xref: /openbmc/qemu/hw/arm/stellaris.c (revision 89854803)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/sysbus.h"
13 #include "hw/ssi/ssi.h"
14 #include "hw/arm/arm.h"
15 #include "hw/devices.h"
16 #include "qemu/timer.h"
17 #include "hw/i2c/i2c.h"
18 #include "net/net.h"
19 #include "hw/boards.h"
20 #include "qemu/log.h"
21 #include "exec/address-spaces.h"
22 #include "sysemu/sysemu.h"
23 #include "hw/char/pl011.h"
24 #include "hw/misc/unimp.h"
25 #include "cpu.h"
26 
27 #define GPIO_A 0
28 #define GPIO_B 1
29 #define GPIO_C 2
30 #define GPIO_D 3
31 #define GPIO_E 4
32 #define GPIO_F 5
33 #define GPIO_G 6
34 
35 #define BP_OLED_I2C  0x01
36 #define BP_OLED_SSI  0x02
37 #define BP_GAMEPAD   0x04
38 
39 #define NUM_IRQ_LINES 64
40 
41 typedef const struct {
42     const char *name;
43     uint32_t did0;
44     uint32_t did1;
45     uint32_t dc0;
46     uint32_t dc1;
47     uint32_t dc2;
48     uint32_t dc3;
49     uint32_t dc4;
50     uint32_t peripherals;
51 } stellaris_board_info;
52 
53 /* General purpose timer module.  */
54 
55 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
56 #define STELLARIS_GPTM(obj) \
57     OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM)
58 
59 typedef struct gptm_state {
60     SysBusDevice parent_obj;
61 
62     MemoryRegion iomem;
63     uint32_t config;
64     uint32_t mode[2];
65     uint32_t control;
66     uint32_t state;
67     uint32_t mask;
68     uint32_t load[2];
69     uint32_t match[2];
70     uint32_t prescale[2];
71     uint32_t match_prescale[2];
72     uint32_t rtc;
73     int64_t tick[2];
74     struct gptm_state *opaque[2];
75     QEMUTimer *timer[2];
76     /* The timers have an alternate output used to trigger the ADC.  */
77     qemu_irq trigger;
78     qemu_irq irq;
79 } gptm_state;
80 
81 static void gptm_update_irq(gptm_state *s)
82 {
83     int level;
84     level = (s->state & s->mask) != 0;
85     qemu_set_irq(s->irq, level);
86 }
87 
88 static void gptm_stop(gptm_state *s, int n)
89 {
90     timer_del(s->timer[n]);
91 }
92 
93 static void gptm_reload(gptm_state *s, int n, int reset)
94 {
95     int64_t tick;
96     if (reset)
97         tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
98     else
99         tick = s->tick[n];
100 
101     if (s->config == 0) {
102         /* 32-bit CountDown.  */
103         uint32_t count;
104         count = s->load[0] | (s->load[1] << 16);
105         tick += (int64_t)count * system_clock_scale;
106     } else if (s->config == 1) {
107         /* 32-bit RTC.  1Hz tick.  */
108         tick += NANOSECONDS_PER_SECOND;
109     } else if (s->mode[n] == 0xa) {
110         /* PWM mode.  Not implemented.  */
111     } else {
112         qemu_log_mask(LOG_UNIMP,
113                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
114                       s->mode[n]);
115         return;
116     }
117     s->tick[n] = tick;
118     timer_mod(s->timer[n], tick);
119 }
120 
121 static void gptm_tick(void *opaque)
122 {
123     gptm_state **p = (gptm_state **)opaque;
124     gptm_state *s;
125     int n;
126 
127     s = *p;
128     n = p - s->opaque;
129     if (s->config == 0) {
130         s->state |= 1;
131         if ((s->control & 0x20)) {
132             /* Output trigger.  */
133 	    qemu_irq_pulse(s->trigger);
134         }
135         if (s->mode[0] & 1) {
136             /* One-shot.  */
137             s->control &= ~1;
138         } else {
139             /* Periodic.  */
140             gptm_reload(s, 0, 0);
141         }
142     } else if (s->config == 1) {
143         /* RTC.  */
144         uint32_t match;
145         s->rtc++;
146         match = s->match[0] | (s->match[1] << 16);
147         if (s->rtc > match)
148             s->rtc = 0;
149         if (s->rtc == 0) {
150             s->state |= 8;
151         }
152         gptm_reload(s, 0, 0);
153     } else if (s->mode[n] == 0xa) {
154         /* PWM mode.  Not implemented.  */
155     } else {
156         qemu_log_mask(LOG_UNIMP,
157                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
158                       s->mode[n]);
159     }
160     gptm_update_irq(s);
161 }
162 
163 static uint64_t gptm_read(void *opaque, hwaddr offset,
164                           unsigned size)
165 {
166     gptm_state *s = (gptm_state *)opaque;
167 
168     switch (offset) {
169     case 0x00: /* CFG */
170         return s->config;
171     case 0x04: /* TAMR */
172         return s->mode[0];
173     case 0x08: /* TBMR */
174         return s->mode[1];
175     case 0x0c: /* CTL */
176         return s->control;
177     case 0x18: /* IMR */
178         return s->mask;
179     case 0x1c: /* RIS */
180         return s->state;
181     case 0x20: /* MIS */
182         return s->state & s->mask;
183     case 0x24: /* CR */
184         return 0;
185     case 0x28: /* TAILR */
186         return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
187     case 0x2c: /* TBILR */
188         return s->load[1];
189     case 0x30: /* TAMARCHR */
190         return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
191     case 0x34: /* TBMATCHR */
192         return s->match[1];
193     case 0x38: /* TAPR */
194         return s->prescale[0];
195     case 0x3c: /* TBPR */
196         return s->prescale[1];
197     case 0x40: /* TAPMR */
198         return s->match_prescale[0];
199     case 0x44: /* TBPMR */
200         return s->match_prescale[1];
201     case 0x48: /* TAR */
202         if (s->config == 1) {
203             return s->rtc;
204         }
205         qemu_log_mask(LOG_UNIMP,
206                       "GPTM: read of TAR but timer read not supported");
207         return 0;
208     case 0x4c: /* TBR */
209         qemu_log_mask(LOG_UNIMP,
210                       "GPTM: read of TBR but timer read not supported");
211         return 0;
212     default:
213         qemu_log_mask(LOG_GUEST_ERROR,
214                       "GPTM: read at bad offset 0x%x\n", (int)offset);
215         return 0;
216     }
217 }
218 
219 static void gptm_write(void *opaque, hwaddr offset,
220                        uint64_t value, unsigned size)
221 {
222     gptm_state *s = (gptm_state *)opaque;
223     uint32_t oldval;
224 
225     /* The timers should be disabled before changing the configuration.
226        We take advantage of this and defer everything until the timer
227        is enabled.  */
228     switch (offset) {
229     case 0x00: /* CFG */
230         s->config = value;
231         break;
232     case 0x04: /* TAMR */
233         s->mode[0] = value;
234         break;
235     case 0x08: /* TBMR */
236         s->mode[1] = value;
237         break;
238     case 0x0c: /* CTL */
239         oldval = s->control;
240         s->control = value;
241         /* TODO: Implement pause.  */
242         if ((oldval ^ value) & 1) {
243             if (value & 1) {
244                 gptm_reload(s, 0, 1);
245             } else {
246                 gptm_stop(s, 0);
247             }
248         }
249         if (((oldval ^ value) & 0x100) && s->config >= 4) {
250             if (value & 0x100) {
251                 gptm_reload(s, 1, 1);
252             } else {
253                 gptm_stop(s, 1);
254             }
255         }
256         break;
257     case 0x18: /* IMR */
258         s->mask = value & 0x77;
259         gptm_update_irq(s);
260         break;
261     case 0x24: /* CR */
262         s->state &= ~value;
263         break;
264     case 0x28: /* TAILR */
265         s->load[0] = value & 0xffff;
266         if (s->config < 4) {
267             s->load[1] = value >> 16;
268         }
269         break;
270     case 0x2c: /* TBILR */
271         s->load[1] = value & 0xffff;
272         break;
273     case 0x30: /* TAMARCHR */
274         s->match[0] = value & 0xffff;
275         if (s->config < 4) {
276             s->match[1] = value >> 16;
277         }
278         break;
279     case 0x34: /* TBMATCHR */
280         s->match[1] = value >> 16;
281         break;
282     case 0x38: /* TAPR */
283         s->prescale[0] = value;
284         break;
285     case 0x3c: /* TBPR */
286         s->prescale[1] = value;
287         break;
288     case 0x40: /* TAPMR */
289         s->match_prescale[0] = value;
290         break;
291     case 0x44: /* TBPMR */
292         s->match_prescale[0] = value;
293         break;
294     default:
295         qemu_log_mask(LOG_GUEST_ERROR,
296                       "GPTM: read at bad offset 0x%x\n", (int)offset);
297     }
298     gptm_update_irq(s);
299 }
300 
301 static const MemoryRegionOps gptm_ops = {
302     .read = gptm_read,
303     .write = gptm_write,
304     .endianness = DEVICE_NATIVE_ENDIAN,
305 };
306 
307 static const VMStateDescription vmstate_stellaris_gptm = {
308     .name = "stellaris_gptm",
309     .version_id = 1,
310     .minimum_version_id = 1,
311     .fields = (VMStateField[]) {
312         VMSTATE_UINT32(config, gptm_state),
313         VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
314         VMSTATE_UINT32(control, gptm_state),
315         VMSTATE_UINT32(state, gptm_state),
316         VMSTATE_UINT32(mask, gptm_state),
317         VMSTATE_UNUSED(8),
318         VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
319         VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
320         VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
321         VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
322         VMSTATE_UINT32(rtc, gptm_state),
323         VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
324         VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
325         VMSTATE_END_OF_LIST()
326     }
327 };
328 
329 static void stellaris_gptm_init(Object *obj)
330 {
331     DeviceState *dev = DEVICE(obj);
332     gptm_state *s = STELLARIS_GPTM(obj);
333     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
334 
335     sysbus_init_irq(sbd, &s->irq);
336     qdev_init_gpio_out(dev, &s->trigger, 1);
337 
338     memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
339                           "gptm", 0x1000);
340     sysbus_init_mmio(sbd, &s->iomem);
341 
342     s->opaque[0] = s->opaque[1] = s;
343     s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
344     s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
345 }
346 
347 
348 /* System controller.  */
349 
350 typedef struct {
351     MemoryRegion iomem;
352     uint32_t pborctl;
353     uint32_t ldopctl;
354     uint32_t int_status;
355     uint32_t int_mask;
356     uint32_t resc;
357     uint32_t rcc;
358     uint32_t rcc2;
359     uint32_t rcgc[3];
360     uint32_t scgc[3];
361     uint32_t dcgc[3];
362     uint32_t clkvclr;
363     uint32_t ldoarst;
364     uint32_t user0;
365     uint32_t user1;
366     qemu_irq irq;
367     stellaris_board_info *board;
368 } ssys_state;
369 
370 static void ssys_update(ssys_state *s)
371 {
372   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
373 }
374 
375 static uint32_t pllcfg_sandstorm[16] = {
376     0x31c0, /* 1 Mhz */
377     0x1ae0, /* 1.8432 Mhz */
378     0x18c0, /* 2 Mhz */
379     0xd573, /* 2.4576 Mhz */
380     0x37a6, /* 3.57954 Mhz */
381     0x1ae2, /* 3.6864 Mhz */
382     0x0c40, /* 4 Mhz */
383     0x98bc, /* 4.906 Mhz */
384     0x935b, /* 4.9152 Mhz */
385     0x09c0, /* 5 Mhz */
386     0x4dee, /* 5.12 Mhz */
387     0x0c41, /* 6 Mhz */
388     0x75db, /* 6.144 Mhz */
389     0x1ae6, /* 7.3728 Mhz */
390     0x0600, /* 8 Mhz */
391     0x585b /* 8.192 Mhz */
392 };
393 
394 static uint32_t pllcfg_fury[16] = {
395     0x3200, /* 1 Mhz */
396     0x1b20, /* 1.8432 Mhz */
397     0x1900, /* 2 Mhz */
398     0xf42b, /* 2.4576 Mhz */
399     0x37e3, /* 3.57954 Mhz */
400     0x1b21, /* 3.6864 Mhz */
401     0x0c80, /* 4 Mhz */
402     0x98ee, /* 4.906 Mhz */
403     0xd5b4, /* 4.9152 Mhz */
404     0x0a00, /* 5 Mhz */
405     0x4e27, /* 5.12 Mhz */
406     0x1902, /* 6 Mhz */
407     0xec1c, /* 6.144 Mhz */
408     0x1b23, /* 7.3728 Mhz */
409     0x0640, /* 8 Mhz */
410     0xb11c /* 8.192 Mhz */
411 };
412 
413 #define DID0_VER_MASK        0x70000000
414 #define DID0_VER_0           0x00000000
415 #define DID0_VER_1           0x10000000
416 
417 #define DID0_CLASS_MASK      0x00FF0000
418 #define DID0_CLASS_SANDSTORM 0x00000000
419 #define DID0_CLASS_FURY      0x00010000
420 
421 static int ssys_board_class(const ssys_state *s)
422 {
423     uint32_t did0 = s->board->did0;
424     switch (did0 & DID0_VER_MASK) {
425     case DID0_VER_0:
426         return DID0_CLASS_SANDSTORM;
427     case DID0_VER_1:
428         switch (did0 & DID0_CLASS_MASK) {
429         case DID0_CLASS_SANDSTORM:
430         case DID0_CLASS_FURY:
431             return did0 & DID0_CLASS_MASK;
432         }
433         /* for unknown classes, fall through */
434     default:
435         /* This can only happen if the hardwired constant did0 value
436          * in this board's stellaris_board_info struct is wrong.
437          */
438         g_assert_not_reached();
439     }
440 }
441 
442 static uint64_t ssys_read(void *opaque, hwaddr offset,
443                           unsigned size)
444 {
445     ssys_state *s = (ssys_state *)opaque;
446 
447     switch (offset) {
448     case 0x000: /* DID0 */
449         return s->board->did0;
450     case 0x004: /* DID1 */
451         return s->board->did1;
452     case 0x008: /* DC0 */
453         return s->board->dc0;
454     case 0x010: /* DC1 */
455         return s->board->dc1;
456     case 0x014: /* DC2 */
457         return s->board->dc2;
458     case 0x018: /* DC3 */
459         return s->board->dc3;
460     case 0x01c: /* DC4 */
461         return s->board->dc4;
462     case 0x030: /* PBORCTL */
463         return s->pborctl;
464     case 0x034: /* LDOPCTL */
465         return s->ldopctl;
466     case 0x040: /* SRCR0 */
467         return 0;
468     case 0x044: /* SRCR1 */
469         return 0;
470     case 0x048: /* SRCR2 */
471         return 0;
472     case 0x050: /* RIS */
473         return s->int_status;
474     case 0x054: /* IMC */
475         return s->int_mask;
476     case 0x058: /* MISC */
477         return s->int_status & s->int_mask;
478     case 0x05c: /* RESC */
479         return s->resc;
480     case 0x060: /* RCC */
481         return s->rcc;
482     case 0x064: /* PLLCFG */
483         {
484             int xtal;
485             xtal = (s->rcc >> 6) & 0xf;
486             switch (ssys_board_class(s)) {
487             case DID0_CLASS_FURY:
488                 return pllcfg_fury[xtal];
489             case DID0_CLASS_SANDSTORM:
490                 return pllcfg_sandstorm[xtal];
491             default:
492                 g_assert_not_reached();
493             }
494         }
495     case 0x070: /* RCC2 */
496         return s->rcc2;
497     case 0x100: /* RCGC0 */
498         return s->rcgc[0];
499     case 0x104: /* RCGC1 */
500         return s->rcgc[1];
501     case 0x108: /* RCGC2 */
502         return s->rcgc[2];
503     case 0x110: /* SCGC0 */
504         return s->scgc[0];
505     case 0x114: /* SCGC1 */
506         return s->scgc[1];
507     case 0x118: /* SCGC2 */
508         return s->scgc[2];
509     case 0x120: /* DCGC0 */
510         return s->dcgc[0];
511     case 0x124: /* DCGC1 */
512         return s->dcgc[1];
513     case 0x128: /* DCGC2 */
514         return s->dcgc[2];
515     case 0x150: /* CLKVCLR */
516         return s->clkvclr;
517     case 0x160: /* LDOARST */
518         return s->ldoarst;
519     case 0x1e0: /* USER0 */
520         return s->user0;
521     case 0x1e4: /* USER1 */
522         return s->user1;
523     default:
524         qemu_log_mask(LOG_GUEST_ERROR,
525                       "SSYS: read at bad offset 0x%x\n", (int)offset);
526         return 0;
527     }
528 }
529 
530 static bool ssys_use_rcc2(ssys_state *s)
531 {
532     return (s->rcc2 >> 31) & 0x1;
533 }
534 
535 /*
536  * Caculate the sys. clock period in ms.
537  */
538 static void ssys_calculate_system_clock(ssys_state *s)
539 {
540     if (ssys_use_rcc2(s)) {
541         system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
542     } else {
543         system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
544     }
545 }
546 
547 static void ssys_write(void *opaque, hwaddr offset,
548                        uint64_t value, unsigned size)
549 {
550     ssys_state *s = (ssys_state *)opaque;
551 
552     switch (offset) {
553     case 0x030: /* PBORCTL */
554         s->pborctl = value & 0xffff;
555         break;
556     case 0x034: /* LDOPCTL */
557         s->ldopctl = value & 0x1f;
558         break;
559     case 0x040: /* SRCR0 */
560     case 0x044: /* SRCR1 */
561     case 0x048: /* SRCR2 */
562         fprintf(stderr, "Peripheral reset not implemented\n");
563         break;
564     case 0x054: /* IMC */
565         s->int_mask = value & 0x7f;
566         break;
567     case 0x058: /* MISC */
568         s->int_status &= ~value;
569         break;
570     case 0x05c: /* RESC */
571         s->resc = value & 0x3f;
572         break;
573     case 0x060: /* RCC */
574         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
575             /* PLL enable.  */
576             s->int_status |= (1 << 6);
577         }
578         s->rcc = value;
579         ssys_calculate_system_clock(s);
580         break;
581     case 0x070: /* RCC2 */
582         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
583             break;
584         }
585 
586         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
587             /* PLL enable.  */
588             s->int_status |= (1 << 6);
589         }
590         s->rcc2 = value;
591         ssys_calculate_system_clock(s);
592         break;
593     case 0x100: /* RCGC0 */
594         s->rcgc[0] = value;
595         break;
596     case 0x104: /* RCGC1 */
597         s->rcgc[1] = value;
598         break;
599     case 0x108: /* RCGC2 */
600         s->rcgc[2] = value;
601         break;
602     case 0x110: /* SCGC0 */
603         s->scgc[0] = value;
604         break;
605     case 0x114: /* SCGC1 */
606         s->scgc[1] = value;
607         break;
608     case 0x118: /* SCGC2 */
609         s->scgc[2] = value;
610         break;
611     case 0x120: /* DCGC0 */
612         s->dcgc[0] = value;
613         break;
614     case 0x124: /* DCGC1 */
615         s->dcgc[1] = value;
616         break;
617     case 0x128: /* DCGC2 */
618         s->dcgc[2] = value;
619         break;
620     case 0x150: /* CLKVCLR */
621         s->clkvclr = value;
622         break;
623     case 0x160: /* LDOARST */
624         s->ldoarst = value;
625         break;
626     default:
627         qemu_log_mask(LOG_GUEST_ERROR,
628                       "SSYS: write at bad offset 0x%x\n", (int)offset);
629     }
630     ssys_update(s);
631 }
632 
633 static const MemoryRegionOps ssys_ops = {
634     .read = ssys_read,
635     .write = ssys_write,
636     .endianness = DEVICE_NATIVE_ENDIAN,
637 };
638 
639 static void ssys_reset(void *opaque)
640 {
641     ssys_state *s = (ssys_state *)opaque;
642 
643     s->pborctl = 0x7ffd;
644     s->rcc = 0x078e3ac0;
645 
646     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
647         s->rcc2 = 0;
648     } else {
649         s->rcc2 = 0x07802810;
650     }
651     s->rcgc[0] = 1;
652     s->scgc[0] = 1;
653     s->dcgc[0] = 1;
654     ssys_calculate_system_clock(s);
655 }
656 
657 static int stellaris_sys_post_load(void *opaque, int version_id)
658 {
659     ssys_state *s = opaque;
660 
661     ssys_calculate_system_clock(s);
662 
663     return 0;
664 }
665 
666 static const VMStateDescription vmstate_stellaris_sys = {
667     .name = "stellaris_sys",
668     .version_id = 2,
669     .minimum_version_id = 1,
670     .post_load = stellaris_sys_post_load,
671     .fields = (VMStateField[]) {
672         VMSTATE_UINT32(pborctl, ssys_state),
673         VMSTATE_UINT32(ldopctl, ssys_state),
674         VMSTATE_UINT32(int_mask, ssys_state),
675         VMSTATE_UINT32(int_status, ssys_state),
676         VMSTATE_UINT32(resc, ssys_state),
677         VMSTATE_UINT32(rcc, ssys_state),
678         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
679         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
680         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
681         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
682         VMSTATE_UINT32(clkvclr, ssys_state),
683         VMSTATE_UINT32(ldoarst, ssys_state),
684         VMSTATE_END_OF_LIST()
685     }
686 };
687 
688 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
689                               stellaris_board_info * board,
690                               uint8_t *macaddr)
691 {
692     ssys_state *s;
693 
694     s = g_new0(ssys_state, 1);
695     s->irq = irq;
696     s->board = board;
697     /* Most devices come preprogrammed with a MAC address in the user data. */
698     s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
699     s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
700 
701     memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000);
702     memory_region_add_subregion(get_system_memory(), base, &s->iomem);
703     ssys_reset(s);
704     vmstate_register(NULL, -1, &vmstate_stellaris_sys, s);
705     return 0;
706 }
707 
708 
709 /* I2C controller.  */
710 
711 #define TYPE_STELLARIS_I2C "stellaris-i2c"
712 #define STELLARIS_I2C(obj) \
713     OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C)
714 
715 typedef struct {
716     SysBusDevice parent_obj;
717 
718     I2CBus *bus;
719     qemu_irq irq;
720     MemoryRegion iomem;
721     uint32_t msa;
722     uint32_t mcs;
723     uint32_t mdr;
724     uint32_t mtpr;
725     uint32_t mimr;
726     uint32_t mris;
727     uint32_t mcr;
728 } stellaris_i2c_state;
729 
730 #define STELLARIS_I2C_MCS_BUSY    0x01
731 #define STELLARIS_I2C_MCS_ERROR   0x02
732 #define STELLARIS_I2C_MCS_ADRACK  0x04
733 #define STELLARIS_I2C_MCS_DATACK  0x08
734 #define STELLARIS_I2C_MCS_ARBLST  0x10
735 #define STELLARIS_I2C_MCS_IDLE    0x20
736 #define STELLARIS_I2C_MCS_BUSBSY  0x40
737 
738 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
739                                    unsigned size)
740 {
741     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
742 
743     switch (offset) {
744     case 0x00: /* MSA */
745         return s->msa;
746     case 0x04: /* MCS */
747         /* We don't emulate timing, so the controller is never busy.  */
748         return s->mcs | STELLARIS_I2C_MCS_IDLE;
749     case 0x08: /* MDR */
750         return s->mdr;
751     case 0x0c: /* MTPR */
752         return s->mtpr;
753     case 0x10: /* MIMR */
754         return s->mimr;
755     case 0x14: /* MRIS */
756         return s->mris;
757     case 0x18: /* MMIS */
758         return s->mris & s->mimr;
759     case 0x20: /* MCR */
760         return s->mcr;
761     default:
762         qemu_log_mask(LOG_GUEST_ERROR,
763                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
764         return 0;
765     }
766 }
767 
768 static void stellaris_i2c_update(stellaris_i2c_state *s)
769 {
770     int level;
771 
772     level = (s->mris & s->mimr) != 0;
773     qemu_set_irq(s->irq, level);
774 }
775 
776 static void stellaris_i2c_write(void *opaque, hwaddr offset,
777                                 uint64_t value, unsigned size)
778 {
779     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
780 
781     switch (offset) {
782     case 0x00: /* MSA */
783         s->msa = value & 0xff;
784         break;
785     case 0x04: /* MCS */
786         if ((s->mcr & 0x10) == 0) {
787             /* Disabled.  Do nothing.  */
788             break;
789         }
790         /* Grab the bus if this is starting a transfer.  */
791         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
792             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
793                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
794             } else {
795                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
796                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
797             }
798         }
799         /* If we don't have the bus then indicate an error.  */
800         if (!i2c_bus_busy(s->bus)
801                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
802             s->mcs |= STELLARIS_I2C_MCS_ERROR;
803             break;
804         }
805         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
806         if (value & 1) {
807             /* Transfer a byte.  */
808             /* TODO: Handle errors.  */
809             if (s->msa & 1) {
810                 /* Recv */
811                 s->mdr = i2c_recv(s->bus) & 0xff;
812             } else {
813                 /* Send */
814                 i2c_send(s->bus, s->mdr);
815             }
816             /* Raise an interrupt.  */
817             s->mris |= 1;
818         }
819         if (value & 4) {
820             /* Finish transfer.  */
821             i2c_end_transfer(s->bus);
822             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
823         }
824         break;
825     case 0x08: /* MDR */
826         s->mdr = value & 0xff;
827         break;
828     case 0x0c: /* MTPR */
829         s->mtpr = value & 0xff;
830         break;
831     case 0x10: /* MIMR */
832         s->mimr = 1;
833         break;
834     case 0x1c: /* MICR */
835         s->mris &= ~value;
836         break;
837     case 0x20: /* MCR */
838         if (value & 1) {
839             qemu_log_mask(LOG_UNIMP, "stellaris_i2c: Loopback not implemented");
840         }
841         if (value & 0x20) {
842             qemu_log_mask(LOG_UNIMP,
843                           "stellaris_i2c: Slave mode not implemented");
844         }
845         s->mcr = value & 0x31;
846         break;
847     default:
848         qemu_log_mask(LOG_GUEST_ERROR,
849                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
850     }
851     stellaris_i2c_update(s);
852 }
853 
854 static void stellaris_i2c_reset(stellaris_i2c_state *s)
855 {
856     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
857         i2c_end_transfer(s->bus);
858 
859     s->msa = 0;
860     s->mcs = 0;
861     s->mdr = 0;
862     s->mtpr = 1;
863     s->mimr = 0;
864     s->mris = 0;
865     s->mcr = 0;
866     stellaris_i2c_update(s);
867 }
868 
869 static const MemoryRegionOps stellaris_i2c_ops = {
870     .read = stellaris_i2c_read,
871     .write = stellaris_i2c_write,
872     .endianness = DEVICE_NATIVE_ENDIAN,
873 };
874 
875 static const VMStateDescription vmstate_stellaris_i2c = {
876     .name = "stellaris_i2c",
877     .version_id = 1,
878     .minimum_version_id = 1,
879     .fields = (VMStateField[]) {
880         VMSTATE_UINT32(msa, stellaris_i2c_state),
881         VMSTATE_UINT32(mcs, stellaris_i2c_state),
882         VMSTATE_UINT32(mdr, stellaris_i2c_state),
883         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
884         VMSTATE_UINT32(mimr, stellaris_i2c_state),
885         VMSTATE_UINT32(mris, stellaris_i2c_state),
886         VMSTATE_UINT32(mcr, stellaris_i2c_state),
887         VMSTATE_END_OF_LIST()
888     }
889 };
890 
891 static void stellaris_i2c_init(Object *obj)
892 {
893     DeviceState *dev = DEVICE(obj);
894     stellaris_i2c_state *s = STELLARIS_I2C(obj);
895     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
896     I2CBus *bus;
897 
898     sysbus_init_irq(sbd, &s->irq);
899     bus = i2c_init_bus(dev, "i2c");
900     s->bus = bus;
901 
902     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
903                           "i2c", 0x1000);
904     sysbus_init_mmio(sbd, &s->iomem);
905     /* ??? For now we only implement the master interface.  */
906     stellaris_i2c_reset(s);
907 }
908 
909 /* Analogue to Digital Converter.  This is only partially implemented,
910    enough for applications that use a combined ADC and timer tick.  */
911 
912 #define STELLARIS_ADC_EM_CONTROLLER 0
913 #define STELLARIS_ADC_EM_COMP       1
914 #define STELLARIS_ADC_EM_EXTERNAL   4
915 #define STELLARIS_ADC_EM_TIMER      5
916 #define STELLARIS_ADC_EM_PWM0       6
917 #define STELLARIS_ADC_EM_PWM1       7
918 #define STELLARIS_ADC_EM_PWM2       8
919 
920 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
921 #define STELLARIS_ADC_FIFO_FULL     0x1000
922 
923 #define TYPE_STELLARIS_ADC "stellaris-adc"
924 #define STELLARIS_ADC(obj) \
925     OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC)
926 
927 typedef struct StellarisADCState {
928     SysBusDevice parent_obj;
929 
930     MemoryRegion iomem;
931     uint32_t actss;
932     uint32_t ris;
933     uint32_t im;
934     uint32_t emux;
935     uint32_t ostat;
936     uint32_t ustat;
937     uint32_t sspri;
938     uint32_t sac;
939     struct {
940         uint32_t state;
941         uint32_t data[16];
942     } fifo[4];
943     uint32_t ssmux[4];
944     uint32_t ssctl[4];
945     uint32_t noise;
946     qemu_irq irq[4];
947 } stellaris_adc_state;
948 
949 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
950 {
951     int tail;
952 
953     tail = s->fifo[n].state & 0xf;
954     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
955         s->ustat |= 1 << n;
956     } else {
957         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
958         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
959         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
960             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
961     }
962     return s->fifo[n].data[tail];
963 }
964 
965 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
966                                      uint32_t value)
967 {
968     int head;
969 
970     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
971        FIFO fir each sequencer.  */
972     head = (s->fifo[n].state >> 4) & 0xf;
973     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
974         s->ostat |= 1 << n;
975         return;
976     }
977     s->fifo[n].data[head] = value;
978     head = (head + 1) & 0xf;
979     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
980     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
981     if ((s->fifo[n].state & 0xf) == head)
982         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
983 }
984 
985 static void stellaris_adc_update(stellaris_adc_state *s)
986 {
987     int level;
988     int n;
989 
990     for (n = 0; n < 4; n++) {
991         level = (s->ris & s->im & (1 << n)) != 0;
992         qemu_set_irq(s->irq[n], level);
993     }
994 }
995 
996 static void stellaris_adc_trigger(void *opaque, int irq, int level)
997 {
998     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
999     int n;
1000 
1001     for (n = 0; n < 4; n++) {
1002         if ((s->actss & (1 << n)) == 0) {
1003             continue;
1004         }
1005 
1006         if (((s->emux >> (n * 4)) & 0xff) != 5) {
1007             continue;
1008         }
1009 
1010         /* Some applications use the ADC as a random number source, so introduce
1011            some variation into the signal.  */
1012         s->noise = s->noise * 314159 + 1;
1013         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
1014         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1015         s->ris |= (1 << n);
1016         stellaris_adc_update(s);
1017     }
1018 }
1019 
1020 static void stellaris_adc_reset(stellaris_adc_state *s)
1021 {
1022     int n;
1023 
1024     for (n = 0; n < 4; n++) {
1025         s->ssmux[n] = 0;
1026         s->ssctl[n] = 0;
1027         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1028     }
1029 }
1030 
1031 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1032                                    unsigned size)
1033 {
1034     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1035 
1036     /* TODO: Implement this.  */
1037     if (offset >= 0x40 && offset < 0xc0) {
1038         int n;
1039         n = (offset - 0x40) >> 5;
1040         switch (offset & 0x1f) {
1041         case 0x00: /* SSMUX */
1042             return s->ssmux[n];
1043         case 0x04: /* SSCTL */
1044             return s->ssctl[n];
1045         case 0x08: /* SSFIFO */
1046             return stellaris_adc_fifo_read(s, n);
1047         case 0x0c: /* SSFSTAT */
1048             return s->fifo[n].state;
1049         default:
1050             break;
1051         }
1052     }
1053     switch (offset) {
1054     case 0x00: /* ACTSS */
1055         return s->actss;
1056     case 0x04: /* RIS */
1057         return s->ris;
1058     case 0x08: /* IM */
1059         return s->im;
1060     case 0x0c: /* ISC */
1061         return s->ris & s->im;
1062     case 0x10: /* OSTAT */
1063         return s->ostat;
1064     case 0x14: /* EMUX */
1065         return s->emux;
1066     case 0x18: /* USTAT */
1067         return s->ustat;
1068     case 0x20: /* SSPRI */
1069         return s->sspri;
1070     case 0x30: /* SAC */
1071         return s->sac;
1072     default:
1073         qemu_log_mask(LOG_GUEST_ERROR,
1074                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1075         return 0;
1076     }
1077 }
1078 
1079 static void stellaris_adc_write(void *opaque, hwaddr offset,
1080                                 uint64_t value, unsigned size)
1081 {
1082     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1083 
1084     /* TODO: Implement this.  */
1085     if (offset >= 0x40 && offset < 0xc0) {
1086         int n;
1087         n = (offset - 0x40) >> 5;
1088         switch (offset & 0x1f) {
1089         case 0x00: /* SSMUX */
1090             s->ssmux[n] = value & 0x33333333;
1091             return;
1092         case 0x04: /* SSCTL */
1093             if (value != 6) {
1094                 qemu_log_mask(LOG_UNIMP,
1095                               "ADC: Unimplemented sequence %" PRIx64 "\n",
1096                               value);
1097             }
1098             s->ssctl[n] = value;
1099             return;
1100         default:
1101             break;
1102         }
1103     }
1104     switch (offset) {
1105     case 0x00: /* ACTSS */
1106         s->actss = value & 0xf;
1107         break;
1108     case 0x08: /* IM */
1109         s->im = value;
1110         break;
1111     case 0x0c: /* ISC */
1112         s->ris &= ~value;
1113         break;
1114     case 0x10: /* OSTAT */
1115         s->ostat &= ~value;
1116         break;
1117     case 0x14: /* EMUX */
1118         s->emux = value;
1119         break;
1120     case 0x18: /* USTAT */
1121         s->ustat &= ~value;
1122         break;
1123     case 0x20: /* SSPRI */
1124         s->sspri = value;
1125         break;
1126     case 0x28: /* PSSI */
1127         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented");
1128         break;
1129     case 0x30: /* SAC */
1130         s->sac = value;
1131         break;
1132     default:
1133         qemu_log_mask(LOG_GUEST_ERROR,
1134                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1135     }
1136     stellaris_adc_update(s);
1137 }
1138 
1139 static const MemoryRegionOps stellaris_adc_ops = {
1140     .read = stellaris_adc_read,
1141     .write = stellaris_adc_write,
1142     .endianness = DEVICE_NATIVE_ENDIAN,
1143 };
1144 
1145 static const VMStateDescription vmstate_stellaris_adc = {
1146     .name = "stellaris_adc",
1147     .version_id = 1,
1148     .minimum_version_id = 1,
1149     .fields = (VMStateField[]) {
1150         VMSTATE_UINT32(actss, stellaris_adc_state),
1151         VMSTATE_UINT32(ris, stellaris_adc_state),
1152         VMSTATE_UINT32(im, stellaris_adc_state),
1153         VMSTATE_UINT32(emux, stellaris_adc_state),
1154         VMSTATE_UINT32(ostat, stellaris_adc_state),
1155         VMSTATE_UINT32(ustat, stellaris_adc_state),
1156         VMSTATE_UINT32(sspri, stellaris_adc_state),
1157         VMSTATE_UINT32(sac, stellaris_adc_state),
1158         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1159         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1160         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1161         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1162         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1163         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1164         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1165         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1166         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1167         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1168         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1169         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1170         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1171         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1172         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1173         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1174         VMSTATE_UINT32(noise, stellaris_adc_state),
1175         VMSTATE_END_OF_LIST()
1176     }
1177 };
1178 
1179 static void stellaris_adc_init(Object *obj)
1180 {
1181     DeviceState *dev = DEVICE(obj);
1182     stellaris_adc_state *s = STELLARIS_ADC(obj);
1183     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1184     int n;
1185 
1186     for (n = 0; n < 4; n++) {
1187         sysbus_init_irq(sbd, &s->irq[n]);
1188     }
1189 
1190     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1191                           "adc", 0x1000);
1192     sysbus_init_mmio(sbd, &s->iomem);
1193     stellaris_adc_reset(s);
1194     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1195 }
1196 
1197 static
1198 void do_sys_reset(void *opaque, int n, int level)
1199 {
1200     if (level) {
1201         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1202     }
1203 }
1204 
1205 /* Board init.  */
1206 static stellaris_board_info stellaris_boards[] = {
1207   { "LM3S811EVB",
1208     0,
1209     0x0032000e,
1210     0x001f001f, /* dc0 */
1211     0x001132bf,
1212     0x01071013,
1213     0x3f0f01ff,
1214     0x0000001f,
1215     BP_OLED_I2C
1216   },
1217   { "LM3S6965EVB",
1218     0x10010002,
1219     0x1073402e,
1220     0x00ff007f, /* dc0 */
1221     0x001133ff,
1222     0x030f5317,
1223     0x0f0f87ff,
1224     0x5000007f,
1225     BP_OLED_SSI | BP_GAMEPAD
1226   }
1227 };
1228 
1229 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1230 {
1231     static const int uart_irq[] = {5, 6, 33, 34};
1232     static const int timer_irq[] = {19, 21, 23, 35};
1233     static const uint32_t gpio_addr[7] =
1234       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1235         0x40024000, 0x40025000, 0x40026000};
1236     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1237 
1238     /* Memory map of SoC devices, from
1239      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1240      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1241      *
1242      * 40000000 wdtimer (unimplemented)
1243      * 40002000 i2c (unimplemented)
1244      * 40004000 GPIO
1245      * 40005000 GPIO
1246      * 40006000 GPIO
1247      * 40007000 GPIO
1248      * 40008000 SSI
1249      * 4000c000 UART
1250      * 4000d000 UART
1251      * 4000e000 UART
1252      * 40020000 i2c
1253      * 40021000 i2c (unimplemented)
1254      * 40024000 GPIO
1255      * 40025000 GPIO
1256      * 40026000 GPIO
1257      * 40028000 PWM (unimplemented)
1258      * 4002c000 QEI (unimplemented)
1259      * 4002d000 QEI (unimplemented)
1260      * 40030000 gptimer
1261      * 40031000 gptimer
1262      * 40032000 gptimer
1263      * 40033000 gptimer
1264      * 40038000 ADC
1265      * 4003c000 analogue comparator (unimplemented)
1266      * 40048000 ethernet
1267      * 400fc000 hibernation module (unimplemented)
1268      * 400fd000 flash memory control (unimplemented)
1269      * 400fe000 system control
1270      */
1271 
1272     DeviceState *gpio_dev[7], *nvic;
1273     qemu_irq gpio_in[7][8];
1274     qemu_irq gpio_out[7][8];
1275     qemu_irq adc;
1276     int sram_size;
1277     int flash_size;
1278     I2CBus *i2c;
1279     DeviceState *dev;
1280     int i;
1281     int j;
1282 
1283     MemoryRegion *sram = g_new(MemoryRegion, 1);
1284     MemoryRegion *flash = g_new(MemoryRegion, 1);
1285     MemoryRegion *system_memory = get_system_memory();
1286 
1287     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1288     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1289 
1290     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1291     memory_region_init_ram(flash, NULL, "stellaris.flash", flash_size,
1292                            &error_fatal);
1293     memory_region_set_readonly(flash, true);
1294     memory_region_add_subregion(system_memory, 0, flash);
1295 
1296     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1297                            &error_fatal);
1298     memory_region_add_subregion(system_memory, 0x20000000, sram);
1299 
1300     nvic = armv7m_init(system_memory, flash_size, NUM_IRQ_LINES,
1301                        ms->kernel_filename, ms->cpu_type);
1302 
1303     qdev_connect_gpio_out_named(nvic, "SYSRESETREQ", 0,
1304                                 qemu_allocate_irq(&do_sys_reset, NULL, 0));
1305 
1306     if (board->dc1 & (1 << 16)) {
1307         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1308                                     qdev_get_gpio_in(nvic, 14),
1309                                     qdev_get_gpio_in(nvic, 15),
1310                                     qdev_get_gpio_in(nvic, 16),
1311                                     qdev_get_gpio_in(nvic, 17),
1312                                     NULL);
1313         adc = qdev_get_gpio_in(dev, 0);
1314     } else {
1315         adc = NULL;
1316     }
1317     for (i = 0; i < 4; i++) {
1318         if (board->dc2 & (0x10000 << i)) {
1319             dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1320                                        0x40030000 + i * 0x1000,
1321                                        qdev_get_gpio_in(nvic, timer_irq[i]));
1322             /* TODO: This is incorrect, but we get away with it because
1323                the ADC output is only ever pulsed.  */
1324             qdev_connect_gpio_out(dev, 0, adc);
1325         }
1326     }
1327 
1328     stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1329                        board, nd_table[0].macaddr.a);
1330 
1331     for (i = 0; i < 7; i++) {
1332         if (board->dc4 & (1 << i)) {
1333             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1334                                                qdev_get_gpio_in(nvic,
1335                                                                 gpio_irq[i]));
1336             for (j = 0; j < 8; j++) {
1337                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1338                 gpio_out[i][j] = NULL;
1339             }
1340         }
1341     }
1342 
1343     if (board->dc2 & (1 << 12)) {
1344         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1345                                    qdev_get_gpio_in(nvic, 8));
1346         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1347         if (board->peripherals & BP_OLED_I2C) {
1348             i2c_create_slave(i2c, "ssd0303", 0x3d);
1349         }
1350     }
1351 
1352     for (i = 0; i < 4; i++) {
1353         if (board->dc2 & (1 << i)) {
1354             pl011_luminary_create(0x4000c000 + i * 0x1000,
1355                                   qdev_get_gpio_in(nvic, uart_irq[i]),
1356                                   serial_hd(i));
1357         }
1358     }
1359     if (board->dc2 & (1 << 4)) {
1360         dev = sysbus_create_simple("pl022", 0x40008000,
1361                                    qdev_get_gpio_in(nvic, 7));
1362         if (board->peripherals & BP_OLED_SSI) {
1363             void *bus;
1364             DeviceState *sddev;
1365             DeviceState *ssddev;
1366 
1367             /* Some boards have both an OLED controller and SD card connected to
1368              * the same SSI port, with the SD card chip select connected to a
1369              * GPIO pin.  Technically the OLED chip select is connected to the
1370              * SSI Fss pin.  We do not bother emulating that as both devices
1371              * should never be selected simultaneously, and our OLED controller
1372              * ignores stray 0xff commands that occur when deselecting the SD
1373              * card.
1374              */
1375             bus = qdev_get_child_bus(dev, "ssi");
1376 
1377             sddev = ssi_create_slave(bus, "ssi-sd");
1378             ssddev = ssi_create_slave(bus, "ssd0323");
1379             gpio_out[GPIO_D][0] = qemu_irq_split(
1380                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1381                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1382             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1383 
1384             /* Make sure the select pin is high.  */
1385             qemu_irq_raise(gpio_out[GPIO_D][0]);
1386         }
1387     }
1388     if (board->dc4 & (1 << 28)) {
1389         DeviceState *enet;
1390 
1391         qemu_check_nic_model(&nd_table[0], "stellaris");
1392 
1393         enet = qdev_create(NULL, "stellaris_enet");
1394         qdev_set_nic_properties(enet, &nd_table[0]);
1395         qdev_init_nofail(enet);
1396         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1397         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1398     }
1399     if (board->peripherals & BP_GAMEPAD) {
1400         qemu_irq gpad_irq[5];
1401         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1402 
1403         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1404         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1405         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1406         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1407         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1408 
1409         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1410     }
1411     for (i = 0; i < 7; i++) {
1412         if (board->dc4 & (1 << i)) {
1413             for (j = 0; j < 8; j++) {
1414                 if (gpio_out[i][j]) {
1415                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1416                 }
1417             }
1418         }
1419     }
1420 
1421     /* Add dummy regions for the devices we don't implement yet,
1422      * so guest accesses don't cause unlogged crashes.
1423      */
1424     create_unimplemented_device("wdtimer", 0x40000000, 0x1000);
1425     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1426     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1427     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1428     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1429     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1430     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1431     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1432     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1433 }
1434 
1435 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1436 static void lm3s811evb_init(MachineState *machine)
1437 {
1438     stellaris_init(machine, &stellaris_boards[0]);
1439 }
1440 
1441 static void lm3s6965evb_init(MachineState *machine)
1442 {
1443     stellaris_init(machine, &stellaris_boards[1]);
1444 }
1445 
1446 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1447 {
1448     MachineClass *mc = MACHINE_CLASS(oc);
1449 
1450     mc->desc = "Stellaris LM3S811EVB";
1451     mc->init = lm3s811evb_init;
1452     mc->ignore_memory_transaction_failures = true;
1453     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1454 }
1455 
1456 static const TypeInfo lm3s811evb_type = {
1457     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1458     .parent = TYPE_MACHINE,
1459     .class_init = lm3s811evb_class_init,
1460 };
1461 
1462 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1463 {
1464     MachineClass *mc = MACHINE_CLASS(oc);
1465 
1466     mc->desc = "Stellaris LM3S6965EVB";
1467     mc->init = lm3s6965evb_init;
1468     mc->ignore_memory_transaction_failures = true;
1469     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1470 }
1471 
1472 static const TypeInfo lm3s6965evb_type = {
1473     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1474     .parent = TYPE_MACHINE,
1475     .class_init = lm3s6965evb_class_init,
1476 };
1477 
1478 static void stellaris_machine_init(void)
1479 {
1480     type_register_static(&lm3s811evb_type);
1481     type_register_static(&lm3s6965evb_type);
1482 }
1483 
1484 type_init(stellaris_machine_init)
1485 
1486 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1487 {
1488     DeviceClass *dc = DEVICE_CLASS(klass);
1489 
1490     dc->vmsd = &vmstate_stellaris_i2c;
1491 }
1492 
1493 static const TypeInfo stellaris_i2c_info = {
1494     .name          = TYPE_STELLARIS_I2C,
1495     .parent        = TYPE_SYS_BUS_DEVICE,
1496     .instance_size = sizeof(stellaris_i2c_state),
1497     .instance_init = stellaris_i2c_init,
1498     .class_init    = stellaris_i2c_class_init,
1499 };
1500 
1501 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1502 {
1503     DeviceClass *dc = DEVICE_CLASS(klass);
1504 
1505     dc->vmsd = &vmstate_stellaris_gptm;
1506 }
1507 
1508 static const TypeInfo stellaris_gptm_info = {
1509     .name          = TYPE_STELLARIS_GPTM,
1510     .parent        = TYPE_SYS_BUS_DEVICE,
1511     .instance_size = sizeof(gptm_state),
1512     .instance_init = stellaris_gptm_init,
1513     .class_init    = stellaris_gptm_class_init,
1514 };
1515 
1516 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1517 {
1518     DeviceClass *dc = DEVICE_CLASS(klass);
1519 
1520     dc->vmsd = &vmstate_stellaris_adc;
1521 }
1522 
1523 static const TypeInfo stellaris_adc_info = {
1524     .name          = TYPE_STELLARIS_ADC,
1525     .parent        = TYPE_SYS_BUS_DEVICE,
1526     .instance_size = sizeof(stellaris_adc_state),
1527     .instance_init = stellaris_adc_init,
1528     .class_init    = stellaris_adc_class_init,
1529 };
1530 
1531 static void stellaris_register_types(void)
1532 {
1533     type_register_static(&stellaris_i2c_info);
1534     type_register_static(&stellaris_gptm_info);
1535     type_register_static(&stellaris_adc_info);
1536 }
1537 
1538 type_init(stellaris_register_types)
1539