xref: /openbmc/qemu/hw/arm/stellaris.c (revision 9c4218e9)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "hw/sysbus.h"
12 #include "hw/ssi/ssi.h"
13 #include "hw/arm/arm.h"
14 #include "hw/devices.h"
15 #include "qemu/timer.h"
16 #include "hw/i2c/i2c.h"
17 #include "net/net.h"
18 #include "hw/boards.h"
19 #include "exec/address-spaces.h"
20 #include "sysemu/sysemu.h"
21 
22 #define GPIO_A 0
23 #define GPIO_B 1
24 #define GPIO_C 2
25 #define GPIO_D 3
26 #define GPIO_E 4
27 #define GPIO_F 5
28 #define GPIO_G 6
29 
30 #define BP_OLED_I2C  0x01
31 #define BP_OLED_SSI  0x02
32 #define BP_GAMEPAD   0x04
33 
34 #define NUM_IRQ_LINES 64
35 
36 typedef const struct {
37     const char *name;
38     uint32_t did0;
39     uint32_t did1;
40     uint32_t dc0;
41     uint32_t dc1;
42     uint32_t dc2;
43     uint32_t dc3;
44     uint32_t dc4;
45     uint32_t peripherals;
46 } stellaris_board_info;
47 
48 /* General purpose timer module.  */
49 
50 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
51 #define STELLARIS_GPTM(obj) \
52     OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM)
53 
54 typedef struct gptm_state {
55     SysBusDevice parent_obj;
56 
57     MemoryRegion iomem;
58     uint32_t config;
59     uint32_t mode[2];
60     uint32_t control;
61     uint32_t state;
62     uint32_t mask;
63     uint32_t load[2];
64     uint32_t match[2];
65     uint32_t prescale[2];
66     uint32_t match_prescale[2];
67     uint32_t rtc;
68     int64_t tick[2];
69     struct gptm_state *opaque[2];
70     QEMUTimer *timer[2];
71     /* The timers have an alternate output used to trigger the ADC.  */
72     qemu_irq trigger;
73     qemu_irq irq;
74 } gptm_state;
75 
76 static void gptm_update_irq(gptm_state *s)
77 {
78     int level;
79     level = (s->state & s->mask) != 0;
80     qemu_set_irq(s->irq, level);
81 }
82 
83 static void gptm_stop(gptm_state *s, int n)
84 {
85     timer_del(s->timer[n]);
86 }
87 
88 static void gptm_reload(gptm_state *s, int n, int reset)
89 {
90     int64_t tick;
91     if (reset)
92         tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
93     else
94         tick = s->tick[n];
95 
96     if (s->config == 0) {
97         /* 32-bit CountDown.  */
98         uint32_t count;
99         count = s->load[0] | (s->load[1] << 16);
100         tick += (int64_t)count * system_clock_scale;
101     } else if (s->config == 1) {
102         /* 32-bit RTC.  1Hz tick.  */
103         tick += get_ticks_per_sec();
104     } else if (s->mode[n] == 0xa) {
105         /* PWM mode.  Not implemented.  */
106     } else {
107         hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
108     }
109     s->tick[n] = tick;
110     timer_mod(s->timer[n], tick);
111 }
112 
113 static void gptm_tick(void *opaque)
114 {
115     gptm_state **p = (gptm_state **)opaque;
116     gptm_state *s;
117     int n;
118 
119     s = *p;
120     n = p - s->opaque;
121     if (s->config == 0) {
122         s->state |= 1;
123         if ((s->control & 0x20)) {
124             /* Output trigger.  */
125 	    qemu_irq_pulse(s->trigger);
126         }
127         if (s->mode[0] & 1) {
128             /* One-shot.  */
129             s->control &= ~1;
130         } else {
131             /* Periodic.  */
132             gptm_reload(s, 0, 0);
133         }
134     } else if (s->config == 1) {
135         /* RTC.  */
136         uint32_t match;
137         s->rtc++;
138         match = s->match[0] | (s->match[1] << 16);
139         if (s->rtc > match)
140             s->rtc = 0;
141         if (s->rtc == 0) {
142             s->state |= 8;
143         }
144         gptm_reload(s, 0, 0);
145     } else if (s->mode[n] == 0xa) {
146         /* PWM mode.  Not implemented.  */
147     } else {
148         hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
149     }
150     gptm_update_irq(s);
151 }
152 
153 static uint64_t gptm_read(void *opaque, hwaddr offset,
154                           unsigned size)
155 {
156     gptm_state *s = (gptm_state *)opaque;
157 
158     switch (offset) {
159     case 0x00: /* CFG */
160         return s->config;
161     case 0x04: /* TAMR */
162         return s->mode[0];
163     case 0x08: /* TBMR */
164         return s->mode[1];
165     case 0x0c: /* CTL */
166         return s->control;
167     case 0x18: /* IMR */
168         return s->mask;
169     case 0x1c: /* RIS */
170         return s->state;
171     case 0x20: /* MIS */
172         return s->state & s->mask;
173     case 0x24: /* CR */
174         return 0;
175     case 0x28: /* TAILR */
176         return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
177     case 0x2c: /* TBILR */
178         return s->load[1];
179     case 0x30: /* TAMARCHR */
180         return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
181     case 0x34: /* TBMATCHR */
182         return s->match[1];
183     case 0x38: /* TAPR */
184         return s->prescale[0];
185     case 0x3c: /* TBPR */
186         return s->prescale[1];
187     case 0x40: /* TAPMR */
188         return s->match_prescale[0];
189     case 0x44: /* TBPMR */
190         return s->match_prescale[1];
191     case 0x48: /* TAR */
192         if (s->config == 1) {
193             return s->rtc;
194         }
195         qemu_log_mask(LOG_UNIMP,
196                       "GPTM: read of TAR but timer read not supported");
197         return 0;
198     case 0x4c: /* TBR */
199         qemu_log_mask(LOG_UNIMP,
200                       "GPTM: read of TBR but timer read not supported");
201         return 0;
202     default:
203         qemu_log_mask(LOG_GUEST_ERROR,
204                       "GPTM: read at bad offset 0x%x\n", (int)offset);
205         return 0;
206     }
207 }
208 
209 static void gptm_write(void *opaque, hwaddr offset,
210                        uint64_t value, unsigned size)
211 {
212     gptm_state *s = (gptm_state *)opaque;
213     uint32_t oldval;
214 
215     /* The timers should be disabled before changing the configuration.
216        We take advantage of this and defer everything until the timer
217        is enabled.  */
218     switch (offset) {
219     case 0x00: /* CFG */
220         s->config = value;
221         break;
222     case 0x04: /* TAMR */
223         s->mode[0] = value;
224         break;
225     case 0x08: /* TBMR */
226         s->mode[1] = value;
227         break;
228     case 0x0c: /* CTL */
229         oldval = s->control;
230         s->control = value;
231         /* TODO: Implement pause.  */
232         if ((oldval ^ value) & 1) {
233             if (value & 1) {
234                 gptm_reload(s, 0, 1);
235             } else {
236                 gptm_stop(s, 0);
237             }
238         }
239         if (((oldval ^ value) & 0x100) && s->config >= 4) {
240             if (value & 0x100) {
241                 gptm_reload(s, 1, 1);
242             } else {
243                 gptm_stop(s, 1);
244             }
245         }
246         break;
247     case 0x18: /* IMR */
248         s->mask = value & 0x77;
249         gptm_update_irq(s);
250         break;
251     case 0x24: /* CR */
252         s->state &= ~value;
253         break;
254     case 0x28: /* TAILR */
255         s->load[0] = value & 0xffff;
256         if (s->config < 4) {
257             s->load[1] = value >> 16;
258         }
259         break;
260     case 0x2c: /* TBILR */
261         s->load[1] = value & 0xffff;
262         break;
263     case 0x30: /* TAMARCHR */
264         s->match[0] = value & 0xffff;
265         if (s->config < 4) {
266             s->match[1] = value >> 16;
267         }
268         break;
269     case 0x34: /* TBMATCHR */
270         s->match[1] = value >> 16;
271         break;
272     case 0x38: /* TAPR */
273         s->prescale[0] = value;
274         break;
275     case 0x3c: /* TBPR */
276         s->prescale[1] = value;
277         break;
278     case 0x40: /* TAPMR */
279         s->match_prescale[0] = value;
280         break;
281     case 0x44: /* TBPMR */
282         s->match_prescale[0] = value;
283         break;
284     default:
285         hw_error("gptm_write: Bad offset 0x%x\n", (int)offset);
286     }
287     gptm_update_irq(s);
288 }
289 
290 static const MemoryRegionOps gptm_ops = {
291     .read = gptm_read,
292     .write = gptm_write,
293     .endianness = DEVICE_NATIVE_ENDIAN,
294 };
295 
296 static const VMStateDescription vmstate_stellaris_gptm = {
297     .name = "stellaris_gptm",
298     .version_id = 1,
299     .minimum_version_id = 1,
300     .fields = (VMStateField[]) {
301         VMSTATE_UINT32(config, gptm_state),
302         VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
303         VMSTATE_UINT32(control, gptm_state),
304         VMSTATE_UINT32(state, gptm_state),
305         VMSTATE_UINT32(mask, gptm_state),
306         VMSTATE_UNUSED(8),
307         VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
308         VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
309         VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
310         VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
311         VMSTATE_UINT32(rtc, gptm_state),
312         VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
313         VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
314         VMSTATE_END_OF_LIST()
315     }
316 };
317 
318 static int stellaris_gptm_init(SysBusDevice *sbd)
319 {
320     DeviceState *dev = DEVICE(sbd);
321     gptm_state *s = STELLARIS_GPTM(dev);
322 
323     sysbus_init_irq(sbd, &s->irq);
324     qdev_init_gpio_out(dev, &s->trigger, 1);
325 
326     memory_region_init_io(&s->iomem, OBJECT(s), &gptm_ops, s,
327                           "gptm", 0x1000);
328     sysbus_init_mmio(sbd, &s->iomem);
329 
330     s->opaque[0] = s->opaque[1] = s;
331     s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
332     s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
333     vmstate_register(dev, -1, &vmstate_stellaris_gptm, s);
334     return 0;
335 }
336 
337 
338 /* System controller.  */
339 
340 typedef struct {
341     MemoryRegion iomem;
342     uint32_t pborctl;
343     uint32_t ldopctl;
344     uint32_t int_status;
345     uint32_t int_mask;
346     uint32_t resc;
347     uint32_t rcc;
348     uint32_t rcc2;
349     uint32_t rcgc[3];
350     uint32_t scgc[3];
351     uint32_t dcgc[3];
352     uint32_t clkvclr;
353     uint32_t ldoarst;
354     uint32_t user0;
355     uint32_t user1;
356     qemu_irq irq;
357     stellaris_board_info *board;
358 } ssys_state;
359 
360 static void ssys_update(ssys_state *s)
361 {
362   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
363 }
364 
365 static uint32_t pllcfg_sandstorm[16] = {
366     0x31c0, /* 1 Mhz */
367     0x1ae0, /* 1.8432 Mhz */
368     0x18c0, /* 2 Mhz */
369     0xd573, /* 2.4576 Mhz */
370     0x37a6, /* 3.57954 Mhz */
371     0x1ae2, /* 3.6864 Mhz */
372     0x0c40, /* 4 Mhz */
373     0x98bc, /* 4.906 Mhz */
374     0x935b, /* 4.9152 Mhz */
375     0x09c0, /* 5 Mhz */
376     0x4dee, /* 5.12 Mhz */
377     0x0c41, /* 6 Mhz */
378     0x75db, /* 6.144 Mhz */
379     0x1ae6, /* 7.3728 Mhz */
380     0x0600, /* 8 Mhz */
381     0x585b /* 8.192 Mhz */
382 };
383 
384 static uint32_t pllcfg_fury[16] = {
385     0x3200, /* 1 Mhz */
386     0x1b20, /* 1.8432 Mhz */
387     0x1900, /* 2 Mhz */
388     0xf42b, /* 2.4576 Mhz */
389     0x37e3, /* 3.57954 Mhz */
390     0x1b21, /* 3.6864 Mhz */
391     0x0c80, /* 4 Mhz */
392     0x98ee, /* 4.906 Mhz */
393     0xd5b4, /* 4.9152 Mhz */
394     0x0a00, /* 5 Mhz */
395     0x4e27, /* 5.12 Mhz */
396     0x1902, /* 6 Mhz */
397     0xec1c, /* 6.144 Mhz */
398     0x1b23, /* 7.3728 Mhz */
399     0x0640, /* 8 Mhz */
400     0xb11c /* 8.192 Mhz */
401 };
402 
403 #define DID0_VER_MASK        0x70000000
404 #define DID0_VER_0           0x00000000
405 #define DID0_VER_1           0x10000000
406 
407 #define DID0_CLASS_MASK      0x00FF0000
408 #define DID0_CLASS_SANDSTORM 0x00000000
409 #define DID0_CLASS_FURY      0x00010000
410 
411 static int ssys_board_class(const ssys_state *s)
412 {
413     uint32_t did0 = s->board->did0;
414     switch (did0 & DID0_VER_MASK) {
415     case DID0_VER_0:
416         return DID0_CLASS_SANDSTORM;
417     case DID0_VER_1:
418         switch (did0 & DID0_CLASS_MASK) {
419         case DID0_CLASS_SANDSTORM:
420         case DID0_CLASS_FURY:
421             return did0 & DID0_CLASS_MASK;
422         }
423         /* for unknown classes, fall through */
424     default:
425         hw_error("ssys_board_class: Unknown class 0x%08x\n", did0);
426     }
427 }
428 
429 static uint64_t ssys_read(void *opaque, hwaddr offset,
430                           unsigned size)
431 {
432     ssys_state *s = (ssys_state *)opaque;
433 
434     switch (offset) {
435     case 0x000: /* DID0 */
436         return s->board->did0;
437     case 0x004: /* DID1 */
438         return s->board->did1;
439     case 0x008: /* DC0 */
440         return s->board->dc0;
441     case 0x010: /* DC1 */
442         return s->board->dc1;
443     case 0x014: /* DC2 */
444         return s->board->dc2;
445     case 0x018: /* DC3 */
446         return s->board->dc3;
447     case 0x01c: /* DC4 */
448         return s->board->dc4;
449     case 0x030: /* PBORCTL */
450         return s->pborctl;
451     case 0x034: /* LDOPCTL */
452         return s->ldopctl;
453     case 0x040: /* SRCR0 */
454         return 0;
455     case 0x044: /* SRCR1 */
456         return 0;
457     case 0x048: /* SRCR2 */
458         return 0;
459     case 0x050: /* RIS */
460         return s->int_status;
461     case 0x054: /* IMC */
462         return s->int_mask;
463     case 0x058: /* MISC */
464         return s->int_status & s->int_mask;
465     case 0x05c: /* RESC */
466         return s->resc;
467     case 0x060: /* RCC */
468         return s->rcc;
469     case 0x064: /* PLLCFG */
470         {
471             int xtal;
472             xtal = (s->rcc >> 6) & 0xf;
473             switch (ssys_board_class(s)) {
474             case DID0_CLASS_FURY:
475                 return pllcfg_fury[xtal];
476             case DID0_CLASS_SANDSTORM:
477                 return pllcfg_sandstorm[xtal];
478             default:
479                 hw_error("ssys_read: Unhandled class for PLLCFG read.\n");
480                 return 0;
481             }
482         }
483     case 0x070: /* RCC2 */
484         return s->rcc2;
485     case 0x100: /* RCGC0 */
486         return s->rcgc[0];
487     case 0x104: /* RCGC1 */
488         return s->rcgc[1];
489     case 0x108: /* RCGC2 */
490         return s->rcgc[2];
491     case 0x110: /* SCGC0 */
492         return s->scgc[0];
493     case 0x114: /* SCGC1 */
494         return s->scgc[1];
495     case 0x118: /* SCGC2 */
496         return s->scgc[2];
497     case 0x120: /* DCGC0 */
498         return s->dcgc[0];
499     case 0x124: /* DCGC1 */
500         return s->dcgc[1];
501     case 0x128: /* DCGC2 */
502         return s->dcgc[2];
503     case 0x150: /* CLKVCLR */
504         return s->clkvclr;
505     case 0x160: /* LDOARST */
506         return s->ldoarst;
507     case 0x1e0: /* USER0 */
508         return s->user0;
509     case 0x1e4: /* USER1 */
510         return s->user1;
511     default:
512         hw_error("ssys_read: Bad offset 0x%x\n", (int)offset);
513         return 0;
514     }
515 }
516 
517 static bool ssys_use_rcc2(ssys_state *s)
518 {
519     return (s->rcc2 >> 31) & 0x1;
520 }
521 
522 /*
523  * Caculate the sys. clock period in ms.
524  */
525 static void ssys_calculate_system_clock(ssys_state *s)
526 {
527     if (ssys_use_rcc2(s)) {
528         system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
529     } else {
530         system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
531     }
532 }
533 
534 static void ssys_write(void *opaque, hwaddr offset,
535                        uint64_t value, unsigned size)
536 {
537     ssys_state *s = (ssys_state *)opaque;
538 
539     switch (offset) {
540     case 0x030: /* PBORCTL */
541         s->pborctl = value & 0xffff;
542         break;
543     case 0x034: /* LDOPCTL */
544         s->ldopctl = value & 0x1f;
545         break;
546     case 0x040: /* SRCR0 */
547     case 0x044: /* SRCR1 */
548     case 0x048: /* SRCR2 */
549         fprintf(stderr, "Peripheral reset not implemented\n");
550         break;
551     case 0x054: /* IMC */
552         s->int_mask = value & 0x7f;
553         break;
554     case 0x058: /* MISC */
555         s->int_status &= ~value;
556         break;
557     case 0x05c: /* RESC */
558         s->resc = value & 0x3f;
559         break;
560     case 0x060: /* RCC */
561         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
562             /* PLL enable.  */
563             s->int_status |= (1 << 6);
564         }
565         s->rcc = value;
566         ssys_calculate_system_clock(s);
567         break;
568     case 0x070: /* RCC2 */
569         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
570             break;
571         }
572 
573         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
574             /* PLL enable.  */
575             s->int_status |= (1 << 6);
576         }
577         s->rcc2 = value;
578         ssys_calculate_system_clock(s);
579         break;
580     case 0x100: /* RCGC0 */
581         s->rcgc[0] = value;
582         break;
583     case 0x104: /* RCGC1 */
584         s->rcgc[1] = value;
585         break;
586     case 0x108: /* RCGC2 */
587         s->rcgc[2] = value;
588         break;
589     case 0x110: /* SCGC0 */
590         s->scgc[0] = value;
591         break;
592     case 0x114: /* SCGC1 */
593         s->scgc[1] = value;
594         break;
595     case 0x118: /* SCGC2 */
596         s->scgc[2] = value;
597         break;
598     case 0x120: /* DCGC0 */
599         s->dcgc[0] = value;
600         break;
601     case 0x124: /* DCGC1 */
602         s->dcgc[1] = value;
603         break;
604     case 0x128: /* DCGC2 */
605         s->dcgc[2] = value;
606         break;
607     case 0x150: /* CLKVCLR */
608         s->clkvclr = value;
609         break;
610     case 0x160: /* LDOARST */
611         s->ldoarst = value;
612         break;
613     default:
614         hw_error("ssys_write: Bad offset 0x%x\n", (int)offset);
615     }
616     ssys_update(s);
617 }
618 
619 static const MemoryRegionOps ssys_ops = {
620     .read = ssys_read,
621     .write = ssys_write,
622     .endianness = DEVICE_NATIVE_ENDIAN,
623 };
624 
625 static void ssys_reset(void *opaque)
626 {
627     ssys_state *s = (ssys_state *)opaque;
628 
629     s->pborctl = 0x7ffd;
630     s->rcc = 0x078e3ac0;
631 
632     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
633         s->rcc2 = 0;
634     } else {
635         s->rcc2 = 0x07802810;
636     }
637     s->rcgc[0] = 1;
638     s->scgc[0] = 1;
639     s->dcgc[0] = 1;
640     ssys_calculate_system_clock(s);
641 }
642 
643 static int stellaris_sys_post_load(void *opaque, int version_id)
644 {
645     ssys_state *s = opaque;
646 
647     ssys_calculate_system_clock(s);
648 
649     return 0;
650 }
651 
652 static const VMStateDescription vmstate_stellaris_sys = {
653     .name = "stellaris_sys",
654     .version_id = 2,
655     .minimum_version_id = 1,
656     .post_load = stellaris_sys_post_load,
657     .fields = (VMStateField[]) {
658         VMSTATE_UINT32(pborctl, ssys_state),
659         VMSTATE_UINT32(ldopctl, ssys_state),
660         VMSTATE_UINT32(int_mask, ssys_state),
661         VMSTATE_UINT32(int_status, ssys_state),
662         VMSTATE_UINT32(resc, ssys_state),
663         VMSTATE_UINT32(rcc, ssys_state),
664         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
665         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
666         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
667         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
668         VMSTATE_UINT32(clkvclr, ssys_state),
669         VMSTATE_UINT32(ldoarst, ssys_state),
670         VMSTATE_END_OF_LIST()
671     }
672 };
673 
674 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
675                               stellaris_board_info * board,
676                               uint8_t *macaddr)
677 {
678     ssys_state *s;
679 
680     s = g_new0(ssys_state, 1);
681     s->irq = irq;
682     s->board = board;
683     /* Most devices come preprogrammed with a MAC address in the user data. */
684     s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
685     s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
686 
687     memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000);
688     memory_region_add_subregion(get_system_memory(), base, &s->iomem);
689     ssys_reset(s);
690     vmstate_register(NULL, -1, &vmstate_stellaris_sys, s);
691     return 0;
692 }
693 
694 
695 /* I2C controller.  */
696 
697 #define TYPE_STELLARIS_I2C "stellaris-i2c"
698 #define STELLARIS_I2C(obj) \
699     OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C)
700 
701 typedef struct {
702     SysBusDevice parent_obj;
703 
704     I2CBus *bus;
705     qemu_irq irq;
706     MemoryRegion iomem;
707     uint32_t msa;
708     uint32_t mcs;
709     uint32_t mdr;
710     uint32_t mtpr;
711     uint32_t mimr;
712     uint32_t mris;
713     uint32_t mcr;
714 } stellaris_i2c_state;
715 
716 #define STELLARIS_I2C_MCS_BUSY    0x01
717 #define STELLARIS_I2C_MCS_ERROR   0x02
718 #define STELLARIS_I2C_MCS_ADRACK  0x04
719 #define STELLARIS_I2C_MCS_DATACK  0x08
720 #define STELLARIS_I2C_MCS_ARBLST  0x10
721 #define STELLARIS_I2C_MCS_IDLE    0x20
722 #define STELLARIS_I2C_MCS_BUSBSY  0x40
723 
724 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
725                                    unsigned size)
726 {
727     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
728 
729     switch (offset) {
730     case 0x00: /* MSA */
731         return s->msa;
732     case 0x04: /* MCS */
733         /* We don't emulate timing, so the controller is never busy.  */
734         return s->mcs | STELLARIS_I2C_MCS_IDLE;
735     case 0x08: /* MDR */
736         return s->mdr;
737     case 0x0c: /* MTPR */
738         return s->mtpr;
739     case 0x10: /* MIMR */
740         return s->mimr;
741     case 0x14: /* MRIS */
742         return s->mris;
743     case 0x18: /* MMIS */
744         return s->mris & s->mimr;
745     case 0x20: /* MCR */
746         return s->mcr;
747     default:
748         hw_error("strllaris_i2c_read: Bad offset 0x%x\n", (int)offset);
749         return 0;
750     }
751 }
752 
753 static void stellaris_i2c_update(stellaris_i2c_state *s)
754 {
755     int level;
756 
757     level = (s->mris & s->mimr) != 0;
758     qemu_set_irq(s->irq, level);
759 }
760 
761 static void stellaris_i2c_write(void *opaque, hwaddr offset,
762                                 uint64_t value, unsigned size)
763 {
764     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
765 
766     switch (offset) {
767     case 0x00: /* MSA */
768         s->msa = value & 0xff;
769         break;
770     case 0x04: /* MCS */
771         if ((s->mcr & 0x10) == 0) {
772             /* Disabled.  Do nothing.  */
773             break;
774         }
775         /* Grab the bus if this is starting a transfer.  */
776         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
777             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
778                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
779             } else {
780                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
781                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
782             }
783         }
784         /* If we don't have the bus then indicate an error.  */
785         if (!i2c_bus_busy(s->bus)
786                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
787             s->mcs |= STELLARIS_I2C_MCS_ERROR;
788             break;
789         }
790         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
791         if (value & 1) {
792             /* Transfer a byte.  */
793             /* TODO: Handle errors.  */
794             if (s->msa & 1) {
795                 /* Recv */
796                 s->mdr = i2c_recv(s->bus) & 0xff;
797             } else {
798                 /* Send */
799                 i2c_send(s->bus, s->mdr);
800             }
801             /* Raise an interrupt.  */
802             s->mris |= 1;
803         }
804         if (value & 4) {
805             /* Finish transfer.  */
806             i2c_end_transfer(s->bus);
807             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
808         }
809         break;
810     case 0x08: /* MDR */
811         s->mdr = value & 0xff;
812         break;
813     case 0x0c: /* MTPR */
814         s->mtpr = value & 0xff;
815         break;
816     case 0x10: /* MIMR */
817         s->mimr = 1;
818         break;
819     case 0x1c: /* MICR */
820         s->mris &= ~value;
821         break;
822     case 0x20: /* MCR */
823         if (value & 1)
824             hw_error(
825                       "stellaris_i2c_write: Loopback not implemented\n");
826         if (value & 0x20)
827             hw_error(
828                       "stellaris_i2c_write: Slave mode not implemented\n");
829         s->mcr = value & 0x31;
830         break;
831     default:
832         hw_error("stellaris_i2c_write: Bad offset 0x%x\n",
833                   (int)offset);
834     }
835     stellaris_i2c_update(s);
836 }
837 
838 static void stellaris_i2c_reset(stellaris_i2c_state *s)
839 {
840     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
841         i2c_end_transfer(s->bus);
842 
843     s->msa = 0;
844     s->mcs = 0;
845     s->mdr = 0;
846     s->mtpr = 1;
847     s->mimr = 0;
848     s->mris = 0;
849     s->mcr = 0;
850     stellaris_i2c_update(s);
851 }
852 
853 static const MemoryRegionOps stellaris_i2c_ops = {
854     .read = stellaris_i2c_read,
855     .write = stellaris_i2c_write,
856     .endianness = DEVICE_NATIVE_ENDIAN,
857 };
858 
859 static const VMStateDescription vmstate_stellaris_i2c = {
860     .name = "stellaris_i2c",
861     .version_id = 1,
862     .minimum_version_id = 1,
863     .fields = (VMStateField[]) {
864         VMSTATE_UINT32(msa, stellaris_i2c_state),
865         VMSTATE_UINT32(mcs, stellaris_i2c_state),
866         VMSTATE_UINT32(mdr, stellaris_i2c_state),
867         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
868         VMSTATE_UINT32(mimr, stellaris_i2c_state),
869         VMSTATE_UINT32(mris, stellaris_i2c_state),
870         VMSTATE_UINT32(mcr, stellaris_i2c_state),
871         VMSTATE_END_OF_LIST()
872     }
873 };
874 
875 static int stellaris_i2c_init(SysBusDevice *sbd)
876 {
877     DeviceState *dev = DEVICE(sbd);
878     stellaris_i2c_state *s = STELLARIS_I2C(dev);
879     I2CBus *bus;
880 
881     sysbus_init_irq(sbd, &s->irq);
882     bus = i2c_init_bus(dev, "i2c");
883     s->bus = bus;
884 
885     memory_region_init_io(&s->iomem, OBJECT(s), &stellaris_i2c_ops, s,
886                           "i2c", 0x1000);
887     sysbus_init_mmio(sbd, &s->iomem);
888     /* ??? For now we only implement the master interface.  */
889     stellaris_i2c_reset(s);
890     vmstate_register(dev, -1, &vmstate_stellaris_i2c, s);
891     return 0;
892 }
893 
894 /* Analogue to Digital Converter.  This is only partially implemented,
895    enough for applications that use a combined ADC and timer tick.  */
896 
897 #define STELLARIS_ADC_EM_CONTROLLER 0
898 #define STELLARIS_ADC_EM_COMP       1
899 #define STELLARIS_ADC_EM_EXTERNAL   4
900 #define STELLARIS_ADC_EM_TIMER      5
901 #define STELLARIS_ADC_EM_PWM0       6
902 #define STELLARIS_ADC_EM_PWM1       7
903 #define STELLARIS_ADC_EM_PWM2       8
904 
905 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
906 #define STELLARIS_ADC_FIFO_FULL     0x1000
907 
908 #define TYPE_STELLARIS_ADC "stellaris-adc"
909 #define STELLARIS_ADC(obj) \
910     OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC)
911 
912 typedef struct StellarisADCState {
913     SysBusDevice parent_obj;
914 
915     MemoryRegion iomem;
916     uint32_t actss;
917     uint32_t ris;
918     uint32_t im;
919     uint32_t emux;
920     uint32_t ostat;
921     uint32_t ustat;
922     uint32_t sspri;
923     uint32_t sac;
924     struct {
925         uint32_t state;
926         uint32_t data[16];
927     } fifo[4];
928     uint32_t ssmux[4];
929     uint32_t ssctl[4];
930     uint32_t noise;
931     qemu_irq irq[4];
932 } stellaris_adc_state;
933 
934 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
935 {
936     int tail;
937 
938     tail = s->fifo[n].state & 0xf;
939     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
940         s->ustat |= 1 << n;
941     } else {
942         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
943         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
944         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
945             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
946     }
947     return s->fifo[n].data[tail];
948 }
949 
950 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
951                                      uint32_t value)
952 {
953     int head;
954 
955     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
956        FIFO fir each sequencer.  */
957     head = (s->fifo[n].state >> 4) & 0xf;
958     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
959         s->ostat |= 1 << n;
960         return;
961     }
962     s->fifo[n].data[head] = value;
963     head = (head + 1) & 0xf;
964     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
965     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
966     if ((s->fifo[n].state & 0xf) == head)
967         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
968 }
969 
970 static void stellaris_adc_update(stellaris_adc_state *s)
971 {
972     int level;
973     int n;
974 
975     for (n = 0; n < 4; n++) {
976         level = (s->ris & s->im & (1 << n)) != 0;
977         qemu_set_irq(s->irq[n], level);
978     }
979 }
980 
981 static void stellaris_adc_trigger(void *opaque, int irq, int level)
982 {
983     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
984     int n;
985 
986     for (n = 0; n < 4; n++) {
987         if ((s->actss & (1 << n)) == 0) {
988             continue;
989         }
990 
991         if (((s->emux >> (n * 4)) & 0xff) != 5) {
992             continue;
993         }
994 
995         /* Some applications use the ADC as a random number source, so introduce
996            some variation into the signal.  */
997         s->noise = s->noise * 314159 + 1;
998         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
999         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1000         s->ris |= (1 << n);
1001         stellaris_adc_update(s);
1002     }
1003 }
1004 
1005 static void stellaris_adc_reset(stellaris_adc_state *s)
1006 {
1007     int n;
1008 
1009     for (n = 0; n < 4; n++) {
1010         s->ssmux[n] = 0;
1011         s->ssctl[n] = 0;
1012         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1013     }
1014 }
1015 
1016 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1017                                    unsigned size)
1018 {
1019     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1020 
1021     /* TODO: Implement this.  */
1022     if (offset >= 0x40 && offset < 0xc0) {
1023         int n;
1024         n = (offset - 0x40) >> 5;
1025         switch (offset & 0x1f) {
1026         case 0x00: /* SSMUX */
1027             return s->ssmux[n];
1028         case 0x04: /* SSCTL */
1029             return s->ssctl[n];
1030         case 0x08: /* SSFIFO */
1031             return stellaris_adc_fifo_read(s, n);
1032         case 0x0c: /* SSFSTAT */
1033             return s->fifo[n].state;
1034         default:
1035             break;
1036         }
1037     }
1038     switch (offset) {
1039     case 0x00: /* ACTSS */
1040         return s->actss;
1041     case 0x04: /* RIS */
1042         return s->ris;
1043     case 0x08: /* IM */
1044         return s->im;
1045     case 0x0c: /* ISC */
1046         return s->ris & s->im;
1047     case 0x10: /* OSTAT */
1048         return s->ostat;
1049     case 0x14: /* EMUX */
1050         return s->emux;
1051     case 0x18: /* USTAT */
1052         return s->ustat;
1053     case 0x20: /* SSPRI */
1054         return s->sspri;
1055     case 0x30: /* SAC */
1056         return s->sac;
1057     default:
1058         hw_error("strllaris_adc_read: Bad offset 0x%x\n",
1059                   (int)offset);
1060         return 0;
1061     }
1062 }
1063 
1064 static void stellaris_adc_write(void *opaque, hwaddr offset,
1065                                 uint64_t value, unsigned size)
1066 {
1067     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1068 
1069     /* TODO: Implement this.  */
1070     if (offset >= 0x40 && offset < 0xc0) {
1071         int n;
1072         n = (offset - 0x40) >> 5;
1073         switch (offset & 0x1f) {
1074         case 0x00: /* SSMUX */
1075             s->ssmux[n] = value & 0x33333333;
1076             return;
1077         case 0x04: /* SSCTL */
1078             if (value != 6) {
1079                 hw_error("ADC: Unimplemented sequence %" PRIx64 "\n",
1080                           value);
1081             }
1082             s->ssctl[n] = value;
1083             return;
1084         default:
1085             break;
1086         }
1087     }
1088     switch (offset) {
1089     case 0x00: /* ACTSS */
1090         s->actss = value & 0xf;
1091         break;
1092     case 0x08: /* IM */
1093         s->im = value;
1094         break;
1095     case 0x0c: /* ISC */
1096         s->ris &= ~value;
1097         break;
1098     case 0x10: /* OSTAT */
1099         s->ostat &= ~value;
1100         break;
1101     case 0x14: /* EMUX */
1102         s->emux = value;
1103         break;
1104     case 0x18: /* USTAT */
1105         s->ustat &= ~value;
1106         break;
1107     case 0x20: /* SSPRI */
1108         s->sspri = value;
1109         break;
1110     case 0x28: /* PSSI */
1111         hw_error("Not implemented:  ADC sample initiate\n");
1112         break;
1113     case 0x30: /* SAC */
1114         s->sac = value;
1115         break;
1116     default:
1117         hw_error("stellaris_adc_write: Bad offset 0x%x\n", (int)offset);
1118     }
1119     stellaris_adc_update(s);
1120 }
1121 
1122 static const MemoryRegionOps stellaris_adc_ops = {
1123     .read = stellaris_adc_read,
1124     .write = stellaris_adc_write,
1125     .endianness = DEVICE_NATIVE_ENDIAN,
1126 };
1127 
1128 static const VMStateDescription vmstate_stellaris_adc = {
1129     .name = "stellaris_adc",
1130     .version_id = 1,
1131     .minimum_version_id = 1,
1132     .fields = (VMStateField[]) {
1133         VMSTATE_UINT32(actss, stellaris_adc_state),
1134         VMSTATE_UINT32(ris, stellaris_adc_state),
1135         VMSTATE_UINT32(im, stellaris_adc_state),
1136         VMSTATE_UINT32(emux, stellaris_adc_state),
1137         VMSTATE_UINT32(ostat, stellaris_adc_state),
1138         VMSTATE_UINT32(ustat, stellaris_adc_state),
1139         VMSTATE_UINT32(sspri, stellaris_adc_state),
1140         VMSTATE_UINT32(sac, stellaris_adc_state),
1141         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1142         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1143         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1144         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1145         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1146         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1147         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1148         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1149         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1150         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1151         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1152         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1153         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1154         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1155         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1156         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1157         VMSTATE_UINT32(noise, stellaris_adc_state),
1158         VMSTATE_END_OF_LIST()
1159     }
1160 };
1161 
1162 static int stellaris_adc_init(SysBusDevice *sbd)
1163 {
1164     DeviceState *dev = DEVICE(sbd);
1165     stellaris_adc_state *s = STELLARIS_ADC(dev);
1166     int n;
1167 
1168     for (n = 0; n < 4; n++) {
1169         sysbus_init_irq(sbd, &s->irq[n]);
1170     }
1171 
1172     memory_region_init_io(&s->iomem, OBJECT(s), &stellaris_adc_ops, s,
1173                           "adc", 0x1000);
1174     sysbus_init_mmio(sbd, &s->iomem);
1175     stellaris_adc_reset(s);
1176     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1177     vmstate_register(dev, -1, &vmstate_stellaris_adc, s);
1178     return 0;
1179 }
1180 
1181 static
1182 void do_sys_reset(void *opaque, int n, int level)
1183 {
1184     if (level) {
1185         qemu_system_reset_request();
1186     }
1187 }
1188 
1189 /* Board init.  */
1190 static stellaris_board_info stellaris_boards[] = {
1191   { "LM3S811EVB",
1192     0,
1193     0x0032000e,
1194     0x001f001f, /* dc0 */
1195     0x001132bf,
1196     0x01071013,
1197     0x3f0f01ff,
1198     0x0000001f,
1199     BP_OLED_I2C
1200   },
1201   { "LM3S6965EVB",
1202     0x10010002,
1203     0x1073402e,
1204     0x00ff007f, /* dc0 */
1205     0x001133ff,
1206     0x030f5317,
1207     0x0f0f87ff,
1208     0x5000007f,
1209     BP_OLED_SSI | BP_GAMEPAD
1210   }
1211 };
1212 
1213 static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1214                            stellaris_board_info *board)
1215 {
1216     static const int uart_irq[] = {5, 6, 33, 34};
1217     static const int timer_irq[] = {19, 21, 23, 35};
1218     static const uint32_t gpio_addr[7] =
1219       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1220         0x40024000, 0x40025000, 0x40026000};
1221     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1222 
1223     DeviceState *gpio_dev[7], *nvic;
1224     qemu_irq gpio_in[7][8];
1225     qemu_irq gpio_out[7][8];
1226     qemu_irq adc;
1227     int sram_size;
1228     int flash_size;
1229     I2CBus *i2c;
1230     DeviceState *dev;
1231     int i;
1232     int j;
1233 
1234     MemoryRegion *sram = g_new(MemoryRegion, 1);
1235     MemoryRegion *flash = g_new(MemoryRegion, 1);
1236     MemoryRegion *system_memory = get_system_memory();
1237 
1238     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1239     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1240 
1241     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1242     memory_region_init_ram(flash, NULL, "stellaris.flash", flash_size,
1243                            &error_fatal);
1244     vmstate_register_ram_global(flash);
1245     memory_region_set_readonly(flash, true);
1246     memory_region_add_subregion(system_memory, 0, flash);
1247 
1248     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1249                            &error_fatal);
1250     vmstate_register_ram_global(sram);
1251     memory_region_add_subregion(system_memory, 0x20000000, sram);
1252 
1253     nvic = armv7m_init(system_memory, flash_size, NUM_IRQ_LINES,
1254                       kernel_filename, cpu_model);
1255 
1256     qdev_connect_gpio_out_named(nvic, "SYSRESETREQ", 0,
1257                                 qemu_allocate_irq(&do_sys_reset, NULL, 0));
1258 
1259     if (board->dc1 & (1 << 16)) {
1260         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1261                                     qdev_get_gpio_in(nvic, 14),
1262                                     qdev_get_gpio_in(nvic, 15),
1263                                     qdev_get_gpio_in(nvic, 16),
1264                                     qdev_get_gpio_in(nvic, 17),
1265                                     NULL);
1266         adc = qdev_get_gpio_in(dev, 0);
1267     } else {
1268         adc = NULL;
1269     }
1270     for (i = 0; i < 4; i++) {
1271         if (board->dc2 & (0x10000 << i)) {
1272             dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1273                                        0x40030000 + i * 0x1000,
1274                                        qdev_get_gpio_in(nvic, timer_irq[i]));
1275             /* TODO: This is incorrect, but we get away with it because
1276                the ADC output is only ever pulsed.  */
1277             qdev_connect_gpio_out(dev, 0, adc);
1278         }
1279     }
1280 
1281     stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1282                        board, nd_table[0].macaddr.a);
1283 
1284     for (i = 0; i < 7; i++) {
1285         if (board->dc4 & (1 << i)) {
1286             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1287                                                qdev_get_gpio_in(nvic,
1288                                                                 gpio_irq[i]));
1289             for (j = 0; j < 8; j++) {
1290                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1291                 gpio_out[i][j] = NULL;
1292             }
1293         }
1294     }
1295 
1296     if (board->dc2 & (1 << 12)) {
1297         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1298                                    qdev_get_gpio_in(nvic, 8));
1299         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1300         if (board->peripherals & BP_OLED_I2C) {
1301             i2c_create_slave(i2c, "ssd0303", 0x3d);
1302         }
1303     }
1304 
1305     for (i = 0; i < 4; i++) {
1306         if (board->dc2 & (1 << i)) {
1307             sysbus_create_simple("pl011_luminary", 0x4000c000 + i * 0x1000,
1308                                  qdev_get_gpio_in(nvic, uart_irq[i]));
1309         }
1310     }
1311     if (board->dc2 & (1 << 4)) {
1312         dev = sysbus_create_simple("pl022", 0x40008000,
1313                                    qdev_get_gpio_in(nvic, 7));
1314         if (board->peripherals & BP_OLED_SSI) {
1315             void *bus;
1316             DeviceState *sddev;
1317             DeviceState *ssddev;
1318 
1319             /* Some boards have both an OLED controller and SD card connected to
1320              * the same SSI port, with the SD card chip select connected to a
1321              * GPIO pin.  Technically the OLED chip select is connected to the
1322              * SSI Fss pin.  We do not bother emulating that as both devices
1323              * should never be selected simultaneously, and our OLED controller
1324              * ignores stray 0xff commands that occur when deselecting the SD
1325              * card.
1326              */
1327             bus = qdev_get_child_bus(dev, "ssi");
1328 
1329             sddev = ssi_create_slave(bus, "ssi-sd");
1330             ssddev = ssi_create_slave(bus, "ssd0323");
1331             gpio_out[GPIO_D][0] = qemu_irq_split(
1332                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1333                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1334             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1335 
1336             /* Make sure the select pin is high.  */
1337             qemu_irq_raise(gpio_out[GPIO_D][0]);
1338         }
1339     }
1340     if (board->dc4 & (1 << 28)) {
1341         DeviceState *enet;
1342 
1343         qemu_check_nic_model(&nd_table[0], "stellaris");
1344 
1345         enet = qdev_create(NULL, "stellaris_enet");
1346         qdev_set_nic_properties(enet, &nd_table[0]);
1347         qdev_init_nofail(enet);
1348         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1349         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1350     }
1351     if (board->peripherals & BP_GAMEPAD) {
1352         qemu_irq gpad_irq[5];
1353         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1354 
1355         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1356         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1357         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1358         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1359         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1360 
1361         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1362     }
1363     for (i = 0; i < 7; i++) {
1364         if (board->dc4 & (1 << i)) {
1365             for (j = 0; j < 8; j++) {
1366                 if (gpio_out[i][j]) {
1367                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1368                 }
1369             }
1370         }
1371     }
1372 }
1373 
1374 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1375 static void lm3s811evb_init(MachineState *machine)
1376 {
1377     const char *cpu_model = machine->cpu_model;
1378     const char *kernel_filename = machine->kernel_filename;
1379     stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]);
1380 }
1381 
1382 static void lm3s6965evb_init(MachineState *machine)
1383 {
1384     const char *cpu_model = machine->cpu_model;
1385     const char *kernel_filename = machine->kernel_filename;
1386     stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]);
1387 }
1388 
1389 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1390 {
1391     MachineClass *mc = MACHINE_CLASS(oc);
1392 
1393     mc->desc = "Stellaris LM3S811EVB";
1394     mc->init = lm3s811evb_init;
1395 }
1396 
1397 static const TypeInfo lm3s811evb_type = {
1398     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1399     .parent = TYPE_MACHINE,
1400     .class_init = lm3s811evb_class_init,
1401 };
1402 
1403 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1404 {
1405     MachineClass *mc = MACHINE_CLASS(oc);
1406 
1407     mc->desc = "Stellaris LM3S6965EVB";
1408     mc->init = lm3s6965evb_init;
1409 }
1410 
1411 static const TypeInfo lm3s6965evb_type = {
1412     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1413     .parent = TYPE_MACHINE,
1414     .class_init = lm3s6965evb_class_init,
1415 };
1416 
1417 static void stellaris_machine_init(void)
1418 {
1419     type_register_static(&lm3s811evb_type);
1420     type_register_static(&lm3s6965evb_type);
1421 }
1422 
1423 machine_init(stellaris_machine_init)
1424 
1425 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1426 {
1427     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1428 
1429     sdc->init = stellaris_i2c_init;
1430 }
1431 
1432 static const TypeInfo stellaris_i2c_info = {
1433     .name          = TYPE_STELLARIS_I2C,
1434     .parent        = TYPE_SYS_BUS_DEVICE,
1435     .instance_size = sizeof(stellaris_i2c_state),
1436     .class_init    = stellaris_i2c_class_init,
1437 };
1438 
1439 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1440 {
1441     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1442 
1443     sdc->init = stellaris_gptm_init;
1444 }
1445 
1446 static const TypeInfo stellaris_gptm_info = {
1447     .name          = TYPE_STELLARIS_GPTM,
1448     .parent        = TYPE_SYS_BUS_DEVICE,
1449     .instance_size = sizeof(gptm_state),
1450     .class_init    = stellaris_gptm_class_init,
1451 };
1452 
1453 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1454 {
1455     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1456 
1457     sdc->init = stellaris_adc_init;
1458 }
1459 
1460 static const TypeInfo stellaris_adc_info = {
1461     .name          = TYPE_STELLARIS_ADC,
1462     .parent        = TYPE_SYS_BUS_DEVICE,
1463     .instance_size = sizeof(stellaris_adc_state),
1464     .class_init    = stellaris_adc_class_init,
1465 };
1466 
1467 static void stellaris_register_types(void)
1468 {
1469     type_register_static(&stellaris_i2c_info);
1470     type_register_static(&stellaris_gptm_info);
1471     type_register_static(&stellaris_adc_info);
1472 }
1473 
1474 type_init(stellaris_register_types)
1475