1 /* 2 * Luminary Micro Stellaris peripherals 3 * 4 * Copyright (c) 2006 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qapi/error.h" 12 #include "hw/sysbus.h" 13 #include "hw/ssi/ssi.h" 14 #include "hw/arm/arm.h" 15 #include "hw/devices.h" 16 #include "qemu/timer.h" 17 #include "hw/i2c/i2c.h" 18 #include "net/net.h" 19 #include "hw/boards.h" 20 #include "qemu/log.h" 21 #include "exec/address-spaces.h" 22 #include "sysemu/sysemu.h" 23 #include "hw/arm/armv7m.h" 24 #include "hw/char/pl011.h" 25 #include "hw/misc/unimp.h" 26 #include "cpu.h" 27 28 #define GPIO_A 0 29 #define GPIO_B 1 30 #define GPIO_C 2 31 #define GPIO_D 3 32 #define GPIO_E 4 33 #define GPIO_F 5 34 #define GPIO_G 6 35 36 #define BP_OLED_I2C 0x01 37 #define BP_OLED_SSI 0x02 38 #define BP_GAMEPAD 0x04 39 40 #define NUM_IRQ_LINES 64 41 42 typedef const struct { 43 const char *name; 44 uint32_t did0; 45 uint32_t did1; 46 uint32_t dc0; 47 uint32_t dc1; 48 uint32_t dc2; 49 uint32_t dc3; 50 uint32_t dc4; 51 uint32_t peripherals; 52 } stellaris_board_info; 53 54 /* General purpose timer module. */ 55 56 #define TYPE_STELLARIS_GPTM "stellaris-gptm" 57 #define STELLARIS_GPTM(obj) \ 58 OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM) 59 60 typedef struct gptm_state { 61 SysBusDevice parent_obj; 62 63 MemoryRegion iomem; 64 uint32_t config; 65 uint32_t mode[2]; 66 uint32_t control; 67 uint32_t state; 68 uint32_t mask; 69 uint32_t load[2]; 70 uint32_t match[2]; 71 uint32_t prescale[2]; 72 uint32_t match_prescale[2]; 73 uint32_t rtc; 74 int64_t tick[2]; 75 struct gptm_state *opaque[2]; 76 QEMUTimer *timer[2]; 77 /* The timers have an alternate output used to trigger the ADC. */ 78 qemu_irq trigger; 79 qemu_irq irq; 80 } gptm_state; 81 82 static void gptm_update_irq(gptm_state *s) 83 { 84 int level; 85 level = (s->state & s->mask) != 0; 86 qemu_set_irq(s->irq, level); 87 } 88 89 static void gptm_stop(gptm_state *s, int n) 90 { 91 timer_del(s->timer[n]); 92 } 93 94 static void gptm_reload(gptm_state *s, int n, int reset) 95 { 96 int64_t tick; 97 if (reset) 98 tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 99 else 100 tick = s->tick[n]; 101 102 if (s->config == 0) { 103 /* 32-bit CountDown. */ 104 uint32_t count; 105 count = s->load[0] | (s->load[1] << 16); 106 tick += (int64_t)count * system_clock_scale; 107 } else if (s->config == 1) { 108 /* 32-bit RTC. 1Hz tick. */ 109 tick += NANOSECONDS_PER_SECOND; 110 } else if (s->mode[n] == 0xa) { 111 /* PWM mode. Not implemented. */ 112 } else { 113 qemu_log_mask(LOG_UNIMP, 114 "GPTM: 16-bit timer mode unimplemented: 0x%x\n", 115 s->mode[n]); 116 return; 117 } 118 s->tick[n] = tick; 119 timer_mod(s->timer[n], tick); 120 } 121 122 static void gptm_tick(void *opaque) 123 { 124 gptm_state **p = (gptm_state **)opaque; 125 gptm_state *s; 126 int n; 127 128 s = *p; 129 n = p - s->opaque; 130 if (s->config == 0) { 131 s->state |= 1; 132 if ((s->control & 0x20)) { 133 /* Output trigger. */ 134 qemu_irq_pulse(s->trigger); 135 } 136 if (s->mode[0] & 1) { 137 /* One-shot. */ 138 s->control &= ~1; 139 } else { 140 /* Periodic. */ 141 gptm_reload(s, 0, 0); 142 } 143 } else if (s->config == 1) { 144 /* RTC. */ 145 uint32_t match; 146 s->rtc++; 147 match = s->match[0] | (s->match[1] << 16); 148 if (s->rtc > match) 149 s->rtc = 0; 150 if (s->rtc == 0) { 151 s->state |= 8; 152 } 153 gptm_reload(s, 0, 0); 154 } else if (s->mode[n] == 0xa) { 155 /* PWM mode. Not implemented. */ 156 } else { 157 qemu_log_mask(LOG_UNIMP, 158 "GPTM: 16-bit timer mode unimplemented: 0x%x\n", 159 s->mode[n]); 160 } 161 gptm_update_irq(s); 162 } 163 164 static uint64_t gptm_read(void *opaque, hwaddr offset, 165 unsigned size) 166 { 167 gptm_state *s = (gptm_state *)opaque; 168 169 switch (offset) { 170 case 0x00: /* CFG */ 171 return s->config; 172 case 0x04: /* TAMR */ 173 return s->mode[0]; 174 case 0x08: /* TBMR */ 175 return s->mode[1]; 176 case 0x0c: /* CTL */ 177 return s->control; 178 case 0x18: /* IMR */ 179 return s->mask; 180 case 0x1c: /* RIS */ 181 return s->state; 182 case 0x20: /* MIS */ 183 return s->state & s->mask; 184 case 0x24: /* CR */ 185 return 0; 186 case 0x28: /* TAILR */ 187 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0); 188 case 0x2c: /* TBILR */ 189 return s->load[1]; 190 case 0x30: /* TAMARCHR */ 191 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0); 192 case 0x34: /* TBMATCHR */ 193 return s->match[1]; 194 case 0x38: /* TAPR */ 195 return s->prescale[0]; 196 case 0x3c: /* TBPR */ 197 return s->prescale[1]; 198 case 0x40: /* TAPMR */ 199 return s->match_prescale[0]; 200 case 0x44: /* TBPMR */ 201 return s->match_prescale[1]; 202 case 0x48: /* TAR */ 203 if (s->config == 1) { 204 return s->rtc; 205 } 206 qemu_log_mask(LOG_UNIMP, 207 "GPTM: read of TAR but timer read not supported\n"); 208 return 0; 209 case 0x4c: /* TBR */ 210 qemu_log_mask(LOG_UNIMP, 211 "GPTM: read of TBR but timer read not supported\n"); 212 return 0; 213 default: 214 qemu_log_mask(LOG_GUEST_ERROR, 215 "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n", 216 offset); 217 return 0; 218 } 219 } 220 221 static void gptm_write(void *opaque, hwaddr offset, 222 uint64_t value, unsigned size) 223 { 224 gptm_state *s = (gptm_state *)opaque; 225 uint32_t oldval; 226 227 /* The timers should be disabled before changing the configuration. 228 We take advantage of this and defer everything until the timer 229 is enabled. */ 230 switch (offset) { 231 case 0x00: /* CFG */ 232 s->config = value; 233 break; 234 case 0x04: /* TAMR */ 235 s->mode[0] = value; 236 break; 237 case 0x08: /* TBMR */ 238 s->mode[1] = value; 239 break; 240 case 0x0c: /* CTL */ 241 oldval = s->control; 242 s->control = value; 243 /* TODO: Implement pause. */ 244 if ((oldval ^ value) & 1) { 245 if (value & 1) { 246 gptm_reload(s, 0, 1); 247 } else { 248 gptm_stop(s, 0); 249 } 250 } 251 if (((oldval ^ value) & 0x100) && s->config >= 4) { 252 if (value & 0x100) { 253 gptm_reload(s, 1, 1); 254 } else { 255 gptm_stop(s, 1); 256 } 257 } 258 break; 259 case 0x18: /* IMR */ 260 s->mask = value & 0x77; 261 gptm_update_irq(s); 262 break; 263 case 0x24: /* CR */ 264 s->state &= ~value; 265 break; 266 case 0x28: /* TAILR */ 267 s->load[0] = value & 0xffff; 268 if (s->config < 4) { 269 s->load[1] = value >> 16; 270 } 271 break; 272 case 0x2c: /* TBILR */ 273 s->load[1] = value & 0xffff; 274 break; 275 case 0x30: /* TAMARCHR */ 276 s->match[0] = value & 0xffff; 277 if (s->config < 4) { 278 s->match[1] = value >> 16; 279 } 280 break; 281 case 0x34: /* TBMATCHR */ 282 s->match[1] = value >> 16; 283 break; 284 case 0x38: /* TAPR */ 285 s->prescale[0] = value; 286 break; 287 case 0x3c: /* TBPR */ 288 s->prescale[1] = value; 289 break; 290 case 0x40: /* TAPMR */ 291 s->match_prescale[0] = value; 292 break; 293 case 0x44: /* TBPMR */ 294 s->match_prescale[0] = value; 295 break; 296 default: 297 qemu_log_mask(LOG_GUEST_ERROR, 298 "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n", 299 offset); 300 } 301 gptm_update_irq(s); 302 } 303 304 static const MemoryRegionOps gptm_ops = { 305 .read = gptm_read, 306 .write = gptm_write, 307 .endianness = DEVICE_NATIVE_ENDIAN, 308 }; 309 310 static const VMStateDescription vmstate_stellaris_gptm = { 311 .name = "stellaris_gptm", 312 .version_id = 1, 313 .minimum_version_id = 1, 314 .fields = (VMStateField[]) { 315 VMSTATE_UINT32(config, gptm_state), 316 VMSTATE_UINT32_ARRAY(mode, gptm_state, 2), 317 VMSTATE_UINT32(control, gptm_state), 318 VMSTATE_UINT32(state, gptm_state), 319 VMSTATE_UINT32(mask, gptm_state), 320 VMSTATE_UNUSED(8), 321 VMSTATE_UINT32_ARRAY(load, gptm_state, 2), 322 VMSTATE_UINT32_ARRAY(match, gptm_state, 2), 323 VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2), 324 VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2), 325 VMSTATE_UINT32(rtc, gptm_state), 326 VMSTATE_INT64_ARRAY(tick, gptm_state, 2), 327 VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2), 328 VMSTATE_END_OF_LIST() 329 } 330 }; 331 332 static void stellaris_gptm_init(Object *obj) 333 { 334 DeviceState *dev = DEVICE(obj); 335 gptm_state *s = STELLARIS_GPTM(obj); 336 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 337 338 sysbus_init_irq(sbd, &s->irq); 339 qdev_init_gpio_out(dev, &s->trigger, 1); 340 341 memory_region_init_io(&s->iomem, obj, &gptm_ops, s, 342 "gptm", 0x1000); 343 sysbus_init_mmio(sbd, &s->iomem); 344 345 s->opaque[0] = s->opaque[1] = s; 346 s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]); 347 s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]); 348 } 349 350 351 /* System controller. */ 352 353 typedef struct { 354 MemoryRegion iomem; 355 uint32_t pborctl; 356 uint32_t ldopctl; 357 uint32_t int_status; 358 uint32_t int_mask; 359 uint32_t resc; 360 uint32_t rcc; 361 uint32_t rcc2; 362 uint32_t rcgc[3]; 363 uint32_t scgc[3]; 364 uint32_t dcgc[3]; 365 uint32_t clkvclr; 366 uint32_t ldoarst; 367 uint32_t user0; 368 uint32_t user1; 369 qemu_irq irq; 370 stellaris_board_info *board; 371 } ssys_state; 372 373 static void ssys_update(ssys_state *s) 374 { 375 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0); 376 } 377 378 static uint32_t pllcfg_sandstorm[16] = { 379 0x31c0, /* 1 Mhz */ 380 0x1ae0, /* 1.8432 Mhz */ 381 0x18c0, /* 2 Mhz */ 382 0xd573, /* 2.4576 Mhz */ 383 0x37a6, /* 3.57954 Mhz */ 384 0x1ae2, /* 3.6864 Mhz */ 385 0x0c40, /* 4 Mhz */ 386 0x98bc, /* 4.906 Mhz */ 387 0x935b, /* 4.9152 Mhz */ 388 0x09c0, /* 5 Mhz */ 389 0x4dee, /* 5.12 Mhz */ 390 0x0c41, /* 6 Mhz */ 391 0x75db, /* 6.144 Mhz */ 392 0x1ae6, /* 7.3728 Mhz */ 393 0x0600, /* 8 Mhz */ 394 0x585b /* 8.192 Mhz */ 395 }; 396 397 static uint32_t pllcfg_fury[16] = { 398 0x3200, /* 1 Mhz */ 399 0x1b20, /* 1.8432 Mhz */ 400 0x1900, /* 2 Mhz */ 401 0xf42b, /* 2.4576 Mhz */ 402 0x37e3, /* 3.57954 Mhz */ 403 0x1b21, /* 3.6864 Mhz */ 404 0x0c80, /* 4 Mhz */ 405 0x98ee, /* 4.906 Mhz */ 406 0xd5b4, /* 4.9152 Mhz */ 407 0x0a00, /* 5 Mhz */ 408 0x4e27, /* 5.12 Mhz */ 409 0x1902, /* 6 Mhz */ 410 0xec1c, /* 6.144 Mhz */ 411 0x1b23, /* 7.3728 Mhz */ 412 0x0640, /* 8 Mhz */ 413 0xb11c /* 8.192 Mhz */ 414 }; 415 416 #define DID0_VER_MASK 0x70000000 417 #define DID0_VER_0 0x00000000 418 #define DID0_VER_1 0x10000000 419 420 #define DID0_CLASS_MASK 0x00FF0000 421 #define DID0_CLASS_SANDSTORM 0x00000000 422 #define DID0_CLASS_FURY 0x00010000 423 424 static int ssys_board_class(const ssys_state *s) 425 { 426 uint32_t did0 = s->board->did0; 427 switch (did0 & DID0_VER_MASK) { 428 case DID0_VER_0: 429 return DID0_CLASS_SANDSTORM; 430 case DID0_VER_1: 431 switch (did0 & DID0_CLASS_MASK) { 432 case DID0_CLASS_SANDSTORM: 433 case DID0_CLASS_FURY: 434 return did0 & DID0_CLASS_MASK; 435 } 436 /* for unknown classes, fall through */ 437 default: 438 /* This can only happen if the hardwired constant did0 value 439 * in this board's stellaris_board_info struct is wrong. 440 */ 441 g_assert_not_reached(); 442 } 443 } 444 445 static uint64_t ssys_read(void *opaque, hwaddr offset, 446 unsigned size) 447 { 448 ssys_state *s = (ssys_state *)opaque; 449 450 switch (offset) { 451 case 0x000: /* DID0 */ 452 return s->board->did0; 453 case 0x004: /* DID1 */ 454 return s->board->did1; 455 case 0x008: /* DC0 */ 456 return s->board->dc0; 457 case 0x010: /* DC1 */ 458 return s->board->dc1; 459 case 0x014: /* DC2 */ 460 return s->board->dc2; 461 case 0x018: /* DC3 */ 462 return s->board->dc3; 463 case 0x01c: /* DC4 */ 464 return s->board->dc4; 465 case 0x030: /* PBORCTL */ 466 return s->pborctl; 467 case 0x034: /* LDOPCTL */ 468 return s->ldopctl; 469 case 0x040: /* SRCR0 */ 470 return 0; 471 case 0x044: /* SRCR1 */ 472 return 0; 473 case 0x048: /* SRCR2 */ 474 return 0; 475 case 0x050: /* RIS */ 476 return s->int_status; 477 case 0x054: /* IMC */ 478 return s->int_mask; 479 case 0x058: /* MISC */ 480 return s->int_status & s->int_mask; 481 case 0x05c: /* RESC */ 482 return s->resc; 483 case 0x060: /* RCC */ 484 return s->rcc; 485 case 0x064: /* PLLCFG */ 486 { 487 int xtal; 488 xtal = (s->rcc >> 6) & 0xf; 489 switch (ssys_board_class(s)) { 490 case DID0_CLASS_FURY: 491 return pllcfg_fury[xtal]; 492 case DID0_CLASS_SANDSTORM: 493 return pllcfg_sandstorm[xtal]; 494 default: 495 g_assert_not_reached(); 496 } 497 } 498 case 0x070: /* RCC2 */ 499 return s->rcc2; 500 case 0x100: /* RCGC0 */ 501 return s->rcgc[0]; 502 case 0x104: /* RCGC1 */ 503 return s->rcgc[1]; 504 case 0x108: /* RCGC2 */ 505 return s->rcgc[2]; 506 case 0x110: /* SCGC0 */ 507 return s->scgc[0]; 508 case 0x114: /* SCGC1 */ 509 return s->scgc[1]; 510 case 0x118: /* SCGC2 */ 511 return s->scgc[2]; 512 case 0x120: /* DCGC0 */ 513 return s->dcgc[0]; 514 case 0x124: /* DCGC1 */ 515 return s->dcgc[1]; 516 case 0x128: /* DCGC2 */ 517 return s->dcgc[2]; 518 case 0x150: /* CLKVCLR */ 519 return s->clkvclr; 520 case 0x160: /* LDOARST */ 521 return s->ldoarst; 522 case 0x1e0: /* USER0 */ 523 return s->user0; 524 case 0x1e4: /* USER1 */ 525 return s->user1; 526 default: 527 qemu_log_mask(LOG_GUEST_ERROR, 528 "SSYS: read at bad offset 0x%x\n", (int)offset); 529 return 0; 530 } 531 } 532 533 static bool ssys_use_rcc2(ssys_state *s) 534 { 535 return (s->rcc2 >> 31) & 0x1; 536 } 537 538 /* 539 * Caculate the sys. clock period in ms. 540 */ 541 static void ssys_calculate_system_clock(ssys_state *s) 542 { 543 if (ssys_use_rcc2(s)) { 544 system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1); 545 } else { 546 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1); 547 } 548 } 549 550 static void ssys_write(void *opaque, hwaddr offset, 551 uint64_t value, unsigned size) 552 { 553 ssys_state *s = (ssys_state *)opaque; 554 555 switch (offset) { 556 case 0x030: /* PBORCTL */ 557 s->pborctl = value & 0xffff; 558 break; 559 case 0x034: /* LDOPCTL */ 560 s->ldopctl = value & 0x1f; 561 break; 562 case 0x040: /* SRCR0 */ 563 case 0x044: /* SRCR1 */ 564 case 0x048: /* SRCR2 */ 565 qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n"); 566 break; 567 case 0x054: /* IMC */ 568 s->int_mask = value & 0x7f; 569 break; 570 case 0x058: /* MISC */ 571 s->int_status &= ~value; 572 break; 573 case 0x05c: /* RESC */ 574 s->resc = value & 0x3f; 575 break; 576 case 0x060: /* RCC */ 577 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { 578 /* PLL enable. */ 579 s->int_status |= (1 << 6); 580 } 581 s->rcc = value; 582 ssys_calculate_system_clock(s); 583 break; 584 case 0x070: /* RCC2 */ 585 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { 586 break; 587 } 588 589 if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { 590 /* PLL enable. */ 591 s->int_status |= (1 << 6); 592 } 593 s->rcc2 = value; 594 ssys_calculate_system_clock(s); 595 break; 596 case 0x100: /* RCGC0 */ 597 s->rcgc[0] = value; 598 break; 599 case 0x104: /* RCGC1 */ 600 s->rcgc[1] = value; 601 break; 602 case 0x108: /* RCGC2 */ 603 s->rcgc[2] = value; 604 break; 605 case 0x110: /* SCGC0 */ 606 s->scgc[0] = value; 607 break; 608 case 0x114: /* SCGC1 */ 609 s->scgc[1] = value; 610 break; 611 case 0x118: /* SCGC2 */ 612 s->scgc[2] = value; 613 break; 614 case 0x120: /* DCGC0 */ 615 s->dcgc[0] = value; 616 break; 617 case 0x124: /* DCGC1 */ 618 s->dcgc[1] = value; 619 break; 620 case 0x128: /* DCGC2 */ 621 s->dcgc[2] = value; 622 break; 623 case 0x150: /* CLKVCLR */ 624 s->clkvclr = value; 625 break; 626 case 0x160: /* LDOARST */ 627 s->ldoarst = value; 628 break; 629 default: 630 qemu_log_mask(LOG_GUEST_ERROR, 631 "SSYS: write at bad offset 0x%x\n", (int)offset); 632 } 633 ssys_update(s); 634 } 635 636 static const MemoryRegionOps ssys_ops = { 637 .read = ssys_read, 638 .write = ssys_write, 639 .endianness = DEVICE_NATIVE_ENDIAN, 640 }; 641 642 static void ssys_reset(void *opaque) 643 { 644 ssys_state *s = (ssys_state *)opaque; 645 646 s->pborctl = 0x7ffd; 647 s->rcc = 0x078e3ac0; 648 649 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { 650 s->rcc2 = 0; 651 } else { 652 s->rcc2 = 0x07802810; 653 } 654 s->rcgc[0] = 1; 655 s->scgc[0] = 1; 656 s->dcgc[0] = 1; 657 ssys_calculate_system_clock(s); 658 } 659 660 static int stellaris_sys_post_load(void *opaque, int version_id) 661 { 662 ssys_state *s = opaque; 663 664 ssys_calculate_system_clock(s); 665 666 return 0; 667 } 668 669 static const VMStateDescription vmstate_stellaris_sys = { 670 .name = "stellaris_sys", 671 .version_id = 2, 672 .minimum_version_id = 1, 673 .post_load = stellaris_sys_post_load, 674 .fields = (VMStateField[]) { 675 VMSTATE_UINT32(pborctl, ssys_state), 676 VMSTATE_UINT32(ldopctl, ssys_state), 677 VMSTATE_UINT32(int_mask, ssys_state), 678 VMSTATE_UINT32(int_status, ssys_state), 679 VMSTATE_UINT32(resc, ssys_state), 680 VMSTATE_UINT32(rcc, ssys_state), 681 VMSTATE_UINT32_V(rcc2, ssys_state, 2), 682 VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3), 683 VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3), 684 VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3), 685 VMSTATE_UINT32(clkvclr, ssys_state), 686 VMSTATE_UINT32(ldoarst, ssys_state), 687 VMSTATE_END_OF_LIST() 688 } 689 }; 690 691 static int stellaris_sys_init(uint32_t base, qemu_irq irq, 692 stellaris_board_info * board, 693 uint8_t *macaddr) 694 { 695 ssys_state *s; 696 697 s = g_new0(ssys_state, 1); 698 s->irq = irq; 699 s->board = board; 700 /* Most devices come preprogrammed with a MAC address in the user data. */ 701 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16); 702 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16); 703 704 memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000); 705 memory_region_add_subregion(get_system_memory(), base, &s->iomem); 706 ssys_reset(s); 707 vmstate_register(NULL, -1, &vmstate_stellaris_sys, s); 708 return 0; 709 } 710 711 712 /* I2C controller. */ 713 714 #define TYPE_STELLARIS_I2C "stellaris-i2c" 715 #define STELLARIS_I2C(obj) \ 716 OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C) 717 718 typedef struct { 719 SysBusDevice parent_obj; 720 721 I2CBus *bus; 722 qemu_irq irq; 723 MemoryRegion iomem; 724 uint32_t msa; 725 uint32_t mcs; 726 uint32_t mdr; 727 uint32_t mtpr; 728 uint32_t mimr; 729 uint32_t mris; 730 uint32_t mcr; 731 } stellaris_i2c_state; 732 733 #define STELLARIS_I2C_MCS_BUSY 0x01 734 #define STELLARIS_I2C_MCS_ERROR 0x02 735 #define STELLARIS_I2C_MCS_ADRACK 0x04 736 #define STELLARIS_I2C_MCS_DATACK 0x08 737 #define STELLARIS_I2C_MCS_ARBLST 0x10 738 #define STELLARIS_I2C_MCS_IDLE 0x20 739 #define STELLARIS_I2C_MCS_BUSBSY 0x40 740 741 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset, 742 unsigned size) 743 { 744 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; 745 746 switch (offset) { 747 case 0x00: /* MSA */ 748 return s->msa; 749 case 0x04: /* MCS */ 750 /* We don't emulate timing, so the controller is never busy. */ 751 return s->mcs | STELLARIS_I2C_MCS_IDLE; 752 case 0x08: /* MDR */ 753 return s->mdr; 754 case 0x0c: /* MTPR */ 755 return s->mtpr; 756 case 0x10: /* MIMR */ 757 return s->mimr; 758 case 0x14: /* MRIS */ 759 return s->mris; 760 case 0x18: /* MMIS */ 761 return s->mris & s->mimr; 762 case 0x20: /* MCR */ 763 return s->mcr; 764 default: 765 qemu_log_mask(LOG_GUEST_ERROR, 766 "stellaris_i2c: read at bad offset 0x%x\n", (int)offset); 767 return 0; 768 } 769 } 770 771 static void stellaris_i2c_update(stellaris_i2c_state *s) 772 { 773 int level; 774 775 level = (s->mris & s->mimr) != 0; 776 qemu_set_irq(s->irq, level); 777 } 778 779 static void stellaris_i2c_write(void *opaque, hwaddr offset, 780 uint64_t value, unsigned size) 781 { 782 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; 783 784 switch (offset) { 785 case 0x00: /* MSA */ 786 s->msa = value & 0xff; 787 break; 788 case 0x04: /* MCS */ 789 if ((s->mcr & 0x10) == 0) { 790 /* Disabled. Do nothing. */ 791 break; 792 } 793 /* Grab the bus if this is starting a transfer. */ 794 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { 795 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) { 796 s->mcs |= STELLARIS_I2C_MCS_ARBLST; 797 } else { 798 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST; 799 s->mcs |= STELLARIS_I2C_MCS_BUSBSY; 800 } 801 } 802 /* If we don't have the bus then indicate an error. */ 803 if (!i2c_bus_busy(s->bus) 804 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { 805 s->mcs |= STELLARIS_I2C_MCS_ERROR; 806 break; 807 } 808 s->mcs &= ~STELLARIS_I2C_MCS_ERROR; 809 if (value & 1) { 810 /* Transfer a byte. */ 811 /* TODO: Handle errors. */ 812 if (s->msa & 1) { 813 /* Recv */ 814 s->mdr = i2c_recv(s->bus); 815 } else { 816 /* Send */ 817 i2c_send(s->bus, s->mdr); 818 } 819 /* Raise an interrupt. */ 820 s->mris |= 1; 821 } 822 if (value & 4) { 823 /* Finish transfer. */ 824 i2c_end_transfer(s->bus); 825 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY; 826 } 827 break; 828 case 0x08: /* MDR */ 829 s->mdr = value & 0xff; 830 break; 831 case 0x0c: /* MTPR */ 832 s->mtpr = value & 0xff; 833 break; 834 case 0x10: /* MIMR */ 835 s->mimr = 1; 836 break; 837 case 0x1c: /* MICR */ 838 s->mris &= ~value; 839 break; 840 case 0x20: /* MCR */ 841 if (value & 1) { 842 qemu_log_mask(LOG_UNIMP, 843 "stellaris_i2c: Loopback not implemented\n"); 844 } 845 if (value & 0x20) { 846 qemu_log_mask(LOG_UNIMP, 847 "stellaris_i2c: Slave mode not implemented\n"); 848 } 849 s->mcr = value & 0x31; 850 break; 851 default: 852 qemu_log_mask(LOG_GUEST_ERROR, 853 "stellaris_i2c: write at bad offset 0x%x\n", (int)offset); 854 } 855 stellaris_i2c_update(s); 856 } 857 858 static void stellaris_i2c_reset(stellaris_i2c_state *s) 859 { 860 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY) 861 i2c_end_transfer(s->bus); 862 863 s->msa = 0; 864 s->mcs = 0; 865 s->mdr = 0; 866 s->mtpr = 1; 867 s->mimr = 0; 868 s->mris = 0; 869 s->mcr = 0; 870 stellaris_i2c_update(s); 871 } 872 873 static const MemoryRegionOps stellaris_i2c_ops = { 874 .read = stellaris_i2c_read, 875 .write = stellaris_i2c_write, 876 .endianness = DEVICE_NATIVE_ENDIAN, 877 }; 878 879 static const VMStateDescription vmstate_stellaris_i2c = { 880 .name = "stellaris_i2c", 881 .version_id = 1, 882 .minimum_version_id = 1, 883 .fields = (VMStateField[]) { 884 VMSTATE_UINT32(msa, stellaris_i2c_state), 885 VMSTATE_UINT32(mcs, stellaris_i2c_state), 886 VMSTATE_UINT32(mdr, stellaris_i2c_state), 887 VMSTATE_UINT32(mtpr, stellaris_i2c_state), 888 VMSTATE_UINT32(mimr, stellaris_i2c_state), 889 VMSTATE_UINT32(mris, stellaris_i2c_state), 890 VMSTATE_UINT32(mcr, stellaris_i2c_state), 891 VMSTATE_END_OF_LIST() 892 } 893 }; 894 895 static void stellaris_i2c_init(Object *obj) 896 { 897 DeviceState *dev = DEVICE(obj); 898 stellaris_i2c_state *s = STELLARIS_I2C(obj); 899 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 900 I2CBus *bus; 901 902 sysbus_init_irq(sbd, &s->irq); 903 bus = i2c_init_bus(dev, "i2c"); 904 s->bus = bus; 905 906 memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s, 907 "i2c", 0x1000); 908 sysbus_init_mmio(sbd, &s->iomem); 909 /* ??? For now we only implement the master interface. */ 910 stellaris_i2c_reset(s); 911 } 912 913 /* Analogue to Digital Converter. This is only partially implemented, 914 enough for applications that use a combined ADC and timer tick. */ 915 916 #define STELLARIS_ADC_EM_CONTROLLER 0 917 #define STELLARIS_ADC_EM_COMP 1 918 #define STELLARIS_ADC_EM_EXTERNAL 4 919 #define STELLARIS_ADC_EM_TIMER 5 920 #define STELLARIS_ADC_EM_PWM0 6 921 #define STELLARIS_ADC_EM_PWM1 7 922 #define STELLARIS_ADC_EM_PWM2 8 923 924 #define STELLARIS_ADC_FIFO_EMPTY 0x0100 925 #define STELLARIS_ADC_FIFO_FULL 0x1000 926 927 #define TYPE_STELLARIS_ADC "stellaris-adc" 928 #define STELLARIS_ADC(obj) \ 929 OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC) 930 931 typedef struct StellarisADCState { 932 SysBusDevice parent_obj; 933 934 MemoryRegion iomem; 935 uint32_t actss; 936 uint32_t ris; 937 uint32_t im; 938 uint32_t emux; 939 uint32_t ostat; 940 uint32_t ustat; 941 uint32_t sspri; 942 uint32_t sac; 943 struct { 944 uint32_t state; 945 uint32_t data[16]; 946 } fifo[4]; 947 uint32_t ssmux[4]; 948 uint32_t ssctl[4]; 949 uint32_t noise; 950 qemu_irq irq[4]; 951 } stellaris_adc_state; 952 953 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n) 954 { 955 int tail; 956 957 tail = s->fifo[n].state & 0xf; 958 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) { 959 s->ustat |= 1 << n; 960 } else { 961 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf); 962 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL; 963 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf)) 964 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY; 965 } 966 return s->fifo[n].data[tail]; 967 } 968 969 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n, 970 uint32_t value) 971 { 972 int head; 973 974 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry 975 FIFO fir each sequencer. */ 976 head = (s->fifo[n].state >> 4) & 0xf; 977 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) { 978 s->ostat |= 1 << n; 979 return; 980 } 981 s->fifo[n].data[head] = value; 982 head = (head + 1) & 0xf; 983 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY; 984 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4); 985 if ((s->fifo[n].state & 0xf) == head) 986 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL; 987 } 988 989 static void stellaris_adc_update(stellaris_adc_state *s) 990 { 991 int level; 992 int n; 993 994 for (n = 0; n < 4; n++) { 995 level = (s->ris & s->im & (1 << n)) != 0; 996 qemu_set_irq(s->irq[n], level); 997 } 998 } 999 1000 static void stellaris_adc_trigger(void *opaque, int irq, int level) 1001 { 1002 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 1003 int n; 1004 1005 for (n = 0; n < 4; n++) { 1006 if ((s->actss & (1 << n)) == 0) { 1007 continue; 1008 } 1009 1010 if (((s->emux >> (n * 4)) & 0xff) != 5) { 1011 continue; 1012 } 1013 1014 /* Some applications use the ADC as a random number source, so introduce 1015 some variation into the signal. */ 1016 s->noise = s->noise * 314159 + 1; 1017 /* ??? actual inputs not implemented. Return an arbitrary value. */ 1018 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7)); 1019 s->ris |= (1 << n); 1020 stellaris_adc_update(s); 1021 } 1022 } 1023 1024 static void stellaris_adc_reset(stellaris_adc_state *s) 1025 { 1026 int n; 1027 1028 for (n = 0; n < 4; n++) { 1029 s->ssmux[n] = 0; 1030 s->ssctl[n] = 0; 1031 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY; 1032 } 1033 } 1034 1035 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset, 1036 unsigned size) 1037 { 1038 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 1039 1040 /* TODO: Implement this. */ 1041 if (offset >= 0x40 && offset < 0xc0) { 1042 int n; 1043 n = (offset - 0x40) >> 5; 1044 switch (offset & 0x1f) { 1045 case 0x00: /* SSMUX */ 1046 return s->ssmux[n]; 1047 case 0x04: /* SSCTL */ 1048 return s->ssctl[n]; 1049 case 0x08: /* SSFIFO */ 1050 return stellaris_adc_fifo_read(s, n); 1051 case 0x0c: /* SSFSTAT */ 1052 return s->fifo[n].state; 1053 default: 1054 break; 1055 } 1056 } 1057 switch (offset) { 1058 case 0x00: /* ACTSS */ 1059 return s->actss; 1060 case 0x04: /* RIS */ 1061 return s->ris; 1062 case 0x08: /* IM */ 1063 return s->im; 1064 case 0x0c: /* ISC */ 1065 return s->ris & s->im; 1066 case 0x10: /* OSTAT */ 1067 return s->ostat; 1068 case 0x14: /* EMUX */ 1069 return s->emux; 1070 case 0x18: /* USTAT */ 1071 return s->ustat; 1072 case 0x20: /* SSPRI */ 1073 return s->sspri; 1074 case 0x30: /* SAC */ 1075 return s->sac; 1076 default: 1077 qemu_log_mask(LOG_GUEST_ERROR, 1078 "stellaris_adc: read at bad offset 0x%x\n", (int)offset); 1079 return 0; 1080 } 1081 } 1082 1083 static void stellaris_adc_write(void *opaque, hwaddr offset, 1084 uint64_t value, unsigned size) 1085 { 1086 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 1087 1088 /* TODO: Implement this. */ 1089 if (offset >= 0x40 && offset < 0xc0) { 1090 int n; 1091 n = (offset - 0x40) >> 5; 1092 switch (offset & 0x1f) { 1093 case 0x00: /* SSMUX */ 1094 s->ssmux[n] = value & 0x33333333; 1095 return; 1096 case 0x04: /* SSCTL */ 1097 if (value != 6) { 1098 qemu_log_mask(LOG_UNIMP, 1099 "ADC: Unimplemented sequence %" PRIx64 "\n", 1100 value); 1101 } 1102 s->ssctl[n] = value; 1103 return; 1104 default: 1105 break; 1106 } 1107 } 1108 switch (offset) { 1109 case 0x00: /* ACTSS */ 1110 s->actss = value & 0xf; 1111 break; 1112 case 0x08: /* IM */ 1113 s->im = value; 1114 break; 1115 case 0x0c: /* ISC */ 1116 s->ris &= ~value; 1117 break; 1118 case 0x10: /* OSTAT */ 1119 s->ostat &= ~value; 1120 break; 1121 case 0x14: /* EMUX */ 1122 s->emux = value; 1123 break; 1124 case 0x18: /* USTAT */ 1125 s->ustat &= ~value; 1126 break; 1127 case 0x20: /* SSPRI */ 1128 s->sspri = value; 1129 break; 1130 case 0x28: /* PSSI */ 1131 qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n"); 1132 break; 1133 case 0x30: /* SAC */ 1134 s->sac = value; 1135 break; 1136 default: 1137 qemu_log_mask(LOG_GUEST_ERROR, 1138 "stellaris_adc: write at bad offset 0x%x\n", (int)offset); 1139 } 1140 stellaris_adc_update(s); 1141 } 1142 1143 static const MemoryRegionOps stellaris_adc_ops = { 1144 .read = stellaris_adc_read, 1145 .write = stellaris_adc_write, 1146 .endianness = DEVICE_NATIVE_ENDIAN, 1147 }; 1148 1149 static const VMStateDescription vmstate_stellaris_adc = { 1150 .name = "stellaris_adc", 1151 .version_id = 1, 1152 .minimum_version_id = 1, 1153 .fields = (VMStateField[]) { 1154 VMSTATE_UINT32(actss, stellaris_adc_state), 1155 VMSTATE_UINT32(ris, stellaris_adc_state), 1156 VMSTATE_UINT32(im, stellaris_adc_state), 1157 VMSTATE_UINT32(emux, stellaris_adc_state), 1158 VMSTATE_UINT32(ostat, stellaris_adc_state), 1159 VMSTATE_UINT32(ustat, stellaris_adc_state), 1160 VMSTATE_UINT32(sspri, stellaris_adc_state), 1161 VMSTATE_UINT32(sac, stellaris_adc_state), 1162 VMSTATE_UINT32(fifo[0].state, stellaris_adc_state), 1163 VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16), 1164 VMSTATE_UINT32(ssmux[0], stellaris_adc_state), 1165 VMSTATE_UINT32(ssctl[0], stellaris_adc_state), 1166 VMSTATE_UINT32(fifo[1].state, stellaris_adc_state), 1167 VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16), 1168 VMSTATE_UINT32(ssmux[1], stellaris_adc_state), 1169 VMSTATE_UINT32(ssctl[1], stellaris_adc_state), 1170 VMSTATE_UINT32(fifo[2].state, stellaris_adc_state), 1171 VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16), 1172 VMSTATE_UINT32(ssmux[2], stellaris_adc_state), 1173 VMSTATE_UINT32(ssctl[2], stellaris_adc_state), 1174 VMSTATE_UINT32(fifo[3].state, stellaris_adc_state), 1175 VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16), 1176 VMSTATE_UINT32(ssmux[3], stellaris_adc_state), 1177 VMSTATE_UINT32(ssctl[3], stellaris_adc_state), 1178 VMSTATE_UINT32(noise, stellaris_adc_state), 1179 VMSTATE_END_OF_LIST() 1180 } 1181 }; 1182 1183 static void stellaris_adc_init(Object *obj) 1184 { 1185 DeviceState *dev = DEVICE(obj); 1186 stellaris_adc_state *s = STELLARIS_ADC(obj); 1187 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 1188 int n; 1189 1190 for (n = 0; n < 4; n++) { 1191 sysbus_init_irq(sbd, &s->irq[n]); 1192 } 1193 1194 memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s, 1195 "adc", 0x1000); 1196 sysbus_init_mmio(sbd, &s->iomem); 1197 stellaris_adc_reset(s); 1198 qdev_init_gpio_in(dev, stellaris_adc_trigger, 1); 1199 } 1200 1201 static 1202 void do_sys_reset(void *opaque, int n, int level) 1203 { 1204 if (level) { 1205 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1206 } 1207 } 1208 1209 /* Board init. */ 1210 static stellaris_board_info stellaris_boards[] = { 1211 { "LM3S811EVB", 1212 0, 1213 0x0032000e, 1214 0x001f001f, /* dc0 */ 1215 0x001132bf, 1216 0x01071013, 1217 0x3f0f01ff, 1218 0x0000001f, 1219 BP_OLED_I2C 1220 }, 1221 { "LM3S6965EVB", 1222 0x10010002, 1223 0x1073402e, 1224 0x00ff007f, /* dc0 */ 1225 0x001133ff, 1226 0x030f5317, 1227 0x0f0f87ff, 1228 0x5000007f, 1229 BP_OLED_SSI | BP_GAMEPAD 1230 } 1231 }; 1232 1233 static void stellaris_init(MachineState *ms, stellaris_board_info *board) 1234 { 1235 static const int uart_irq[] = {5, 6, 33, 34}; 1236 static const int timer_irq[] = {19, 21, 23, 35}; 1237 static const uint32_t gpio_addr[7] = 1238 { 0x40004000, 0x40005000, 0x40006000, 0x40007000, 1239 0x40024000, 0x40025000, 0x40026000}; 1240 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31}; 1241 1242 /* Memory map of SoC devices, from 1243 * Stellaris LM3S6965 Microcontroller Data Sheet (rev I) 1244 * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf 1245 * 1246 * 40000000 wdtimer (unimplemented) 1247 * 40002000 i2c (unimplemented) 1248 * 40004000 GPIO 1249 * 40005000 GPIO 1250 * 40006000 GPIO 1251 * 40007000 GPIO 1252 * 40008000 SSI 1253 * 4000c000 UART 1254 * 4000d000 UART 1255 * 4000e000 UART 1256 * 40020000 i2c 1257 * 40021000 i2c (unimplemented) 1258 * 40024000 GPIO 1259 * 40025000 GPIO 1260 * 40026000 GPIO 1261 * 40028000 PWM (unimplemented) 1262 * 4002c000 QEI (unimplemented) 1263 * 4002d000 QEI (unimplemented) 1264 * 40030000 gptimer 1265 * 40031000 gptimer 1266 * 40032000 gptimer 1267 * 40033000 gptimer 1268 * 40038000 ADC 1269 * 4003c000 analogue comparator (unimplemented) 1270 * 40048000 ethernet 1271 * 400fc000 hibernation module (unimplemented) 1272 * 400fd000 flash memory control (unimplemented) 1273 * 400fe000 system control 1274 */ 1275 1276 DeviceState *gpio_dev[7], *nvic; 1277 qemu_irq gpio_in[7][8]; 1278 qemu_irq gpio_out[7][8]; 1279 qemu_irq adc; 1280 int sram_size; 1281 int flash_size; 1282 I2CBus *i2c; 1283 DeviceState *dev; 1284 int i; 1285 int j; 1286 1287 MemoryRegion *sram = g_new(MemoryRegion, 1); 1288 MemoryRegion *flash = g_new(MemoryRegion, 1); 1289 MemoryRegion *system_memory = get_system_memory(); 1290 1291 flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024; 1292 sram_size = ((board->dc0 >> 18) + 1) * 1024; 1293 1294 /* Flash programming is done via the SCU, so pretend it is ROM. */ 1295 memory_region_init_ram(flash, NULL, "stellaris.flash", flash_size, 1296 &error_fatal); 1297 memory_region_set_readonly(flash, true); 1298 memory_region_add_subregion(system_memory, 0, flash); 1299 1300 memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size, 1301 &error_fatal); 1302 memory_region_add_subregion(system_memory, 0x20000000, sram); 1303 1304 nvic = qdev_create(NULL, TYPE_ARMV7M); 1305 qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES); 1306 qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type); 1307 qdev_prop_set_bit(nvic, "enable-bitband", true); 1308 object_property_set_link(OBJECT(nvic), OBJECT(get_system_memory()), 1309 "memory", &error_abort); 1310 /* This will exit with an error if the user passed us a bad cpu_type */ 1311 qdev_init_nofail(nvic); 1312 1313 qdev_connect_gpio_out_named(nvic, "SYSRESETREQ", 0, 1314 qemu_allocate_irq(&do_sys_reset, NULL, 0)); 1315 1316 if (board->dc1 & (1 << 16)) { 1317 dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000, 1318 qdev_get_gpio_in(nvic, 14), 1319 qdev_get_gpio_in(nvic, 15), 1320 qdev_get_gpio_in(nvic, 16), 1321 qdev_get_gpio_in(nvic, 17), 1322 NULL); 1323 adc = qdev_get_gpio_in(dev, 0); 1324 } else { 1325 adc = NULL; 1326 } 1327 for (i = 0; i < 4; i++) { 1328 if (board->dc2 & (0x10000 << i)) { 1329 dev = sysbus_create_simple(TYPE_STELLARIS_GPTM, 1330 0x40030000 + i * 0x1000, 1331 qdev_get_gpio_in(nvic, timer_irq[i])); 1332 /* TODO: This is incorrect, but we get away with it because 1333 the ADC output is only ever pulsed. */ 1334 qdev_connect_gpio_out(dev, 0, adc); 1335 } 1336 } 1337 1338 stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28), 1339 board, nd_table[0].macaddr.a); 1340 1341 for (i = 0; i < 7; i++) { 1342 if (board->dc4 & (1 << i)) { 1343 gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i], 1344 qdev_get_gpio_in(nvic, 1345 gpio_irq[i])); 1346 for (j = 0; j < 8; j++) { 1347 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j); 1348 gpio_out[i][j] = NULL; 1349 } 1350 } 1351 } 1352 1353 if (board->dc2 & (1 << 12)) { 1354 dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000, 1355 qdev_get_gpio_in(nvic, 8)); 1356 i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c"); 1357 if (board->peripherals & BP_OLED_I2C) { 1358 i2c_create_slave(i2c, "ssd0303", 0x3d); 1359 } 1360 } 1361 1362 for (i = 0; i < 4; i++) { 1363 if (board->dc2 & (1 << i)) { 1364 pl011_luminary_create(0x4000c000 + i * 0x1000, 1365 qdev_get_gpio_in(nvic, uart_irq[i]), 1366 serial_hd(i)); 1367 } 1368 } 1369 if (board->dc2 & (1 << 4)) { 1370 dev = sysbus_create_simple("pl022", 0x40008000, 1371 qdev_get_gpio_in(nvic, 7)); 1372 if (board->peripherals & BP_OLED_SSI) { 1373 void *bus; 1374 DeviceState *sddev; 1375 DeviceState *ssddev; 1376 1377 /* Some boards have both an OLED controller and SD card connected to 1378 * the same SSI port, with the SD card chip select connected to a 1379 * GPIO pin. Technically the OLED chip select is connected to the 1380 * SSI Fss pin. We do not bother emulating that as both devices 1381 * should never be selected simultaneously, and our OLED controller 1382 * ignores stray 0xff commands that occur when deselecting the SD 1383 * card. 1384 */ 1385 bus = qdev_get_child_bus(dev, "ssi"); 1386 1387 sddev = ssi_create_slave(bus, "ssi-sd"); 1388 ssddev = ssi_create_slave(bus, "ssd0323"); 1389 gpio_out[GPIO_D][0] = qemu_irq_split( 1390 qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0), 1391 qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0)); 1392 gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0); 1393 1394 /* Make sure the select pin is high. */ 1395 qemu_irq_raise(gpio_out[GPIO_D][0]); 1396 } 1397 } 1398 if (board->dc4 & (1 << 28)) { 1399 DeviceState *enet; 1400 1401 qemu_check_nic_model(&nd_table[0], "stellaris"); 1402 1403 enet = qdev_create(NULL, "stellaris_enet"); 1404 qdev_set_nic_properties(enet, &nd_table[0]); 1405 qdev_init_nofail(enet); 1406 sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000); 1407 sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42)); 1408 } 1409 if (board->peripherals & BP_GAMEPAD) { 1410 qemu_irq gpad_irq[5]; 1411 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d }; 1412 1413 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */ 1414 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */ 1415 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */ 1416 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */ 1417 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */ 1418 1419 stellaris_gamepad_init(5, gpad_irq, gpad_keycode); 1420 } 1421 for (i = 0; i < 7; i++) { 1422 if (board->dc4 & (1 << i)) { 1423 for (j = 0; j < 8; j++) { 1424 if (gpio_out[i][j]) { 1425 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]); 1426 } 1427 } 1428 } 1429 } 1430 1431 /* Add dummy regions for the devices we don't implement yet, 1432 * so guest accesses don't cause unlogged crashes. 1433 */ 1434 create_unimplemented_device("wdtimer", 0x40000000, 0x1000); 1435 create_unimplemented_device("i2c-0", 0x40002000, 0x1000); 1436 create_unimplemented_device("i2c-2", 0x40021000, 0x1000); 1437 create_unimplemented_device("PWM", 0x40028000, 0x1000); 1438 create_unimplemented_device("QEI-0", 0x4002c000, 0x1000); 1439 create_unimplemented_device("QEI-1", 0x4002d000, 0x1000); 1440 create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000); 1441 create_unimplemented_device("hibernation", 0x400fc000, 0x1000); 1442 create_unimplemented_device("flash-control", 0x400fd000, 0x1000); 1443 1444 armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size); 1445 } 1446 1447 /* FIXME: Figure out how to generate these from stellaris_boards. */ 1448 static void lm3s811evb_init(MachineState *machine) 1449 { 1450 stellaris_init(machine, &stellaris_boards[0]); 1451 } 1452 1453 static void lm3s6965evb_init(MachineState *machine) 1454 { 1455 stellaris_init(machine, &stellaris_boards[1]); 1456 } 1457 1458 static void lm3s811evb_class_init(ObjectClass *oc, void *data) 1459 { 1460 MachineClass *mc = MACHINE_CLASS(oc); 1461 1462 mc->desc = "Stellaris LM3S811EVB"; 1463 mc->init = lm3s811evb_init; 1464 mc->ignore_memory_transaction_failures = true; 1465 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3"); 1466 } 1467 1468 static const TypeInfo lm3s811evb_type = { 1469 .name = MACHINE_TYPE_NAME("lm3s811evb"), 1470 .parent = TYPE_MACHINE, 1471 .class_init = lm3s811evb_class_init, 1472 }; 1473 1474 static void lm3s6965evb_class_init(ObjectClass *oc, void *data) 1475 { 1476 MachineClass *mc = MACHINE_CLASS(oc); 1477 1478 mc->desc = "Stellaris LM3S6965EVB"; 1479 mc->init = lm3s6965evb_init; 1480 mc->ignore_memory_transaction_failures = true; 1481 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3"); 1482 } 1483 1484 static const TypeInfo lm3s6965evb_type = { 1485 .name = MACHINE_TYPE_NAME("lm3s6965evb"), 1486 .parent = TYPE_MACHINE, 1487 .class_init = lm3s6965evb_class_init, 1488 }; 1489 1490 static void stellaris_machine_init(void) 1491 { 1492 type_register_static(&lm3s811evb_type); 1493 type_register_static(&lm3s6965evb_type); 1494 } 1495 1496 type_init(stellaris_machine_init) 1497 1498 static void stellaris_i2c_class_init(ObjectClass *klass, void *data) 1499 { 1500 DeviceClass *dc = DEVICE_CLASS(klass); 1501 1502 dc->vmsd = &vmstate_stellaris_i2c; 1503 } 1504 1505 static const TypeInfo stellaris_i2c_info = { 1506 .name = TYPE_STELLARIS_I2C, 1507 .parent = TYPE_SYS_BUS_DEVICE, 1508 .instance_size = sizeof(stellaris_i2c_state), 1509 .instance_init = stellaris_i2c_init, 1510 .class_init = stellaris_i2c_class_init, 1511 }; 1512 1513 static void stellaris_gptm_class_init(ObjectClass *klass, void *data) 1514 { 1515 DeviceClass *dc = DEVICE_CLASS(klass); 1516 1517 dc->vmsd = &vmstate_stellaris_gptm; 1518 } 1519 1520 static const TypeInfo stellaris_gptm_info = { 1521 .name = TYPE_STELLARIS_GPTM, 1522 .parent = TYPE_SYS_BUS_DEVICE, 1523 .instance_size = sizeof(gptm_state), 1524 .instance_init = stellaris_gptm_init, 1525 .class_init = stellaris_gptm_class_init, 1526 }; 1527 1528 static void stellaris_adc_class_init(ObjectClass *klass, void *data) 1529 { 1530 DeviceClass *dc = DEVICE_CLASS(klass); 1531 1532 dc->vmsd = &vmstate_stellaris_adc; 1533 } 1534 1535 static const TypeInfo stellaris_adc_info = { 1536 .name = TYPE_STELLARIS_ADC, 1537 .parent = TYPE_SYS_BUS_DEVICE, 1538 .instance_size = sizeof(stellaris_adc_state), 1539 .instance_init = stellaris_adc_init, 1540 .class_init = stellaris_adc_class_init, 1541 }; 1542 1543 static void stellaris_register_types(void) 1544 { 1545 type_register_static(&stellaris_i2c_info); 1546 type_register_static(&stellaris_gptm_info); 1547 type_register_static(&stellaris_adc_info); 1548 } 1549 1550 type_init(stellaris_register_types) 1551