xref: /openbmc/qemu/hw/arm/stellaris.c (revision 7025114b1cd7683cb7fbef0810577c67aa3cbbd8)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/core/split-irq.h"
13 #include "hw/sysbus.h"
14 #include "hw/sd/sd.h"
15 #include "hw/ssi/ssi.h"
16 #include "hw/arm/boot.h"
17 #include "qemu/timer.h"
18 #include "hw/i2c/i2c.h"
19 #include "net/net.h"
20 #include "hw/boards.h"
21 #include "qemu/log.h"
22 #include "exec/address-spaces.h"
23 #include "sysemu/sysemu.h"
24 #include "hw/arm/armv7m.h"
25 #include "hw/char/pl011.h"
26 #include "hw/input/gamepad.h"
27 #include "hw/irq.h"
28 #include "hw/watchdog/cmsdk-apb-watchdog.h"
29 #include "migration/vmstate.h"
30 #include "hw/misc/unimp.h"
31 #include "hw/timer/stellaris-gptm.h"
32 #include "hw/qdev-clock.h"
33 #include "qom/object.h"
34 
35 #define GPIO_A 0
36 #define GPIO_B 1
37 #define GPIO_C 2
38 #define GPIO_D 3
39 #define GPIO_E 4
40 #define GPIO_F 5
41 #define GPIO_G 6
42 
43 #define BP_OLED_I2C  0x01
44 #define BP_OLED_SSI  0x02
45 #define BP_GAMEPAD   0x04
46 
47 #define NUM_IRQ_LINES 64
48 
49 typedef const struct {
50     const char *name;
51     uint32_t did0;
52     uint32_t did1;
53     uint32_t dc0;
54     uint32_t dc1;
55     uint32_t dc2;
56     uint32_t dc3;
57     uint32_t dc4;
58     uint32_t peripherals;
59 } stellaris_board_info;
60 
61 /* System controller.  */
62 
63 #define TYPE_STELLARIS_SYS "stellaris-sys"
64 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
65 
66 struct ssys_state {
67     SysBusDevice parent_obj;
68 
69     MemoryRegion iomem;
70     uint32_t pborctl;
71     uint32_t ldopctl;
72     uint32_t int_status;
73     uint32_t int_mask;
74     uint32_t resc;
75     uint32_t rcc;
76     uint32_t rcc2;
77     uint32_t rcgc[3];
78     uint32_t scgc[3];
79     uint32_t dcgc[3];
80     uint32_t clkvclr;
81     uint32_t ldoarst;
82     qemu_irq irq;
83     Clock *sysclk;
84     /* Properties (all read-only registers) */
85     uint32_t user0;
86     uint32_t user1;
87     uint32_t did0;
88     uint32_t did1;
89     uint32_t dc0;
90     uint32_t dc1;
91     uint32_t dc2;
92     uint32_t dc3;
93     uint32_t dc4;
94 };
95 
96 static void ssys_update(ssys_state *s)
97 {
98   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
99 }
100 
101 static uint32_t pllcfg_sandstorm[16] = {
102     0x31c0, /* 1 Mhz */
103     0x1ae0, /* 1.8432 Mhz */
104     0x18c0, /* 2 Mhz */
105     0xd573, /* 2.4576 Mhz */
106     0x37a6, /* 3.57954 Mhz */
107     0x1ae2, /* 3.6864 Mhz */
108     0x0c40, /* 4 Mhz */
109     0x98bc, /* 4.906 Mhz */
110     0x935b, /* 4.9152 Mhz */
111     0x09c0, /* 5 Mhz */
112     0x4dee, /* 5.12 Mhz */
113     0x0c41, /* 6 Mhz */
114     0x75db, /* 6.144 Mhz */
115     0x1ae6, /* 7.3728 Mhz */
116     0x0600, /* 8 Mhz */
117     0x585b /* 8.192 Mhz */
118 };
119 
120 static uint32_t pllcfg_fury[16] = {
121     0x3200, /* 1 Mhz */
122     0x1b20, /* 1.8432 Mhz */
123     0x1900, /* 2 Mhz */
124     0xf42b, /* 2.4576 Mhz */
125     0x37e3, /* 3.57954 Mhz */
126     0x1b21, /* 3.6864 Mhz */
127     0x0c80, /* 4 Mhz */
128     0x98ee, /* 4.906 Mhz */
129     0xd5b4, /* 4.9152 Mhz */
130     0x0a00, /* 5 Mhz */
131     0x4e27, /* 5.12 Mhz */
132     0x1902, /* 6 Mhz */
133     0xec1c, /* 6.144 Mhz */
134     0x1b23, /* 7.3728 Mhz */
135     0x0640, /* 8 Mhz */
136     0xb11c /* 8.192 Mhz */
137 };
138 
139 #define DID0_VER_MASK        0x70000000
140 #define DID0_VER_0           0x00000000
141 #define DID0_VER_1           0x10000000
142 
143 #define DID0_CLASS_MASK      0x00FF0000
144 #define DID0_CLASS_SANDSTORM 0x00000000
145 #define DID0_CLASS_FURY      0x00010000
146 
147 static int ssys_board_class(const ssys_state *s)
148 {
149     uint32_t did0 = s->did0;
150     switch (did0 & DID0_VER_MASK) {
151     case DID0_VER_0:
152         return DID0_CLASS_SANDSTORM;
153     case DID0_VER_1:
154         switch (did0 & DID0_CLASS_MASK) {
155         case DID0_CLASS_SANDSTORM:
156         case DID0_CLASS_FURY:
157             return did0 & DID0_CLASS_MASK;
158         }
159         /* for unknown classes, fall through */
160     default:
161         /* This can only happen if the hardwired constant did0 value
162          * in this board's stellaris_board_info struct is wrong.
163          */
164         g_assert_not_reached();
165     }
166 }
167 
168 static uint64_t ssys_read(void *opaque, hwaddr offset,
169                           unsigned size)
170 {
171     ssys_state *s = (ssys_state *)opaque;
172 
173     switch (offset) {
174     case 0x000: /* DID0 */
175         return s->did0;
176     case 0x004: /* DID1 */
177         return s->did1;
178     case 0x008: /* DC0 */
179         return s->dc0;
180     case 0x010: /* DC1 */
181         return s->dc1;
182     case 0x014: /* DC2 */
183         return s->dc2;
184     case 0x018: /* DC3 */
185         return s->dc3;
186     case 0x01c: /* DC4 */
187         return s->dc4;
188     case 0x030: /* PBORCTL */
189         return s->pborctl;
190     case 0x034: /* LDOPCTL */
191         return s->ldopctl;
192     case 0x040: /* SRCR0 */
193         return 0;
194     case 0x044: /* SRCR1 */
195         return 0;
196     case 0x048: /* SRCR2 */
197         return 0;
198     case 0x050: /* RIS */
199         return s->int_status;
200     case 0x054: /* IMC */
201         return s->int_mask;
202     case 0x058: /* MISC */
203         return s->int_status & s->int_mask;
204     case 0x05c: /* RESC */
205         return s->resc;
206     case 0x060: /* RCC */
207         return s->rcc;
208     case 0x064: /* PLLCFG */
209         {
210             int xtal;
211             xtal = (s->rcc >> 6) & 0xf;
212             switch (ssys_board_class(s)) {
213             case DID0_CLASS_FURY:
214                 return pllcfg_fury[xtal];
215             case DID0_CLASS_SANDSTORM:
216                 return pllcfg_sandstorm[xtal];
217             default:
218                 g_assert_not_reached();
219             }
220         }
221     case 0x070: /* RCC2 */
222         return s->rcc2;
223     case 0x100: /* RCGC0 */
224         return s->rcgc[0];
225     case 0x104: /* RCGC1 */
226         return s->rcgc[1];
227     case 0x108: /* RCGC2 */
228         return s->rcgc[2];
229     case 0x110: /* SCGC0 */
230         return s->scgc[0];
231     case 0x114: /* SCGC1 */
232         return s->scgc[1];
233     case 0x118: /* SCGC2 */
234         return s->scgc[2];
235     case 0x120: /* DCGC0 */
236         return s->dcgc[0];
237     case 0x124: /* DCGC1 */
238         return s->dcgc[1];
239     case 0x128: /* DCGC2 */
240         return s->dcgc[2];
241     case 0x150: /* CLKVCLR */
242         return s->clkvclr;
243     case 0x160: /* LDOARST */
244         return s->ldoarst;
245     case 0x1e0: /* USER0 */
246         return s->user0;
247     case 0x1e4: /* USER1 */
248         return s->user1;
249     default:
250         qemu_log_mask(LOG_GUEST_ERROR,
251                       "SSYS: read at bad offset 0x%x\n", (int)offset);
252         return 0;
253     }
254 }
255 
256 static bool ssys_use_rcc2(ssys_state *s)
257 {
258     return (s->rcc2 >> 31) & 0x1;
259 }
260 
261 /*
262  * Calculate the system clock period. We only want to propagate
263  * this change to the rest of the system if we're not being called
264  * from migration post-load.
265  */
266 static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
267 {
268     int period_ns;
269     /*
270      * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
271      * clock is 200MHz, which is a period of 5 ns. Dividing the clock
272      * frequency by X is the same as multiplying the period by X.
273      */
274     if (ssys_use_rcc2(s)) {
275         period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
276     } else {
277         period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1);
278     }
279     clock_set_ns(s->sysclk, period_ns);
280     if (propagate_clock) {
281         clock_propagate(s->sysclk);
282     }
283 }
284 
285 static void ssys_write(void *opaque, hwaddr offset,
286                        uint64_t value, unsigned size)
287 {
288     ssys_state *s = (ssys_state *)opaque;
289 
290     switch (offset) {
291     case 0x030: /* PBORCTL */
292         s->pborctl = value & 0xffff;
293         break;
294     case 0x034: /* LDOPCTL */
295         s->ldopctl = value & 0x1f;
296         break;
297     case 0x040: /* SRCR0 */
298     case 0x044: /* SRCR1 */
299     case 0x048: /* SRCR2 */
300         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
301         break;
302     case 0x054: /* IMC */
303         s->int_mask = value & 0x7f;
304         break;
305     case 0x058: /* MISC */
306         s->int_status &= ~value;
307         break;
308     case 0x05c: /* RESC */
309         s->resc = value & 0x3f;
310         break;
311     case 0x060: /* RCC */
312         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
313             /* PLL enable.  */
314             s->int_status |= (1 << 6);
315         }
316         s->rcc = value;
317         ssys_calculate_system_clock(s, true);
318         break;
319     case 0x070: /* RCC2 */
320         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
321             break;
322         }
323 
324         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
325             /* PLL enable.  */
326             s->int_status |= (1 << 6);
327         }
328         s->rcc2 = value;
329         ssys_calculate_system_clock(s, true);
330         break;
331     case 0x100: /* RCGC0 */
332         s->rcgc[0] = value;
333         break;
334     case 0x104: /* RCGC1 */
335         s->rcgc[1] = value;
336         break;
337     case 0x108: /* RCGC2 */
338         s->rcgc[2] = value;
339         break;
340     case 0x110: /* SCGC0 */
341         s->scgc[0] = value;
342         break;
343     case 0x114: /* SCGC1 */
344         s->scgc[1] = value;
345         break;
346     case 0x118: /* SCGC2 */
347         s->scgc[2] = value;
348         break;
349     case 0x120: /* DCGC0 */
350         s->dcgc[0] = value;
351         break;
352     case 0x124: /* DCGC1 */
353         s->dcgc[1] = value;
354         break;
355     case 0x128: /* DCGC2 */
356         s->dcgc[2] = value;
357         break;
358     case 0x150: /* CLKVCLR */
359         s->clkvclr = value;
360         break;
361     case 0x160: /* LDOARST */
362         s->ldoarst = value;
363         break;
364     default:
365         qemu_log_mask(LOG_GUEST_ERROR,
366                       "SSYS: write at bad offset 0x%x\n", (int)offset);
367     }
368     ssys_update(s);
369 }
370 
371 static const MemoryRegionOps ssys_ops = {
372     .read = ssys_read,
373     .write = ssys_write,
374     .endianness = DEVICE_NATIVE_ENDIAN,
375 };
376 
377 static void stellaris_sys_reset_enter(Object *obj, ResetType type)
378 {
379     ssys_state *s = STELLARIS_SYS(obj);
380 
381     s->pborctl = 0x7ffd;
382     s->rcc = 0x078e3ac0;
383 
384     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
385         s->rcc2 = 0;
386     } else {
387         s->rcc2 = 0x07802810;
388     }
389     s->rcgc[0] = 1;
390     s->scgc[0] = 1;
391     s->dcgc[0] = 1;
392 }
393 
394 static void stellaris_sys_reset_hold(Object *obj)
395 {
396     ssys_state *s = STELLARIS_SYS(obj);
397 
398     /* OK to propagate clocks from the hold phase */
399     ssys_calculate_system_clock(s, true);
400 }
401 
402 static void stellaris_sys_reset_exit(Object *obj)
403 {
404 }
405 
406 static int stellaris_sys_post_load(void *opaque, int version_id)
407 {
408     ssys_state *s = opaque;
409 
410     ssys_calculate_system_clock(s, false);
411 
412     return 0;
413 }
414 
415 static const VMStateDescription vmstate_stellaris_sys = {
416     .name = "stellaris_sys",
417     .version_id = 2,
418     .minimum_version_id = 1,
419     .post_load = stellaris_sys_post_load,
420     .fields = (VMStateField[]) {
421         VMSTATE_UINT32(pborctl, ssys_state),
422         VMSTATE_UINT32(ldopctl, ssys_state),
423         VMSTATE_UINT32(int_mask, ssys_state),
424         VMSTATE_UINT32(int_status, ssys_state),
425         VMSTATE_UINT32(resc, ssys_state),
426         VMSTATE_UINT32(rcc, ssys_state),
427         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
428         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
429         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
430         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
431         VMSTATE_UINT32(clkvclr, ssys_state),
432         VMSTATE_UINT32(ldoarst, ssys_state),
433         /* No field for sysclk -- handled in post-load instead */
434         VMSTATE_END_OF_LIST()
435     }
436 };
437 
438 static Property stellaris_sys_properties[] = {
439     DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
440     DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
441     DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
442     DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
443     DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
444     DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
445     DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
446     DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
447     DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
448     DEFINE_PROP_END_OF_LIST()
449 };
450 
451 static void stellaris_sys_instance_init(Object *obj)
452 {
453     ssys_state *s = STELLARIS_SYS(obj);
454     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
455 
456     memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
457     sysbus_init_mmio(sbd, &s->iomem);
458     sysbus_init_irq(sbd, &s->irq);
459     s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
460 }
461 
462 /* I2C controller.  */
463 
464 #define TYPE_STELLARIS_I2C "stellaris-i2c"
465 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
466 
467 struct stellaris_i2c_state {
468     SysBusDevice parent_obj;
469 
470     I2CBus *bus;
471     qemu_irq irq;
472     MemoryRegion iomem;
473     uint32_t msa;
474     uint32_t mcs;
475     uint32_t mdr;
476     uint32_t mtpr;
477     uint32_t mimr;
478     uint32_t mris;
479     uint32_t mcr;
480 };
481 
482 #define STELLARIS_I2C_MCS_BUSY    0x01
483 #define STELLARIS_I2C_MCS_ERROR   0x02
484 #define STELLARIS_I2C_MCS_ADRACK  0x04
485 #define STELLARIS_I2C_MCS_DATACK  0x08
486 #define STELLARIS_I2C_MCS_ARBLST  0x10
487 #define STELLARIS_I2C_MCS_IDLE    0x20
488 #define STELLARIS_I2C_MCS_BUSBSY  0x40
489 
490 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
491                                    unsigned size)
492 {
493     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
494 
495     switch (offset) {
496     case 0x00: /* MSA */
497         return s->msa;
498     case 0x04: /* MCS */
499         /* We don't emulate timing, so the controller is never busy.  */
500         return s->mcs | STELLARIS_I2C_MCS_IDLE;
501     case 0x08: /* MDR */
502         return s->mdr;
503     case 0x0c: /* MTPR */
504         return s->mtpr;
505     case 0x10: /* MIMR */
506         return s->mimr;
507     case 0x14: /* MRIS */
508         return s->mris;
509     case 0x18: /* MMIS */
510         return s->mris & s->mimr;
511     case 0x20: /* MCR */
512         return s->mcr;
513     default:
514         qemu_log_mask(LOG_GUEST_ERROR,
515                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
516         return 0;
517     }
518 }
519 
520 static void stellaris_i2c_update(stellaris_i2c_state *s)
521 {
522     int level;
523 
524     level = (s->mris & s->mimr) != 0;
525     qemu_set_irq(s->irq, level);
526 }
527 
528 static void stellaris_i2c_write(void *opaque, hwaddr offset,
529                                 uint64_t value, unsigned size)
530 {
531     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
532 
533     switch (offset) {
534     case 0x00: /* MSA */
535         s->msa = value & 0xff;
536         break;
537     case 0x04: /* MCS */
538         if ((s->mcr & 0x10) == 0) {
539             /* Disabled.  Do nothing.  */
540             break;
541         }
542         /* Grab the bus if this is starting a transfer.  */
543         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
544             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
545                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
546             } else {
547                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
548                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
549             }
550         }
551         /* If we don't have the bus then indicate an error.  */
552         if (!i2c_bus_busy(s->bus)
553                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
554             s->mcs |= STELLARIS_I2C_MCS_ERROR;
555             break;
556         }
557         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
558         if (value & 1) {
559             /* Transfer a byte.  */
560             /* TODO: Handle errors.  */
561             if (s->msa & 1) {
562                 /* Recv */
563                 s->mdr = i2c_recv(s->bus);
564             } else {
565                 /* Send */
566                 i2c_send(s->bus, s->mdr);
567             }
568             /* Raise an interrupt.  */
569             s->mris |= 1;
570         }
571         if (value & 4) {
572             /* Finish transfer.  */
573             i2c_end_transfer(s->bus);
574             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
575         }
576         break;
577     case 0x08: /* MDR */
578         s->mdr = value & 0xff;
579         break;
580     case 0x0c: /* MTPR */
581         s->mtpr = value & 0xff;
582         break;
583     case 0x10: /* MIMR */
584         s->mimr = 1;
585         break;
586     case 0x1c: /* MICR */
587         s->mris &= ~value;
588         break;
589     case 0x20: /* MCR */
590         if (value & 1) {
591             qemu_log_mask(LOG_UNIMP,
592                           "stellaris_i2c: Loopback not implemented\n");
593         }
594         if (value & 0x20) {
595             qemu_log_mask(LOG_UNIMP,
596                           "stellaris_i2c: Slave mode not implemented\n");
597         }
598         s->mcr = value & 0x31;
599         break;
600     default:
601         qemu_log_mask(LOG_GUEST_ERROR,
602                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
603     }
604     stellaris_i2c_update(s);
605 }
606 
607 static void stellaris_i2c_reset(stellaris_i2c_state *s)
608 {
609     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
610         i2c_end_transfer(s->bus);
611 
612     s->msa = 0;
613     s->mcs = 0;
614     s->mdr = 0;
615     s->mtpr = 1;
616     s->mimr = 0;
617     s->mris = 0;
618     s->mcr = 0;
619     stellaris_i2c_update(s);
620 }
621 
622 static const MemoryRegionOps stellaris_i2c_ops = {
623     .read = stellaris_i2c_read,
624     .write = stellaris_i2c_write,
625     .endianness = DEVICE_NATIVE_ENDIAN,
626 };
627 
628 static const VMStateDescription vmstate_stellaris_i2c = {
629     .name = "stellaris_i2c",
630     .version_id = 1,
631     .minimum_version_id = 1,
632     .fields = (VMStateField[]) {
633         VMSTATE_UINT32(msa, stellaris_i2c_state),
634         VMSTATE_UINT32(mcs, stellaris_i2c_state),
635         VMSTATE_UINT32(mdr, stellaris_i2c_state),
636         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
637         VMSTATE_UINT32(mimr, stellaris_i2c_state),
638         VMSTATE_UINT32(mris, stellaris_i2c_state),
639         VMSTATE_UINT32(mcr, stellaris_i2c_state),
640         VMSTATE_END_OF_LIST()
641     }
642 };
643 
644 static void stellaris_i2c_init(Object *obj)
645 {
646     DeviceState *dev = DEVICE(obj);
647     stellaris_i2c_state *s = STELLARIS_I2C(obj);
648     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
649     I2CBus *bus;
650 
651     sysbus_init_irq(sbd, &s->irq);
652     bus = i2c_init_bus(dev, "i2c");
653     s->bus = bus;
654 
655     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
656                           "i2c", 0x1000);
657     sysbus_init_mmio(sbd, &s->iomem);
658     /* ??? For now we only implement the master interface.  */
659     stellaris_i2c_reset(s);
660 }
661 
662 /* Analogue to Digital Converter.  This is only partially implemented,
663    enough for applications that use a combined ADC and timer tick.  */
664 
665 #define STELLARIS_ADC_EM_CONTROLLER 0
666 #define STELLARIS_ADC_EM_COMP       1
667 #define STELLARIS_ADC_EM_EXTERNAL   4
668 #define STELLARIS_ADC_EM_TIMER      5
669 #define STELLARIS_ADC_EM_PWM0       6
670 #define STELLARIS_ADC_EM_PWM1       7
671 #define STELLARIS_ADC_EM_PWM2       8
672 
673 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
674 #define STELLARIS_ADC_FIFO_FULL     0x1000
675 
676 #define TYPE_STELLARIS_ADC "stellaris-adc"
677 typedef struct StellarisADCState stellaris_adc_state;
678 DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC,
679                          TYPE_STELLARIS_ADC)
680 
681 struct StellarisADCState {
682     SysBusDevice parent_obj;
683 
684     MemoryRegion iomem;
685     uint32_t actss;
686     uint32_t ris;
687     uint32_t im;
688     uint32_t emux;
689     uint32_t ostat;
690     uint32_t ustat;
691     uint32_t sspri;
692     uint32_t sac;
693     struct {
694         uint32_t state;
695         uint32_t data[16];
696     } fifo[4];
697     uint32_t ssmux[4];
698     uint32_t ssctl[4];
699     uint32_t noise;
700     qemu_irq irq[4];
701 };
702 
703 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
704 {
705     int tail;
706 
707     tail = s->fifo[n].state & 0xf;
708     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
709         s->ustat |= 1 << n;
710     } else {
711         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
712         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
713         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
714             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
715     }
716     return s->fifo[n].data[tail];
717 }
718 
719 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
720                                      uint32_t value)
721 {
722     int head;
723 
724     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
725        FIFO fir each sequencer.  */
726     head = (s->fifo[n].state >> 4) & 0xf;
727     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
728         s->ostat |= 1 << n;
729         return;
730     }
731     s->fifo[n].data[head] = value;
732     head = (head + 1) & 0xf;
733     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
734     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
735     if ((s->fifo[n].state & 0xf) == head)
736         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
737 }
738 
739 static void stellaris_adc_update(stellaris_adc_state *s)
740 {
741     int level;
742     int n;
743 
744     for (n = 0; n < 4; n++) {
745         level = (s->ris & s->im & (1 << n)) != 0;
746         qemu_set_irq(s->irq[n], level);
747     }
748 }
749 
750 static void stellaris_adc_trigger(void *opaque, int irq, int level)
751 {
752     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
753     int n;
754 
755     for (n = 0; n < 4; n++) {
756         if ((s->actss & (1 << n)) == 0) {
757             continue;
758         }
759 
760         if (((s->emux >> (n * 4)) & 0xff) != 5) {
761             continue;
762         }
763 
764         /* Some applications use the ADC as a random number source, so introduce
765            some variation into the signal.  */
766         s->noise = s->noise * 314159 + 1;
767         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
768         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
769         s->ris |= (1 << n);
770         stellaris_adc_update(s);
771     }
772 }
773 
774 static void stellaris_adc_reset(stellaris_adc_state *s)
775 {
776     int n;
777 
778     for (n = 0; n < 4; n++) {
779         s->ssmux[n] = 0;
780         s->ssctl[n] = 0;
781         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
782     }
783 }
784 
785 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
786                                    unsigned size)
787 {
788     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
789 
790     /* TODO: Implement this.  */
791     if (offset >= 0x40 && offset < 0xc0) {
792         int n;
793         n = (offset - 0x40) >> 5;
794         switch (offset & 0x1f) {
795         case 0x00: /* SSMUX */
796             return s->ssmux[n];
797         case 0x04: /* SSCTL */
798             return s->ssctl[n];
799         case 0x08: /* SSFIFO */
800             return stellaris_adc_fifo_read(s, n);
801         case 0x0c: /* SSFSTAT */
802             return s->fifo[n].state;
803         default:
804             break;
805         }
806     }
807     switch (offset) {
808     case 0x00: /* ACTSS */
809         return s->actss;
810     case 0x04: /* RIS */
811         return s->ris;
812     case 0x08: /* IM */
813         return s->im;
814     case 0x0c: /* ISC */
815         return s->ris & s->im;
816     case 0x10: /* OSTAT */
817         return s->ostat;
818     case 0x14: /* EMUX */
819         return s->emux;
820     case 0x18: /* USTAT */
821         return s->ustat;
822     case 0x20: /* SSPRI */
823         return s->sspri;
824     case 0x30: /* SAC */
825         return s->sac;
826     default:
827         qemu_log_mask(LOG_GUEST_ERROR,
828                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
829         return 0;
830     }
831 }
832 
833 static void stellaris_adc_write(void *opaque, hwaddr offset,
834                                 uint64_t value, unsigned size)
835 {
836     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
837 
838     /* TODO: Implement this.  */
839     if (offset >= 0x40 && offset < 0xc0) {
840         int n;
841         n = (offset - 0x40) >> 5;
842         switch (offset & 0x1f) {
843         case 0x00: /* SSMUX */
844             s->ssmux[n] = value & 0x33333333;
845             return;
846         case 0x04: /* SSCTL */
847             if (value != 6) {
848                 qemu_log_mask(LOG_UNIMP,
849                               "ADC: Unimplemented sequence %" PRIx64 "\n",
850                               value);
851             }
852             s->ssctl[n] = value;
853             return;
854         default:
855             break;
856         }
857     }
858     switch (offset) {
859     case 0x00: /* ACTSS */
860         s->actss = value & 0xf;
861         break;
862     case 0x08: /* IM */
863         s->im = value;
864         break;
865     case 0x0c: /* ISC */
866         s->ris &= ~value;
867         break;
868     case 0x10: /* OSTAT */
869         s->ostat &= ~value;
870         break;
871     case 0x14: /* EMUX */
872         s->emux = value;
873         break;
874     case 0x18: /* USTAT */
875         s->ustat &= ~value;
876         break;
877     case 0x20: /* SSPRI */
878         s->sspri = value;
879         break;
880     case 0x28: /* PSSI */
881         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
882         break;
883     case 0x30: /* SAC */
884         s->sac = value;
885         break;
886     default:
887         qemu_log_mask(LOG_GUEST_ERROR,
888                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
889     }
890     stellaris_adc_update(s);
891 }
892 
893 static const MemoryRegionOps stellaris_adc_ops = {
894     .read = stellaris_adc_read,
895     .write = stellaris_adc_write,
896     .endianness = DEVICE_NATIVE_ENDIAN,
897 };
898 
899 static const VMStateDescription vmstate_stellaris_adc = {
900     .name = "stellaris_adc",
901     .version_id = 1,
902     .minimum_version_id = 1,
903     .fields = (VMStateField[]) {
904         VMSTATE_UINT32(actss, stellaris_adc_state),
905         VMSTATE_UINT32(ris, stellaris_adc_state),
906         VMSTATE_UINT32(im, stellaris_adc_state),
907         VMSTATE_UINT32(emux, stellaris_adc_state),
908         VMSTATE_UINT32(ostat, stellaris_adc_state),
909         VMSTATE_UINT32(ustat, stellaris_adc_state),
910         VMSTATE_UINT32(sspri, stellaris_adc_state),
911         VMSTATE_UINT32(sac, stellaris_adc_state),
912         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
913         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
914         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
915         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
916         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
917         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
918         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
919         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
920         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
921         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
922         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
923         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
924         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
925         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
926         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
927         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
928         VMSTATE_UINT32(noise, stellaris_adc_state),
929         VMSTATE_END_OF_LIST()
930     }
931 };
932 
933 static void stellaris_adc_init(Object *obj)
934 {
935     DeviceState *dev = DEVICE(obj);
936     stellaris_adc_state *s = STELLARIS_ADC(obj);
937     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
938     int n;
939 
940     for (n = 0; n < 4; n++) {
941         sysbus_init_irq(sbd, &s->irq[n]);
942     }
943 
944     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
945                           "adc", 0x1000);
946     sysbus_init_mmio(sbd, &s->iomem);
947     stellaris_adc_reset(s);
948     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
949 }
950 
951 /* Board init.  */
952 static stellaris_board_info stellaris_boards[] = {
953   { "LM3S811EVB",
954     0,
955     0x0032000e,
956     0x001f001f, /* dc0 */
957     0x001132bf,
958     0x01071013,
959     0x3f0f01ff,
960     0x0000001f,
961     BP_OLED_I2C
962   },
963   { "LM3S6965EVB",
964     0x10010002,
965     0x1073402e,
966     0x00ff007f, /* dc0 */
967     0x001133ff,
968     0x030f5317,
969     0x0f0f87ff,
970     0x5000007f,
971     BP_OLED_SSI | BP_GAMEPAD
972   }
973 };
974 
975 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
976 {
977     static const int uart_irq[] = {5, 6, 33, 34};
978     static const int timer_irq[] = {19, 21, 23, 35};
979     static const uint32_t gpio_addr[7] =
980       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
981         0x40024000, 0x40025000, 0x40026000};
982     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
983 
984     /* Memory map of SoC devices, from
985      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
986      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
987      *
988      * 40000000 wdtimer
989      * 40002000 i2c (unimplemented)
990      * 40004000 GPIO
991      * 40005000 GPIO
992      * 40006000 GPIO
993      * 40007000 GPIO
994      * 40008000 SSI
995      * 4000c000 UART
996      * 4000d000 UART
997      * 4000e000 UART
998      * 40020000 i2c
999      * 40021000 i2c (unimplemented)
1000      * 40024000 GPIO
1001      * 40025000 GPIO
1002      * 40026000 GPIO
1003      * 40028000 PWM (unimplemented)
1004      * 4002c000 QEI (unimplemented)
1005      * 4002d000 QEI (unimplemented)
1006      * 40030000 gptimer
1007      * 40031000 gptimer
1008      * 40032000 gptimer
1009      * 40033000 gptimer
1010      * 40038000 ADC
1011      * 4003c000 analogue comparator (unimplemented)
1012      * 40048000 ethernet
1013      * 400fc000 hibernation module (unimplemented)
1014      * 400fd000 flash memory control (unimplemented)
1015      * 400fe000 system control
1016      */
1017 
1018     DeviceState *gpio_dev[7], *nvic;
1019     qemu_irq gpio_in[7][8];
1020     qemu_irq gpio_out[7][8];
1021     qemu_irq adc;
1022     int sram_size;
1023     int flash_size;
1024     I2CBus *i2c;
1025     DeviceState *dev;
1026     DeviceState *ssys_dev;
1027     int i;
1028     int j;
1029     const uint8_t *macaddr;
1030 
1031     MemoryRegion *sram = g_new(MemoryRegion, 1);
1032     MemoryRegion *flash = g_new(MemoryRegion, 1);
1033     MemoryRegion *system_memory = get_system_memory();
1034 
1035     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1036     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1037 
1038     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1039     memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1040                            &error_fatal);
1041     memory_region_add_subregion(system_memory, 0, flash);
1042 
1043     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1044                            &error_fatal);
1045     memory_region_add_subregion(system_memory, 0x20000000, sram);
1046 
1047     /*
1048      * Create the system-registers object early, because we will
1049      * need its sysclk output.
1050      */
1051     ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
1052     /* Most devices come preprogrammed with a MAC address in the user data. */
1053     macaddr = nd_table[0].macaddr.a;
1054     qdev_prop_set_uint32(ssys_dev, "user0",
1055                          macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
1056     qdev_prop_set_uint32(ssys_dev, "user1",
1057                          macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
1058     qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
1059     qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
1060     qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
1061     qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
1062     qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
1063     qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
1064     qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
1065     sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
1066 
1067     nvic = qdev_new(TYPE_ARMV7M);
1068     qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1069     qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1070     qdev_prop_set_bit(nvic, "enable-bitband", true);
1071     qdev_connect_clock_in(nvic, "cpuclk",
1072                           qdev_get_clock_out(ssys_dev, "SYSCLK"));
1073     /* This SoC does not connect the systick reference clock */
1074     object_property_set_link(OBJECT(nvic), "memory",
1075                              OBJECT(get_system_memory()), &error_abort);
1076     /* This will exit with an error if the user passed us a bad cpu_type */
1077     sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
1078 
1079     /* Now we can wire up the IRQ and MMIO of the system registers */
1080     sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
1081     sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
1082 
1083     if (board->dc1 & (1 << 16)) {
1084         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1085                                     qdev_get_gpio_in(nvic, 14),
1086                                     qdev_get_gpio_in(nvic, 15),
1087                                     qdev_get_gpio_in(nvic, 16),
1088                                     qdev_get_gpio_in(nvic, 17),
1089                                     NULL);
1090         adc = qdev_get_gpio_in(dev, 0);
1091     } else {
1092         adc = NULL;
1093     }
1094     for (i = 0; i < 4; i++) {
1095         if (board->dc2 & (0x10000 << i)) {
1096             SysBusDevice *sbd;
1097 
1098             dev = qdev_new(TYPE_STELLARIS_GPTM);
1099             sbd = SYS_BUS_DEVICE(dev);
1100             qdev_connect_clock_in(dev, "clk",
1101                                   qdev_get_clock_out(ssys_dev, "SYSCLK"));
1102             sysbus_realize_and_unref(sbd, &error_fatal);
1103             sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000);
1104             sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i]));
1105             /* TODO: This is incorrect, but we get away with it because
1106                the ADC output is only ever pulsed.  */
1107             qdev_connect_gpio_out(dev, 0, adc);
1108         }
1109     }
1110 
1111     if (board->dc1 & (1 << 3)) { /* watchdog present */
1112         dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1113 
1114         qdev_connect_clock_in(dev, "WDOGCLK",
1115                               qdev_get_clock_out(ssys_dev, "SYSCLK"));
1116 
1117         sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1118         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1119                         0,
1120                         0x40000000u);
1121         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1122                            0,
1123                            qdev_get_gpio_in(nvic, 18));
1124     }
1125 
1126 
1127     for (i = 0; i < 7; i++) {
1128         if (board->dc4 & (1 << i)) {
1129             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1130                                                qdev_get_gpio_in(nvic,
1131                                                                 gpio_irq[i]));
1132             for (j = 0; j < 8; j++) {
1133                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1134                 gpio_out[i][j] = NULL;
1135             }
1136         }
1137     }
1138 
1139     if (board->dc2 & (1 << 12)) {
1140         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1141                                    qdev_get_gpio_in(nvic, 8));
1142         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1143         if (board->peripherals & BP_OLED_I2C) {
1144             i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1145         }
1146     }
1147 
1148     for (i = 0; i < 4; i++) {
1149         if (board->dc2 & (1 << i)) {
1150             pl011_luminary_create(0x4000c000 + i * 0x1000,
1151                                   qdev_get_gpio_in(nvic, uart_irq[i]),
1152                                   serial_hd(i));
1153         }
1154     }
1155     if (board->dc2 & (1 << 4)) {
1156         dev = sysbus_create_simple("pl022", 0x40008000,
1157                                    qdev_get_gpio_in(nvic, 7));
1158         if (board->peripherals & BP_OLED_SSI) {
1159             void *bus;
1160             DeviceState *sddev;
1161             DeviceState *ssddev;
1162             DriveInfo *dinfo;
1163             DeviceState *carddev;
1164             DeviceState *gpio_d_splitter;
1165             BlockBackend *blk;
1166 
1167             /*
1168              * Some boards have both an OLED controller and SD card connected to
1169              * the same SSI port, with the SD card chip select connected to a
1170              * GPIO pin.  Technically the OLED chip select is connected to the
1171              * SSI Fss pin.  We do not bother emulating that as both devices
1172              * should never be selected simultaneously, and our OLED controller
1173              * ignores stray 0xff commands that occur when deselecting the SD
1174              * card.
1175              *
1176              * The h/w wiring is:
1177              *  - GPIO pin D0 is wired to the active-low SD card chip select
1178              *  - GPIO pin A3 is wired to the active-low OLED chip select
1179              *  - The SoC wiring of the PL061 "auxiliary function" for A3 is
1180              *    SSI0Fss ("frame signal"), which is an output from the SoC's
1181              *    SSI controller. The SSI controller takes SSI0Fss low when it
1182              *    transmits a frame, so it can work as a chip-select signal.
1183              *  - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
1184              *    (the OLED never sends data to the CPU, so no wiring needed)
1185              *  - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
1186              *    and the OLED display-data-in
1187              *  - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
1188              *    serial-clock input
1189              * So a guest that wants to use the OLED can configure the PL061
1190              * to make pins A2, A3, A5 aux-function, so they are connected
1191              * directly to the SSI controller. When the SSI controller sends
1192              * data it asserts SSI0Fss which selects the OLED.
1193              * A guest that wants to use the SD card configures A2, A4 and A5
1194              * as aux-function, but leaves A3 as a software-controlled GPIO
1195              * line. It asserts the SD card chip-select by using the PL061
1196              * to control pin D0, and lets the SSI controller handle Clk, Tx
1197              * and Rx. (The SSI controller asserts Fss during tx cycles as
1198              * usual, but because A3 is not set to aux-function this is not
1199              * forwarded to the OLED, and so the OLED stays unselected.)
1200              *
1201              * The QEMU implementation instead is:
1202              *  - GPIO pin D0 is wired to the active-low SD card chip select,
1203              *    and also to the OLED chip-select which is implemented
1204              *    as *active-high*
1205              *  - SSI controller signals go to the devices regardless of
1206              *    whether the guest programs A2, A4, A5 as aux-function or not
1207              *
1208              * The problem with this implementation is if the guest doesn't
1209              * care about the SD card and only uses the OLED. In that case it
1210              * may choose never to do anything with D0 (leaving it in its
1211              * default floating state, which reliably leaves the card disabled
1212              * because an SD card has a pullup on CS within the card itself),
1213              * and only set up A2, A3, A5. This for us would mean the OLED
1214              * never gets the chip-select assert it needs. We work around
1215              * this with a manual raise of D0 here (despite board creation
1216              * code being the wrong place to raise IRQ lines) to put the OLED
1217              * into an initially selected state.
1218              *
1219              * In theory the right way to model this would be:
1220              *  - Implement aux-function support in the PL061, with an
1221              *    extra set of AFIN and AFOUT GPIO lines (set up so that
1222              *    if a GPIO line is in auxfn mode the main GPIO in and out
1223              *    track the AFIN and AFOUT lines)
1224              *  - Wire the AFOUT for D0 up to either a line from the
1225              *    SSI controller that's pulled low around every transmit,
1226              *    or at least to an always-0 line here on the board
1227              *  - Make the ssd0323 OLED controller chipselect active-low
1228              */
1229             bus = qdev_get_child_bus(dev, "ssi");
1230             sddev = ssi_create_peripheral(bus, "ssi-sd");
1231 
1232             dinfo = drive_get(IF_SD, 0, 0);
1233             blk = dinfo ? blk_by_legacy_dinfo(dinfo) : NULL;
1234             carddev = qdev_new(TYPE_SD_CARD);
1235             qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
1236             qdev_prop_set_bit(carddev, "spi", true);
1237             qdev_realize_and_unref(carddev,
1238                                    qdev_get_child_bus(sddev, "sd-bus"),
1239                                    &error_fatal);
1240 
1241             ssddev = ssi_create_peripheral(bus, "ssd0323");
1242 
1243             gpio_d_splitter = qdev_new(TYPE_SPLIT_IRQ);
1244             qdev_prop_set_uint32(gpio_d_splitter, "num-lines", 2);
1245             qdev_realize_and_unref(gpio_d_splitter, NULL, &error_fatal);
1246             qdev_connect_gpio_out(
1247                     gpio_d_splitter, 0,
1248                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0));
1249             qdev_connect_gpio_out(
1250                     gpio_d_splitter, 1,
1251                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1252             gpio_out[GPIO_D][0] = qdev_get_gpio_in(gpio_d_splitter, 0);
1253 
1254             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1255 
1256             /* Make sure the select pin is high.  */
1257             qemu_irq_raise(gpio_out[GPIO_D][0]);
1258         }
1259     }
1260     if (board->dc4 & (1 << 28)) {
1261         DeviceState *enet;
1262 
1263         qemu_check_nic_model(&nd_table[0], "stellaris");
1264 
1265         enet = qdev_new("stellaris_enet");
1266         qdev_set_nic_properties(enet, &nd_table[0]);
1267         sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1268         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1269         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1270     }
1271     if (board->peripherals & BP_GAMEPAD) {
1272         qemu_irq gpad_irq[5];
1273         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1274 
1275         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1276         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1277         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1278         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1279         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1280 
1281         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1282     }
1283     for (i = 0; i < 7; i++) {
1284         if (board->dc4 & (1 << i)) {
1285             for (j = 0; j < 8; j++) {
1286                 if (gpio_out[i][j]) {
1287                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1288                 }
1289             }
1290         }
1291     }
1292 
1293     /* Add dummy regions for the devices we don't implement yet,
1294      * so guest accesses don't cause unlogged crashes.
1295      */
1296     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1297     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1298     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1299     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1300     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1301     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1302     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1303     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1304 
1305     armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1306 }
1307 
1308 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1309 static void lm3s811evb_init(MachineState *machine)
1310 {
1311     stellaris_init(machine, &stellaris_boards[0]);
1312 }
1313 
1314 static void lm3s6965evb_init(MachineState *machine)
1315 {
1316     stellaris_init(machine, &stellaris_boards[1]);
1317 }
1318 
1319 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1320 {
1321     MachineClass *mc = MACHINE_CLASS(oc);
1322 
1323     mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
1324     mc->init = lm3s811evb_init;
1325     mc->ignore_memory_transaction_failures = true;
1326     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1327 }
1328 
1329 static const TypeInfo lm3s811evb_type = {
1330     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1331     .parent = TYPE_MACHINE,
1332     .class_init = lm3s811evb_class_init,
1333 };
1334 
1335 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1336 {
1337     MachineClass *mc = MACHINE_CLASS(oc);
1338 
1339     mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
1340     mc->init = lm3s6965evb_init;
1341     mc->ignore_memory_transaction_failures = true;
1342     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1343 }
1344 
1345 static const TypeInfo lm3s6965evb_type = {
1346     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1347     .parent = TYPE_MACHINE,
1348     .class_init = lm3s6965evb_class_init,
1349 };
1350 
1351 static void stellaris_machine_init(void)
1352 {
1353     type_register_static(&lm3s811evb_type);
1354     type_register_static(&lm3s6965evb_type);
1355 }
1356 
1357 type_init(stellaris_machine_init)
1358 
1359 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1360 {
1361     DeviceClass *dc = DEVICE_CLASS(klass);
1362 
1363     dc->vmsd = &vmstate_stellaris_i2c;
1364 }
1365 
1366 static const TypeInfo stellaris_i2c_info = {
1367     .name          = TYPE_STELLARIS_I2C,
1368     .parent        = TYPE_SYS_BUS_DEVICE,
1369     .instance_size = sizeof(stellaris_i2c_state),
1370     .instance_init = stellaris_i2c_init,
1371     .class_init    = stellaris_i2c_class_init,
1372 };
1373 
1374 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1375 {
1376     DeviceClass *dc = DEVICE_CLASS(klass);
1377 
1378     dc->vmsd = &vmstate_stellaris_adc;
1379 }
1380 
1381 static const TypeInfo stellaris_adc_info = {
1382     .name          = TYPE_STELLARIS_ADC,
1383     .parent        = TYPE_SYS_BUS_DEVICE,
1384     .instance_size = sizeof(stellaris_adc_state),
1385     .instance_init = stellaris_adc_init,
1386     .class_init    = stellaris_adc_class_init,
1387 };
1388 
1389 static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1390 {
1391     DeviceClass *dc = DEVICE_CLASS(klass);
1392     ResettableClass *rc = RESETTABLE_CLASS(klass);
1393 
1394     dc->vmsd = &vmstate_stellaris_sys;
1395     rc->phases.enter = stellaris_sys_reset_enter;
1396     rc->phases.hold = stellaris_sys_reset_hold;
1397     rc->phases.exit = stellaris_sys_reset_exit;
1398     device_class_set_props(dc, stellaris_sys_properties);
1399 }
1400 
1401 static const TypeInfo stellaris_sys_info = {
1402     .name = TYPE_STELLARIS_SYS,
1403     .parent = TYPE_SYS_BUS_DEVICE,
1404     .instance_size = sizeof(ssys_state),
1405     .instance_init = stellaris_sys_instance_init,
1406     .class_init = stellaris_sys_class_init,
1407 };
1408 
1409 static void stellaris_register_types(void)
1410 {
1411     type_register_static(&stellaris_i2c_info);
1412     type_register_static(&stellaris_adc_info);
1413     type_register_static(&stellaris_sys_info);
1414 }
1415 
1416 type_init(stellaris_register_types)
1417