return s->ostat;
835     case 0x14: /* EMUX */
836         return s->emux;
837     case 0x18: /* USTAT */
838         return s->ustat;
839     case 0x20: /* SSPRI */
840         return s->sspri;
841     case 0x30: /* SAC */
842         return s->sac;
843     default:
844         qemu_log_mask(LOG_GUEST_ERROR,
845                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
846         return 0;
847     }
848 }
849 
850 static void stellaris_adc_write(void *opaque, hwaddr offset,
851                                 uint64_t value, unsigned size)
852 {
853     StellarisADCState *s = opaque;
854 
855     /* TODO: Implement this.  */
856     if (offset >= 0x40 && offset < 0xc0) {
857         int n;
858         n = (offset - 0x40) >> 5;
859         switch (offset & 0x1f) {
860         case 0x00: /* SSMUX */
861             s->ssmux[n] = value & 0x33333333;
862             return;
863         case 0x04: /* SSCTL */
864             if (value != 6) {
865                 qemu_log_mask(LOG_UNIMP,
866                               "ADC: Unimplemented sequence %" PRIx64 "\n",
867                               value);
868             }
869             s->ssctl[n] = value;
870             return;
871         default:
872             break;
873         }
874     }
875     switch (offset) {
876     case 0x00: /* ACTSS */
877         s->actss = value & 0xf;
878         break;
879     case 0x08: /* IM */
880         s->im = value;
881         break;
882     case 0x0c: /* ISC */
883         s->ris &= ~value;
884         break;
885     case 0x10: /* OSTAT */
886         s->ostat &= ~value;
887         break;
888     case 0x14: /* EMUX */
889         s->emux = value;
890         break;
891     case 0x18: /* USTAT */
892         s->ustat &= ~value;
893         break;
894     case 0x20: /* SSPRI */
895         s->sspri = value;
896         break;
897     case 0x28: /* PSSI */
898         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
899         break;
900     case 0x30: /* SAC */
901         s->sac = value;
902         break;
903     default:
904         qemu_log_mask(LOG_GUEST_ERROR,
905                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
906     }
907     stellaris_adc_update(s);
908 }
909 
910 static const MemoryRegionOps stellaris_adc_ops = {
911     .read = stellaris_adc_read,
912     .write = stellaris_adc_write,
913     .endianness = DEVICE_NATIVE_ENDIAN,
914 };
915 
916 static const VMStateDescription vmstate_stellaris_adc = {
917     .name = "stellaris_adc",
918     .version_id = 1,
919     .minimum_version_id = 1,
920     .fields = (const VMStateField[]) {
921         VMSTATE_UINT32(actss, StellarisADCState),
922         VMSTATE_UINT32(ris, StellarisADCState),
923         VMSTATE_UINT32(im, StellarisADCState),
924         VMSTATE_UINT32(emux, StellarisADCState),
925         VMSTATE_UINT32(ostat, StellarisADCState),
926         VMSTATE_UINT32(ustat, StellarisADCState),
927         VMSTATE_UINT32(sspri, StellarisADCState),
928         VMSTATE_UINT32(sac, StellarisADCState),
929         VMSTATE_UINT32(fifo[0].state, StellarisADCState),
930         VMSTATE_UINT32_ARRAY(fifo[0].data, StellarisADCState, 16),
931         VMSTATE_UINT32(ssmux[0], StellarisADCState),
932         VMSTATE_UINT32(ssctl[0], StellarisADCState),
933         VMSTATE_UINT32(fifo[1].state, StellarisADCState),
934         VMSTATE_UINT32_ARRAY(fifo[1].data, StellarisADCState, 16),
935         VMSTATE_UINT32(ssmux[1], StellarisADCState),
936         VMSTATE_UINT32(ssctl[1], StellarisADCState),
937         VMSTATE_UINT32(fifo[2].state, StellarisADCState),
938         VMSTATE_UINT32_ARRAY(fifo[2].data, StellarisADCState, 16),
939         VMSTATE_UINT32(ssmux[2], StellarisADCState),
940         VMSTATE_UINT32(ssctl[2], StellarisADCState),
941         VMSTATE_UINT32(fifo[3].state, StellarisADCState),
942         VMSTATE_UINT32_ARRAY(fifo[3].data, StellarisADCState, 16),
943         VMSTATE_UINT32(ssmux[3], StellarisADCState),
944         VMSTATE_UINT32(ssctl[3], StellarisADCState),
945         VMSTATE_UINT32(noise, StellarisADCState),
946         VMSTATE_END_OF_LIST()
947     }
948 };
949 
950 static void stellaris_adc_init(Object *obj)
951 {
952     DeviceState *dev = DEVICE(obj);
953     StellarisADCState *s = STELLARIS_ADC(obj);
954     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
955     int n;
956 
957     for (n = 0; n < 4; n++) {
958         sysbus_init_irq(sbd, &s->irq[n]);
959     }
960 
961     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
962                           "adc", 0x1000);
963     sysbus_init_mmio(sbd, &s->iomem);
964     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
965 }
966 
967 /* Board init.  */
968 static stellaris_board_info stellaris_boards[] = {
969   { "LM3S811EVB",
970     0,
971     0x0032000e,
972     0x001f001f, /* dc0 */
973     0x001132bf,
974     0x01071013,
975     0x3f0f01ff,
976     0x0000001f,
977     BP_OLED_I2C
978   },
979   { "LM3S6965EVB",
980     0x10010002,
981     0x1073402e,
982     0x00ff007f, /* dc0 */
983     0x001133ff,
984     0x030f5317,
985     0x0f0f87ff,
986     0x5000007f,
987     BP_OLED_SSI | BP_GAMEPAD
988   }
989 };
990 
991 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
992 {
993     static const int uart_irq[] = {5, 6, 33, 34};
994     static const int timer_irq[] = {19, 21, 23, 35};
995     static const uint32_t gpio_addr[7] =
996       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
997         0x40024000, 0x40025000, 0x40026000};
998     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
999 
1000     /* Memory map of SoC devices, from
1001      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1002      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1003      *
1004      * 40000000 wdtimer
1005      * 40002000 i2c (unimplemented)
1006      * 40004000 GPIO
1007      * 40005000 GPIO
1008      * 40006000 GPIO
1009      * 40007000 GPIO
1010      * 40008000 SSI
1011      * 4000c000 UART
1012      * 4000d000 UART
1013      * 4000e000 UART
1014      * 40020000 i2c
1015      * 40021000 i2c (unimplemented)
1016      * 40024000 GPIO
1017      * 40025000 GPIO
1018      * 40026000 GPIO
1019      * 40028000 PWM (unimplemented)
1020      * 4002c000 QEI (unimplemented)
1021      * 4002d000 QEI (unimplemented)
1022      * 40030000 gptimer
1023      * 40031000 gptimer
1024      * 40032000 gptimer
1025      * 40033000 gptimer
1026      * 40038000 ADC
1027      * 4003c000 analogue comparator (unimplemented)
1028      * 40048000 ethernet
1029      * 400fc000 hibernation module (unimplemented)
1030      * 400fd000 flash memory control (unimplemented)
1031      * 400fe000 system control
1032      */
1033 
1034     Object *soc_container;
1035     DeviceState *gpio_dev[7], *nvic;
1036     qemu_irq gpio_in[7][8];
1037     qemu_irq gpio_out[7][8];
1038     qemu_irq adc;
1039     int sram_size;
1040     int flash_size;
1041     I2CBus *i2c;
1042     DeviceState *dev;
1043     DeviceState *ssys_dev;
1044     int i;
1045     int j;
1046     NICInfo *nd;
1047     MACAddr mac;
1048 
1049     MemoryRegion *sram = g_new(MemoryRegion, 1);
1050     MemoryRegion *flash = g_new(MemoryRegion, 1);
1051     MemoryRegion *system_memory = get_system_memory();
1052 
1053     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1054     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1055 
1056     soc_container = object_new("container");
1057     object_property_add_child(OBJECT(ms), "soc", soc_container);
1058 
1059     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1060     memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1061                            &error_fatal);
1062     memory_region_add_subregion(system_memory, 0, flash);
1063 
1064     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1065                            &error_fatal);
1066     memory_region_add_subregion(system_memory, 0x20000000, sram);
1067 
1068     /*
1069      * Create the system-registers object early, because we will
1070      * need its sysclk output.
1071      */
1072     ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
1073     object_property_add_child(soc_container, "sys", OBJECT(ssys_dev));
1074 
1075     /*
1076      * Most devices come preprogrammed with a MAC address in the user data.
1077      * Generate a MAC address now, if there isn't a matching -nic for it.
1078      */
1079     nd = qemu_find_nic_info("stellaris_enet", true, "stellaris");
1080     if (nd) {
1081         memcpy(mac.a, nd->macaddr.a, sizeof(mac.a));
1082     } else {
1083         qemu_macaddr_default_if_unset(&mac);
1084     }
1085 
1086     qdev_prop_set_uint32(ssys_dev, "user0",
1087                          mac.a[0] | (mac.a[1] << 8) | (mac.a[2] << 16));
1088     qdev_prop_set_uint32(ssys_dev, "user1",
1089                          mac.a[3] | (mac.a[4] << 8) | (mac.a[5] << 16));
1090     qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
1091     qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
1092     qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
1093     qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
1094     qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
1095     qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
1096     qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
1097     sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
1098 
1099     nvic = qdev_new(TYPE_ARMV7M);
1100     object_property_add_child(soc_container, "v7m", OBJECT(nvic));
1101     qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1102     qdev_prop_set_uint8(nvic, "num-prio-bits", NUM_PRIO_BITS);
1103     qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1104     qdev_prop_set_bit(nvic, "enable-bitband", true);
1105     qdev_connect_clock_in(nvic, "cpuclk",
1106                           qdev_get_clock_out(ssys_dev, "SYSCLK"));
1107     /* This SoC does not connect the systick reference clock */
1108     object_property_set_link(OBJECT(nvic), "memory",
1109                              OBJECT(get_system_memory()), &error_abort);
1110     /* This will exit with an error if the user passed us a bad cpu_type */
1111     sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
1112 
1113     /* Now we can wire up the IRQ and MMIO of the system registers */
1114     sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
1115     sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
1116 
1117     if (board->dc1 & (1 << 16)) {
1118         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1119                                     qdev_get_gpio_in(nvic, 14),
1120                                     qdev_get_gpio_in(nvic, 15),
1121                                     qdev_get_gpio_in(nvic, 16),
1122                                     qdev_get_gpio_in(nvic, 17),
1123                                     NULL);
1124         adc = qdev_get_gpio_in(dev, 0);
1125     } else {
1126         adc = NULL;
1127     }
1128     for (i = 0; i < 4; i++) {
1129         if (board->dc2 & (0x10000 << i)) {
1130             SysBusDevice *sbd;
1131 
1132             dev = qdev_new(TYPE_STELLARIS_GPTM);
1133             sbd = SYS_BUS_DEVICE(dev);
1134             object_property_add_child(soc_container, "gptm[*]", OBJECT(dev));
1135             qdev_connect_clock_in(dev, "clk",
1136                                   qdev_get_clock_out(ssys_dev, "SYSCLK"));
1137             sysbus_realize_and_unref(sbd, &error_fatal);
1138             sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000);
1139             sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i]));
1140             /* TODO: This is incorrect, but we get away with it because
1141                the ADC output is only ever pulsed.  */
1142             qdev_connect_gpio_out(dev, 0, adc);
1143         }
1144     }
1145 
1146     if (board->dc1 & (1 << 3)) { /* watchdog present */
1147         dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1148         object_property_add_child(soc_container, "wdg", OBJECT(dev));
1149         qdev_connect_clock_in(dev, "WDOGCLK",
1150                               qdev_get_clock_out(ssys_dev, "SYSCLK"));
1151 
1152         sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1153         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1154                         0,
1155                         0x40000000u);
1156         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1157                            0,
1158                            qdev_get_gpio_in(nvic, 18));
1159     }
1160 
1161 
1162     for (i = 0; i < 7; i++) {
1163         if (board->dc4 & (1 << i)) {
1164             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1165                                                qdev_get_gpio_in(nvic,
1166                                                                 gpio_irq[i]));
1167             for (j = 0; j < 8; j++) {
1168                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1169                 gpio_out[i][j] = NULL;
1170             }
1171         }
1172     }
1173 
1174     if (board->dc2 & (1 << 12)) {
1175         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1176                                    qdev_get_gpio_in(nvic, 8));
1177         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1178         if (board->peripherals & BP_OLED_I2C) {
1179             i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1180         }
1181     }
1182 
1183     for (i = 0; i < 4; i++) {
1184         if (board->dc2 & (1 << i)) {
1185             SysBusDevice *sbd;
1186 
1187             dev = qdev_new("pl011_luminary");
1188             object_property_add_child(soc_container, "uart[*]", OBJECT(dev));
1189             sbd = SYS_BUS_DEVICE(dev);
1190             qdev_prop_set_chr(dev, "chardev", serial_hd(i));
1191             sysbus_realize_and_unref(sbd, &error_fatal);
1192             sysbus_mmio_map(sbd, 0, 0x4000c000 + i * 0x1000);
1193             sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, uart_irq[i]));
1194         }
1195     }
1196     if (board->dc2 & (1 << 4)) {
1197         dev = sysbus_create_simple("pl022", 0x40008000,
1198                                    qdev_get_gpio_in(nvic, 7));
1199         if (board->peripherals & BP_OLED_SSI) {
1200             void *bus;
1201             DeviceState *sddev;
1202             DeviceState *ssddev;
1203             DriveInfo *dinfo;
1204             DeviceState *carddev;
1205             DeviceState *gpio_d_splitter;
1206             BlockBackend *blk;
1207 
1208             /*
1209              * Some boards have both an OLED controller and SD card connected to
1210              * the same SSI port, with the SD card chip select connected to a
1211              * GPIO pin.  Technically the OLED chip select is connected to the
1212              * SSI Fss pin.  We do not bother emulating that as both devices
1213              * should never be selected simultaneously, and our OLED controller
1214              * ignores stray 0xff commands that occur when deselecting the SD
1215              * card.
1216              *
1217              * The h/w wiring is:
1218              *  - GPIO pin D0 is wired to the active-low SD card chip select
1219              *  - GPIO pin A3 is wired to the active-low OLED chip select
1220              *  - The SoC wiring of the PL061 "auxiliary function" for A3 is
1221              *    SSI0Fss ("frame signal"), which is an output from the SoC's
1222              *    SSI controller. The SSI controller takes SSI0Fss low when it
1223              *    transmits a frame, so it can work as a chip-select signal.
1224              *  - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
1225              *    (the OLED never sends data to the CPU, so no wiring needed)
1226              *  - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
1227              *    and the OLED display-data-in
1228              *  - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
1229              *    serial-clock input
1230              * So a guest that wants to use the OLED can configure the PL061
1231              * to make pins A2, A3, A5 aux-function, so they are connected
1232              * directly to the SSI controller. When the SSI controller sends
1233              * data it asserts SSI0Fss which selects the OLED.
1234              * A guest that wants to use the SD card configures A2, A4 and A5
1235              * as aux-function, but leaves A3 as a software-controlled GPIO
1236              * line. It asserts the SD card chip-select by using the PL061
1237              * to control pin D0, and lets the SSI controller handle Clk, Tx
1238              * and Rx. (The SSI controller asserts Fss during tx cycles as
1239              * usual, but because A3 is not set to aux-function this is not
1240              * forwarded to the OLED, and so the OLED stays unselected.)
1241              *
1242              * The QEMU implementation instead is:
1243              *  - GPIO pin D0 is wired to the active-low SD card chip select,
1244              *    and also to the OLED chip-select which is implemented
1245              *    as *active-high*
1246              *  - SSI controller signals go to the devices regardless of
1247              *    whether the guest programs A2, A4, A5 as aux-function or not
1248              *
1249              * The problem with this implementation is if the guest doesn't
1250              * care about the SD card and only uses the OLED. In that case it
1251              * may choose never to do anything with D0 (leaving it in its
1252              * default floating state, which reliably leaves the card disabled
1253              * because an SD card has a pullup on CS within the card itself),
1254              * and only set up A2, A3, A5. This for us would mean the OLED
1255              * never gets the chip-select assert it needs. We work around
1256              * this with a manual raise of D0 here (despite board creation
1257              * code being the wrong place to raise IRQ lines) to put the OLED
1258              * into an initially selected state.
1259              *
1260              * In theory the right way to model this would be:
1261              *  - Implement aux-function support in the PL061, with an
1262              *    extra set of AFIN and AFOUT GPIO lines (set up so that
1263              *    if a GPIO line is in auxfn mode the main GPIO in and out
1264              *    track the AFIN and AFOUT lines)
1265              *  - Wire the AFOUT for D0 up to either a line from the
1266              *    SSI controller that's pulled low around every transmit,
1267              *    or at least to an always-0 line here on the board
1268              *  - Make the ssd0323 OLED controller chipselect active-low
1269              */
1270             bus = qdev_get_child_bus(dev, "ssi");
1271             sddev = ssi_create_peripheral(bus, "ssi-sd");
1272 
1273             dinfo = drive_get(IF_SD, 0, 0);
1274             blk = dinfo ? blk_by_legacy_dinfo(dinfo) : NULL;
1275             carddev = qdev_new(TYPE_SD_CARD_SPI);
1276             qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
1277             qdev_realize_and_unref(carddev,
1278                                    qdev_get_child_bus(sddev, "sd-bus"),
1279                                    &error_fatal);
1280 
1281             ssddev = qdev_new("ssd0323");
1282             object_property_add_child(OBJECT(ms), "oled", OBJECT(ssddev));
1283             qdev_prop_set_uint8(ssddev, "cs", 1);
1284             qdev_realize_and_unref(ssddev, bus, &error_fatal);
1285 
1286             gpio_d_splitter = qdev_new(TYPE_SPLIT_IRQ);
1287             object_property_add_child(OBJECT(ms), "splitter",
1288                                       OBJECT(gpio_d_splitter));
1289             qdev_prop_set_uint32(gpio_d_splitter, "num-lines", 2);
1290             qdev_realize_and_unref(gpio_d_splitter, NULL, &error_fatal);
1291             qdev_connect_gpio_out(
1292                     gpio_d_splitter, 0,
1293                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0));
1294             qdev_connect_gpio_out(
1295                     gpio_d_splitter, 1,
1296                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1297             gpio_out[GPIO_D][0] = qdev_get_gpio_in(gpio_d_splitter, 0);
1298 
1299             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1300 
1301             /* Make sure the select pin is high.  */
1302             qemu_irq_raise(gpio_out[GPIO_D][0]);
1303         }
1304     }
1305     if (board->dc4 & (1 << 28)) {
1306         DeviceState *enet;
1307 
1308         enet = qdev_new("stellaris_enet");
1309         object_property_add_child(soc_container, "enet", OBJECT(enet));
1310         if (nd) {
1311             qdev_set_nic_properties(enet, nd);
1312         } else {
1313             qdev_prop_set_macaddr(enet, "mac", mac.a);
1314         }
1315 
1316         sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1317         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1318         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1319     }
1320     if (board->peripherals & BP_GAMEPAD) {
1321         QList *gpad_keycode_list = qlist_new();
1322         static const int gpad_keycode[5] = {
1323             Q_KEY_CODE_UP, Q_KEY_CODE_DOWN, Q_KEY_CODE_LEFT,
1324             Q_KEY_CODE_RIGHT, Q_KEY_CODE_CTRL,
1325         };
1326         DeviceState *gpad;
1327 
1328         gpad = qdev_new(TYPE_STELLARIS_GAMEPAD);
1329         object_property_add_child(OBJECT(ms), "gamepad", OBJECT(gpad));
1330         for (i = 0; i < ARRAY_SIZE(gpad_keycode); i++) {
1331             qlist_append_int(gpad_keycode_list, gpad_keycode[i]);
1332         }
1333         qdev_prop_set_array(gpad, "keycodes", gpad_keycode_list);
1334         sysbus_realize_and_unref(SYS_BUS_DEVICE(gpad), &error_fatal);
1335 
1336         qdev_connect_gpio_out(gpad, 0,
1337                               qemu_irq_invert(gpio_in[GPIO_E][0])); /* up */
1338         qdev_connect_gpio_out(gpad, 1,
1339                               qemu_irq_invert(gpio_in[GPIO_E][1])); /* down */
1340         qdev_connect_gpio_out(gpad, 2,
1341                               qemu_irq_invert(gpio_in[GPIO_E][2])); /* left */
1342         qdev_connect_gpio_out(gpad, 3,
1343                               qemu_irq_invert(gpio_in[GPIO_E][3])); /* right */
1344         qdev_connect_gpio_out(gpad, 4,
1345                               qemu_irq_invert(gpio_in[GPIO_F][1])); /* select */
1346     }
1347     for (i = 0; i < 7; i++) {
1348         if (board->dc4 & (1 << i)) {
1349             for (j = 0; j < 8; j++) {
1350                 if (gpio_out[i][j]) {
1351                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1352                 }
1353             }
1354         }
1355     }
1356 
1357     /* Add dummy regions for the devices we don't implement yet,
1358      * so guest accesses don't cause unlogged crashes.
1359      */
1360     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1361     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1362     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1363     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1364     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1365     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1366     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1367     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1368 
1369     armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, 0, flash_size);
1370 }
1371 
1372 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1373 static void lm3s811evb_init(MachineState *machine)
1374 {
1375     stellaris_init(machine, &stellaris_boards[0]);
1376 }
1377 
1378 static void lm3s6965evb_init(MachineState *machine)
1379 {
1380     stellaris_init(machine, &stellaris_boards[1]);
1381 }
1382 
1383 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1384 {
1385     MachineClass *mc = MACHINE_CLASS(oc);
1386 
1387     mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
1388     mc->init = lm3s811evb_init;
1389     mc->ignore_memory_transaction_failures = true;
1390     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1391 }
1392 
1393 static const TypeInfo lm3s811evb_type = {
1394     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1395     .parent = TYPE_MACHINE,
1396     .class_init = lm3s811evb_class_init,
1397 };
1398 
1399 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1400 {
1401     MachineClass *mc = MACHINE_CLASS(oc);
1402 
1403     mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
1404     mc->init = lm3s6965evb_init;
1405     mc->ignore_memory_transaction_failures = true;
1406     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1407 }
1408 
1409 static const TypeInfo lm3s6965evb_type = {
1410     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1411     .parent = TYPE_MACHINE,
1412     .class_init = lm3s6965evb_class_init,
1413 };
1414 
1415 static void stellaris_machine_init(void)
1416 {
1417     type_register_static(&lm3s811evb_type);
1418     type_register_static(&lm3s6965evb_type);
1419 }
1420 
1421 type_init(stellaris_machine_init)
1422 
1423 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1424 {
1425     DeviceClass *dc = DEVICE_CLASS(klass);
1426     ResettableClass *rc = RESETTABLE_CLASS(klass);
1427 
1428     rc->phases.enter = stellaris_i2c_reset_enter;
1429     rc->phases.hold = stellaris_i2c_reset_hold;
1430     rc->phases.exit = stellaris_i2c_reset_exit;
1431     dc->vmsd = &vmstate_stellaris_i2c;
1432 }
1433 
1434 static const TypeInfo stellaris_i2c_info = {
1435     .name          = TYPE_STELLARIS_I2C,
1436     .parent        = TYPE_SYS_BUS_DEVICE,
1437     .instance_size = sizeof(stellaris_i2c_state),
1438     .instance_init = stellaris_i2c_init,
1439     .class_init    = stellaris_i2c_class_init,
1440 };
1441 
1442 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1443 {
1444     DeviceClass *dc = DEVICE_CLASS(klass);
1445     ResettableClass *rc = RESETTABLE_CLASS(klass);
1446 
1447     rc->phases.hold = stellaris_adc_reset_hold;
1448     dc->vmsd = &vmstate_stellaris_adc;
1449 }
1450 
1451 static const TypeInfo stellaris_adc_info = {
1452     .name          = TYPE_STELLARIS_ADC,
1453     .parent        = TYPE_SYS_BUS_DEVICE,
1454     .instance_size = sizeof(StellarisADCState),
1455     .instance_init = stellaris_adc_init,
1456     .class_init    = stellaris_adc_class_init,
1457 };
1458 
1459 static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1460 {
1461     DeviceClass *dc = DEVICE_CLASS(klass);
1462     ResettableClass *rc = RESETTABLE_CLASS(klass);
1463 
1464     dc->vmsd = &vmstate_stellaris_sys;
1465     rc->phases.enter = stellaris_sys_reset_enter;
1466     rc->phases.hold = stellaris_sys_reset_hold;
1467     rc->phases.exit = stellaris_sys_reset_exit;
1468     device_class_set_props(dc, stellaris_sys_properties);
1469 }
1470 
1471 static const TypeInfo stellaris_sys_info = {
1472     .name = TYPE_STELLARIS_SYS,
1473     .parent = TYPE_SYS_BUS_DEVICE,
1474     .instance_size = sizeof(ssys_state),
1475     .instance_init = stellaris_sys_instance_init,
1476     .class_init = stellaris_sys_class_init,
1477 };
1478 
1479 static void stellaris_register_types(void)
1480 {
1481     type_register_static(&stellaris_i2c_info);
1482     type_register_static(&stellaris_adc_info);
1483     type_register_static(&stellaris_sys_info);
1484 }
1485 
1486 type_init(stellaris_register_types)
1487