xref: /openbmc/qemu/hw/arm/stellaris.c (revision 650d103d)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/sysbus.h"
13 #include "hw/ssi/ssi.h"
14 #include "hw/arm/boot.h"
15 #include "qemu/timer.h"
16 #include "hw/i2c/i2c.h"
17 #include "net/net.h"
18 #include "hw/boards.h"
19 #include "qemu/log.h"
20 #include "exec/address-spaces.h"
21 #include "sysemu/sysemu.h"
22 #include "hw/arm/armv7m.h"
23 #include "hw/char/pl011.h"
24 #include "hw/input/gamepad.h"
25 #include "hw/irq.h"
26 #include "hw/watchdog/cmsdk-apb-watchdog.h"
27 #include "migration/vmstate.h"
28 #include "hw/misc/unimp.h"
29 #include "cpu.h"
30 
31 #define GPIO_A 0
32 #define GPIO_B 1
33 #define GPIO_C 2
34 #define GPIO_D 3
35 #define GPIO_E 4
36 #define GPIO_F 5
37 #define GPIO_G 6
38 
39 #define BP_OLED_I2C  0x01
40 #define BP_OLED_SSI  0x02
41 #define BP_GAMEPAD   0x04
42 
43 #define NUM_IRQ_LINES 64
44 
45 typedef const struct {
46     const char *name;
47     uint32_t did0;
48     uint32_t did1;
49     uint32_t dc0;
50     uint32_t dc1;
51     uint32_t dc2;
52     uint32_t dc3;
53     uint32_t dc4;
54     uint32_t peripherals;
55 } stellaris_board_info;
56 
57 /* General purpose timer module.  */
58 
59 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
60 #define STELLARIS_GPTM(obj) \
61     OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM)
62 
63 typedef struct gptm_state {
64     SysBusDevice parent_obj;
65 
66     MemoryRegion iomem;
67     uint32_t config;
68     uint32_t mode[2];
69     uint32_t control;
70     uint32_t state;
71     uint32_t mask;
72     uint32_t load[2];
73     uint32_t match[2];
74     uint32_t prescale[2];
75     uint32_t match_prescale[2];
76     uint32_t rtc;
77     int64_t tick[2];
78     struct gptm_state *opaque[2];
79     QEMUTimer *timer[2];
80     /* The timers have an alternate output used to trigger the ADC.  */
81     qemu_irq trigger;
82     qemu_irq irq;
83 } gptm_state;
84 
85 static void gptm_update_irq(gptm_state *s)
86 {
87     int level;
88     level = (s->state & s->mask) != 0;
89     qemu_set_irq(s->irq, level);
90 }
91 
92 static void gptm_stop(gptm_state *s, int n)
93 {
94     timer_del(s->timer[n]);
95 }
96 
97 static void gptm_reload(gptm_state *s, int n, int reset)
98 {
99     int64_t tick;
100     if (reset)
101         tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
102     else
103         tick = s->tick[n];
104 
105     if (s->config == 0) {
106         /* 32-bit CountDown.  */
107         uint32_t count;
108         count = s->load[0] | (s->load[1] << 16);
109         tick += (int64_t)count * system_clock_scale;
110     } else if (s->config == 1) {
111         /* 32-bit RTC.  1Hz tick.  */
112         tick += NANOSECONDS_PER_SECOND;
113     } else if (s->mode[n] == 0xa) {
114         /* PWM mode.  Not implemented.  */
115     } else {
116         qemu_log_mask(LOG_UNIMP,
117                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
118                       s->mode[n]);
119         return;
120     }
121     s->tick[n] = tick;
122     timer_mod(s->timer[n], tick);
123 }
124 
125 static void gptm_tick(void *opaque)
126 {
127     gptm_state **p = (gptm_state **)opaque;
128     gptm_state *s;
129     int n;
130 
131     s = *p;
132     n = p - s->opaque;
133     if (s->config == 0) {
134         s->state |= 1;
135         if ((s->control & 0x20)) {
136             /* Output trigger.  */
137             qemu_irq_pulse(s->trigger);
138         }
139         if (s->mode[0] & 1) {
140             /* One-shot.  */
141             s->control &= ~1;
142         } else {
143             /* Periodic.  */
144             gptm_reload(s, 0, 0);
145         }
146     } else if (s->config == 1) {
147         /* RTC.  */
148         uint32_t match;
149         s->rtc++;
150         match = s->match[0] | (s->match[1] << 16);
151         if (s->rtc > match)
152             s->rtc = 0;
153         if (s->rtc == 0) {
154             s->state |= 8;
155         }
156         gptm_reload(s, 0, 0);
157     } else if (s->mode[n] == 0xa) {
158         /* PWM mode.  Not implemented.  */
159     } else {
160         qemu_log_mask(LOG_UNIMP,
161                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
162                       s->mode[n]);
163     }
164     gptm_update_irq(s);
165 }
166 
167 static uint64_t gptm_read(void *opaque, hwaddr offset,
168                           unsigned size)
169 {
170     gptm_state *s = (gptm_state *)opaque;
171 
172     switch (offset) {
173     case 0x00: /* CFG */
174         return s->config;
175     case 0x04: /* TAMR */
176         return s->mode[0];
177     case 0x08: /* TBMR */
178         return s->mode[1];
179     case 0x0c: /* CTL */
180         return s->control;
181     case 0x18: /* IMR */
182         return s->mask;
183     case 0x1c: /* RIS */
184         return s->state;
185     case 0x20: /* MIS */
186         return s->state & s->mask;
187     case 0x24: /* CR */
188         return 0;
189     case 0x28: /* TAILR */
190         return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
191     case 0x2c: /* TBILR */
192         return s->load[1];
193     case 0x30: /* TAMARCHR */
194         return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
195     case 0x34: /* TBMATCHR */
196         return s->match[1];
197     case 0x38: /* TAPR */
198         return s->prescale[0];
199     case 0x3c: /* TBPR */
200         return s->prescale[1];
201     case 0x40: /* TAPMR */
202         return s->match_prescale[0];
203     case 0x44: /* TBPMR */
204         return s->match_prescale[1];
205     case 0x48: /* TAR */
206         if (s->config == 1) {
207             return s->rtc;
208         }
209         qemu_log_mask(LOG_UNIMP,
210                       "GPTM: read of TAR but timer read not supported\n");
211         return 0;
212     case 0x4c: /* TBR */
213         qemu_log_mask(LOG_UNIMP,
214                       "GPTM: read of TBR but timer read not supported\n");
215         return 0;
216     default:
217         qemu_log_mask(LOG_GUEST_ERROR,
218                       "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
219                       offset);
220         return 0;
221     }
222 }
223 
224 static void gptm_write(void *opaque, hwaddr offset,
225                        uint64_t value, unsigned size)
226 {
227     gptm_state *s = (gptm_state *)opaque;
228     uint32_t oldval;
229 
230     /* The timers should be disabled before changing the configuration.
231        We take advantage of this and defer everything until the timer
232        is enabled.  */
233     switch (offset) {
234     case 0x00: /* CFG */
235         s->config = value;
236         break;
237     case 0x04: /* TAMR */
238         s->mode[0] = value;
239         break;
240     case 0x08: /* TBMR */
241         s->mode[1] = value;
242         break;
243     case 0x0c: /* CTL */
244         oldval = s->control;
245         s->control = value;
246         /* TODO: Implement pause.  */
247         if ((oldval ^ value) & 1) {
248             if (value & 1) {
249                 gptm_reload(s, 0, 1);
250             } else {
251                 gptm_stop(s, 0);
252             }
253         }
254         if (((oldval ^ value) & 0x100) && s->config >= 4) {
255             if (value & 0x100) {
256                 gptm_reload(s, 1, 1);
257             } else {
258                 gptm_stop(s, 1);
259             }
260         }
261         break;
262     case 0x18: /* IMR */
263         s->mask = value & 0x77;
264         gptm_update_irq(s);
265         break;
266     case 0x24: /* CR */
267         s->state &= ~value;
268         break;
269     case 0x28: /* TAILR */
270         s->load[0] = value & 0xffff;
271         if (s->config < 4) {
272             s->load[1] = value >> 16;
273         }
274         break;
275     case 0x2c: /* TBILR */
276         s->load[1] = value & 0xffff;
277         break;
278     case 0x30: /* TAMARCHR */
279         s->match[0] = value & 0xffff;
280         if (s->config < 4) {
281             s->match[1] = value >> 16;
282         }
283         break;
284     case 0x34: /* TBMATCHR */
285         s->match[1] = value >> 16;
286         break;
287     case 0x38: /* TAPR */
288         s->prescale[0] = value;
289         break;
290     case 0x3c: /* TBPR */
291         s->prescale[1] = value;
292         break;
293     case 0x40: /* TAPMR */
294         s->match_prescale[0] = value;
295         break;
296     case 0x44: /* TBPMR */
297         s->match_prescale[0] = value;
298         break;
299     default:
300         qemu_log_mask(LOG_GUEST_ERROR,
301                       "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
302                       offset);
303     }
304     gptm_update_irq(s);
305 }
306 
307 static const MemoryRegionOps gptm_ops = {
308     .read = gptm_read,
309     .write = gptm_write,
310     .endianness = DEVICE_NATIVE_ENDIAN,
311 };
312 
313 static const VMStateDescription vmstate_stellaris_gptm = {
314     .name = "stellaris_gptm",
315     .version_id = 1,
316     .minimum_version_id = 1,
317     .fields = (VMStateField[]) {
318         VMSTATE_UINT32(config, gptm_state),
319         VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
320         VMSTATE_UINT32(control, gptm_state),
321         VMSTATE_UINT32(state, gptm_state),
322         VMSTATE_UINT32(mask, gptm_state),
323         VMSTATE_UNUSED(8),
324         VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
325         VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
326         VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
327         VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
328         VMSTATE_UINT32(rtc, gptm_state),
329         VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
330         VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
331         VMSTATE_END_OF_LIST()
332     }
333 };
334 
335 static void stellaris_gptm_init(Object *obj)
336 {
337     DeviceState *dev = DEVICE(obj);
338     gptm_state *s = STELLARIS_GPTM(obj);
339     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
340 
341     sysbus_init_irq(sbd, &s->irq);
342     qdev_init_gpio_out(dev, &s->trigger, 1);
343 
344     memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
345                           "gptm", 0x1000);
346     sysbus_init_mmio(sbd, &s->iomem);
347 
348     s->opaque[0] = s->opaque[1] = s;
349     s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
350     s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
351 }
352 
353 
354 /* System controller.  */
355 
356 typedef struct {
357     MemoryRegion iomem;
358     uint32_t pborctl;
359     uint32_t ldopctl;
360     uint32_t int_status;
361     uint32_t int_mask;
362     uint32_t resc;
363     uint32_t rcc;
364     uint32_t rcc2;
365     uint32_t rcgc[3];
366     uint32_t scgc[3];
367     uint32_t dcgc[3];
368     uint32_t clkvclr;
369     uint32_t ldoarst;
370     uint32_t user0;
371     uint32_t user1;
372     qemu_irq irq;
373     stellaris_board_info *board;
374 } ssys_state;
375 
376 static void ssys_update(ssys_state *s)
377 {
378   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
379 }
380 
381 static uint32_t pllcfg_sandstorm[16] = {
382     0x31c0, /* 1 Mhz */
383     0x1ae0, /* 1.8432 Mhz */
384     0x18c0, /* 2 Mhz */
385     0xd573, /* 2.4576 Mhz */
386     0x37a6, /* 3.57954 Mhz */
387     0x1ae2, /* 3.6864 Mhz */
388     0x0c40, /* 4 Mhz */
389     0x98bc, /* 4.906 Mhz */
390     0x935b, /* 4.9152 Mhz */
391     0x09c0, /* 5 Mhz */
392     0x4dee, /* 5.12 Mhz */
393     0x0c41, /* 6 Mhz */
394     0x75db, /* 6.144 Mhz */
395     0x1ae6, /* 7.3728 Mhz */
396     0x0600, /* 8 Mhz */
397     0x585b /* 8.192 Mhz */
398 };
399 
400 static uint32_t pllcfg_fury[16] = {
401     0x3200, /* 1 Mhz */
402     0x1b20, /* 1.8432 Mhz */
403     0x1900, /* 2 Mhz */
404     0xf42b, /* 2.4576 Mhz */
405     0x37e3, /* 3.57954 Mhz */
406     0x1b21, /* 3.6864 Mhz */
407     0x0c80, /* 4 Mhz */
408     0x98ee, /* 4.906 Mhz */
409     0xd5b4, /* 4.9152 Mhz */
410     0x0a00, /* 5 Mhz */
411     0x4e27, /* 5.12 Mhz */
412     0x1902, /* 6 Mhz */
413     0xec1c, /* 6.144 Mhz */
414     0x1b23, /* 7.3728 Mhz */
415     0x0640, /* 8 Mhz */
416     0xb11c /* 8.192 Mhz */
417 };
418 
419 #define DID0_VER_MASK        0x70000000
420 #define DID0_VER_0           0x00000000
421 #define DID0_VER_1           0x10000000
422 
423 #define DID0_CLASS_MASK      0x00FF0000
424 #define DID0_CLASS_SANDSTORM 0x00000000
425 #define DID0_CLASS_FURY      0x00010000
426 
427 static int ssys_board_class(const ssys_state *s)
428 {
429     uint32_t did0 = s->board->did0;
430     switch (did0 & DID0_VER_MASK) {
431     case DID0_VER_0:
432         return DID0_CLASS_SANDSTORM;
433     case DID0_VER_1:
434         switch (did0 & DID0_CLASS_MASK) {
435         case DID0_CLASS_SANDSTORM:
436         case DID0_CLASS_FURY:
437             return did0 & DID0_CLASS_MASK;
438         }
439         /* for unknown classes, fall through */
440     default:
441         /* This can only happen if the hardwired constant did0 value
442          * in this board's stellaris_board_info struct is wrong.
443          */
444         g_assert_not_reached();
445     }
446 }
447 
448 static uint64_t ssys_read(void *opaque, hwaddr offset,
449                           unsigned size)
450 {
451     ssys_state *s = (ssys_state *)opaque;
452 
453     switch (offset) {
454     case 0x000: /* DID0 */
455         return s->board->did0;
456     case 0x004: /* DID1 */
457         return s->board->did1;
458     case 0x008: /* DC0 */
459         return s->board->dc0;
460     case 0x010: /* DC1 */
461         return s->board->dc1;
462     case 0x014: /* DC2 */
463         return s->board->dc2;
464     case 0x018: /* DC3 */
465         return s->board->dc3;
466     case 0x01c: /* DC4 */
467         return s->board->dc4;
468     case 0x030: /* PBORCTL */
469         return s->pborctl;
470     case 0x034: /* LDOPCTL */
471         return s->ldopctl;
472     case 0x040: /* SRCR0 */
473         return 0;
474     case 0x044: /* SRCR1 */
475         return 0;
476     case 0x048: /* SRCR2 */
477         return 0;
478     case 0x050: /* RIS */
479         return s->int_status;
480     case 0x054: /* IMC */
481         return s->int_mask;
482     case 0x058: /* MISC */
483         return s->int_status & s->int_mask;
484     case 0x05c: /* RESC */
485         return s->resc;
486     case 0x060: /* RCC */
487         return s->rcc;
488     case 0x064: /* PLLCFG */
489         {
490             int xtal;
491             xtal = (s->rcc >> 6) & 0xf;
492             switch (ssys_board_class(s)) {
493             case DID0_CLASS_FURY:
494                 return pllcfg_fury[xtal];
495             case DID0_CLASS_SANDSTORM:
496                 return pllcfg_sandstorm[xtal];
497             default:
498                 g_assert_not_reached();
499             }
500         }
501     case 0x070: /* RCC2 */
502         return s->rcc2;
503     case 0x100: /* RCGC0 */
504         return s->rcgc[0];
505     case 0x104: /* RCGC1 */
506         return s->rcgc[1];
507     case 0x108: /* RCGC2 */
508         return s->rcgc[2];
509     case 0x110: /* SCGC0 */
510         return s->scgc[0];
511     case 0x114: /* SCGC1 */
512         return s->scgc[1];
513     case 0x118: /* SCGC2 */
514         return s->scgc[2];
515     case 0x120: /* DCGC0 */
516         return s->dcgc[0];
517     case 0x124: /* DCGC1 */
518         return s->dcgc[1];
519     case 0x128: /* DCGC2 */
520         return s->dcgc[2];
521     case 0x150: /* CLKVCLR */
522         return s->clkvclr;
523     case 0x160: /* LDOARST */
524         return s->ldoarst;
525     case 0x1e0: /* USER0 */
526         return s->user0;
527     case 0x1e4: /* USER1 */
528         return s->user1;
529     default:
530         qemu_log_mask(LOG_GUEST_ERROR,
531                       "SSYS: read at bad offset 0x%x\n", (int)offset);
532         return 0;
533     }
534 }
535 
536 static bool ssys_use_rcc2(ssys_state *s)
537 {
538     return (s->rcc2 >> 31) & 0x1;
539 }
540 
541 /*
542  * Caculate the sys. clock period in ms.
543  */
544 static void ssys_calculate_system_clock(ssys_state *s)
545 {
546     if (ssys_use_rcc2(s)) {
547         system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
548     } else {
549         system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
550     }
551 }
552 
553 static void ssys_write(void *opaque, hwaddr offset,
554                        uint64_t value, unsigned size)
555 {
556     ssys_state *s = (ssys_state *)opaque;
557 
558     switch (offset) {
559     case 0x030: /* PBORCTL */
560         s->pborctl = value & 0xffff;
561         break;
562     case 0x034: /* LDOPCTL */
563         s->ldopctl = value & 0x1f;
564         break;
565     case 0x040: /* SRCR0 */
566     case 0x044: /* SRCR1 */
567     case 0x048: /* SRCR2 */
568         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
569         break;
570     case 0x054: /* IMC */
571         s->int_mask = value & 0x7f;
572         break;
573     case 0x058: /* MISC */
574         s->int_status &= ~value;
575         break;
576     case 0x05c: /* RESC */
577         s->resc = value & 0x3f;
578         break;
579     case 0x060: /* RCC */
580         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
581             /* PLL enable.  */
582             s->int_status |= (1 << 6);
583         }
584         s->rcc = value;
585         ssys_calculate_system_clock(s);
586         break;
587     case 0x070: /* RCC2 */
588         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
589             break;
590         }
591 
592         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
593             /* PLL enable.  */
594             s->int_status |= (1 << 6);
595         }
596         s->rcc2 = value;
597         ssys_calculate_system_clock(s);
598         break;
599     case 0x100: /* RCGC0 */
600         s->rcgc[0] = value;
601         break;
602     case 0x104: /* RCGC1 */
603         s->rcgc[1] = value;
604         break;
605     case 0x108: /* RCGC2 */
606         s->rcgc[2] = value;
607         break;
608     case 0x110: /* SCGC0 */
609         s->scgc[0] = value;
610         break;
611     case 0x114: /* SCGC1 */
612         s->scgc[1] = value;
613         break;
614     case 0x118: /* SCGC2 */
615         s->scgc[2] = value;
616         break;
617     case 0x120: /* DCGC0 */
618         s->dcgc[0] = value;
619         break;
620     case 0x124: /* DCGC1 */
621         s->dcgc[1] = value;
622         break;
623     case 0x128: /* DCGC2 */
624         s->dcgc[2] = value;
625         break;
626     case 0x150: /* CLKVCLR */
627         s->clkvclr = value;
628         break;
629     case 0x160: /* LDOARST */
630         s->ldoarst = value;
631         break;
632     default:
633         qemu_log_mask(LOG_GUEST_ERROR,
634                       "SSYS: write at bad offset 0x%x\n", (int)offset);
635     }
636     ssys_update(s);
637 }
638 
639 static const MemoryRegionOps ssys_ops = {
640     .read = ssys_read,
641     .write = ssys_write,
642     .endianness = DEVICE_NATIVE_ENDIAN,
643 };
644 
645 static void ssys_reset(void *opaque)
646 {
647     ssys_state *s = (ssys_state *)opaque;
648 
649     s->pborctl = 0x7ffd;
650     s->rcc = 0x078e3ac0;
651 
652     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
653         s->rcc2 = 0;
654     } else {
655         s->rcc2 = 0x07802810;
656     }
657     s->rcgc[0] = 1;
658     s->scgc[0] = 1;
659     s->dcgc[0] = 1;
660     ssys_calculate_system_clock(s);
661 }
662 
663 static int stellaris_sys_post_load(void *opaque, int version_id)
664 {
665     ssys_state *s = opaque;
666 
667     ssys_calculate_system_clock(s);
668 
669     return 0;
670 }
671 
672 static const VMStateDescription vmstate_stellaris_sys = {
673     .name = "stellaris_sys",
674     .version_id = 2,
675     .minimum_version_id = 1,
676     .post_load = stellaris_sys_post_load,
677     .fields = (VMStateField[]) {
678         VMSTATE_UINT32(pborctl, ssys_state),
679         VMSTATE_UINT32(ldopctl, ssys_state),
680         VMSTATE_UINT32(int_mask, ssys_state),
681         VMSTATE_UINT32(int_status, ssys_state),
682         VMSTATE_UINT32(resc, ssys_state),
683         VMSTATE_UINT32(rcc, ssys_state),
684         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
685         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
686         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
687         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
688         VMSTATE_UINT32(clkvclr, ssys_state),
689         VMSTATE_UINT32(ldoarst, ssys_state),
690         VMSTATE_END_OF_LIST()
691     }
692 };
693 
694 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
695                               stellaris_board_info * board,
696                               uint8_t *macaddr)
697 {
698     ssys_state *s;
699 
700     s = g_new0(ssys_state, 1);
701     s->irq = irq;
702     s->board = board;
703     /* Most devices come preprogrammed with a MAC address in the user data. */
704     s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
705     s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
706 
707     memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000);
708     memory_region_add_subregion(get_system_memory(), base, &s->iomem);
709     ssys_reset(s);
710     vmstate_register(NULL, -1, &vmstate_stellaris_sys, s);
711     return 0;
712 }
713 
714 
715 /* I2C controller.  */
716 
717 #define TYPE_STELLARIS_I2C "stellaris-i2c"
718 #define STELLARIS_I2C(obj) \
719     OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C)
720 
721 typedef struct {
722     SysBusDevice parent_obj;
723 
724     I2CBus *bus;
725     qemu_irq irq;
726     MemoryRegion iomem;
727     uint32_t msa;
728     uint32_t mcs;
729     uint32_t mdr;
730     uint32_t mtpr;
731     uint32_t mimr;
732     uint32_t mris;
733     uint32_t mcr;
734 } stellaris_i2c_state;
735 
736 #define STELLARIS_I2C_MCS_BUSY    0x01
737 #define STELLARIS_I2C_MCS_ERROR   0x02
738 #define STELLARIS_I2C_MCS_ADRACK  0x04
739 #define STELLARIS_I2C_MCS_DATACK  0x08
740 #define STELLARIS_I2C_MCS_ARBLST  0x10
741 #define STELLARIS_I2C_MCS_IDLE    0x20
742 #define STELLARIS_I2C_MCS_BUSBSY  0x40
743 
744 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
745                                    unsigned size)
746 {
747     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
748 
749     switch (offset) {
750     case 0x00: /* MSA */
751         return s->msa;
752     case 0x04: /* MCS */
753         /* We don't emulate timing, so the controller is never busy.  */
754         return s->mcs | STELLARIS_I2C_MCS_IDLE;
755     case 0x08: /* MDR */
756         return s->mdr;
757     case 0x0c: /* MTPR */
758         return s->mtpr;
759     case 0x10: /* MIMR */
760         return s->mimr;
761     case 0x14: /* MRIS */
762         return s->mris;
763     case 0x18: /* MMIS */
764         return s->mris & s->mimr;
765     case 0x20: /* MCR */
766         return s->mcr;
767     default:
768         qemu_log_mask(LOG_GUEST_ERROR,
769                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
770         return 0;
771     }
772 }
773 
774 static void stellaris_i2c_update(stellaris_i2c_state *s)
775 {
776     int level;
777 
778     level = (s->mris & s->mimr) != 0;
779     qemu_set_irq(s->irq, level);
780 }
781 
782 static void stellaris_i2c_write(void *opaque, hwaddr offset,
783                                 uint64_t value, unsigned size)
784 {
785     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
786 
787     switch (offset) {
788     case 0x00: /* MSA */
789         s->msa = value & 0xff;
790         break;
791     case 0x04: /* MCS */
792         if ((s->mcr & 0x10) == 0) {
793             /* Disabled.  Do nothing.  */
794             break;
795         }
796         /* Grab the bus if this is starting a transfer.  */
797         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
798             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
799                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
800             } else {
801                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
802                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
803             }
804         }
805         /* If we don't have the bus then indicate an error.  */
806         if (!i2c_bus_busy(s->bus)
807                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
808             s->mcs |= STELLARIS_I2C_MCS_ERROR;
809             break;
810         }
811         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
812         if (value & 1) {
813             /* Transfer a byte.  */
814             /* TODO: Handle errors.  */
815             if (s->msa & 1) {
816                 /* Recv */
817                 s->mdr = i2c_recv(s->bus);
818             } else {
819                 /* Send */
820                 i2c_send(s->bus, s->mdr);
821             }
822             /* Raise an interrupt.  */
823             s->mris |= 1;
824         }
825         if (value & 4) {
826             /* Finish transfer.  */
827             i2c_end_transfer(s->bus);
828             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
829         }
830         break;
831     case 0x08: /* MDR */
832         s->mdr = value & 0xff;
833         break;
834     case 0x0c: /* MTPR */
835         s->mtpr = value & 0xff;
836         break;
837     case 0x10: /* MIMR */
838         s->mimr = 1;
839         break;
840     case 0x1c: /* MICR */
841         s->mris &= ~value;
842         break;
843     case 0x20: /* MCR */
844         if (value & 1) {
845             qemu_log_mask(LOG_UNIMP,
846                           "stellaris_i2c: Loopback not implemented\n");
847         }
848         if (value & 0x20) {
849             qemu_log_mask(LOG_UNIMP,
850                           "stellaris_i2c: Slave mode not implemented\n");
851         }
852         s->mcr = value & 0x31;
853         break;
854     default:
855         qemu_log_mask(LOG_GUEST_ERROR,
856                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
857     }
858     stellaris_i2c_update(s);
859 }
860 
861 static void stellaris_i2c_reset(stellaris_i2c_state *s)
862 {
863     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
864         i2c_end_transfer(s->bus);
865 
866     s->msa = 0;
867     s->mcs = 0;
868     s->mdr = 0;
869     s->mtpr = 1;
870     s->mimr = 0;
871     s->mris = 0;
872     s->mcr = 0;
873     stellaris_i2c_update(s);
874 }
875 
876 static const MemoryRegionOps stellaris_i2c_ops = {
877     .read = stellaris_i2c_read,
878     .write = stellaris_i2c_write,
879     .endianness = DEVICE_NATIVE_ENDIAN,
880 };
881 
882 static const VMStateDescription vmstate_stellaris_i2c = {
883     .name = "stellaris_i2c",
884     .version_id = 1,
885     .minimum_version_id = 1,
886     .fields = (VMStateField[]) {
887         VMSTATE_UINT32(msa, stellaris_i2c_state),
888         VMSTATE_UINT32(mcs, stellaris_i2c_state),
889         VMSTATE_UINT32(mdr, stellaris_i2c_state),
890         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
891         VMSTATE_UINT32(mimr, stellaris_i2c_state),
892         VMSTATE_UINT32(mris, stellaris_i2c_state),
893         VMSTATE_UINT32(mcr, stellaris_i2c_state),
894         VMSTATE_END_OF_LIST()
895     }
896 };
897 
898 static void stellaris_i2c_init(Object *obj)
899 {
900     DeviceState *dev = DEVICE(obj);
901     stellaris_i2c_state *s = STELLARIS_I2C(obj);
902     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
903     I2CBus *bus;
904 
905     sysbus_init_irq(sbd, &s->irq);
906     bus = i2c_init_bus(dev, "i2c");
907     s->bus = bus;
908 
909     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
910                           "i2c", 0x1000);
911     sysbus_init_mmio(sbd, &s->iomem);
912     /* ??? For now we only implement the master interface.  */
913     stellaris_i2c_reset(s);
914 }
915 
916 /* Analogue to Digital Converter.  This is only partially implemented,
917    enough for applications that use a combined ADC and timer tick.  */
918 
919 #define STELLARIS_ADC_EM_CONTROLLER 0
920 #define STELLARIS_ADC_EM_COMP       1
921 #define STELLARIS_ADC_EM_EXTERNAL   4
922 #define STELLARIS_ADC_EM_TIMER      5
923 #define STELLARIS_ADC_EM_PWM0       6
924 #define STELLARIS_ADC_EM_PWM1       7
925 #define STELLARIS_ADC_EM_PWM2       8
926 
927 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
928 #define STELLARIS_ADC_FIFO_FULL     0x1000
929 
930 #define TYPE_STELLARIS_ADC "stellaris-adc"
931 #define STELLARIS_ADC(obj) \
932     OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC)
933 
934 typedef struct StellarisADCState {
935     SysBusDevice parent_obj;
936 
937     MemoryRegion iomem;
938     uint32_t actss;
939     uint32_t ris;
940     uint32_t im;
941     uint32_t emux;
942     uint32_t ostat;
943     uint32_t ustat;
944     uint32_t sspri;
945     uint32_t sac;
946     struct {
947         uint32_t state;
948         uint32_t data[16];
949     } fifo[4];
950     uint32_t ssmux[4];
951     uint32_t ssctl[4];
952     uint32_t noise;
953     qemu_irq irq[4];
954 } stellaris_adc_state;
955 
956 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
957 {
958     int tail;
959 
960     tail = s->fifo[n].state & 0xf;
961     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
962         s->ustat |= 1 << n;
963     } else {
964         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
965         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
966         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
967             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
968     }
969     return s->fifo[n].data[tail];
970 }
971 
972 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
973                                      uint32_t value)
974 {
975     int head;
976 
977     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
978        FIFO fir each sequencer.  */
979     head = (s->fifo[n].state >> 4) & 0xf;
980     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
981         s->ostat |= 1 << n;
982         return;
983     }
984     s->fifo[n].data[head] = value;
985     head = (head + 1) & 0xf;
986     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
987     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
988     if ((s->fifo[n].state & 0xf) == head)
989         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
990 }
991 
992 static void stellaris_adc_update(stellaris_adc_state *s)
993 {
994     int level;
995     int n;
996 
997     for (n = 0; n < 4; n++) {
998         level = (s->ris & s->im & (1 << n)) != 0;
999         qemu_set_irq(s->irq[n], level);
1000     }
1001 }
1002 
1003 static void stellaris_adc_trigger(void *opaque, int irq, int level)
1004 {
1005     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1006     int n;
1007 
1008     for (n = 0; n < 4; n++) {
1009         if ((s->actss & (1 << n)) == 0) {
1010             continue;
1011         }
1012 
1013         if (((s->emux >> (n * 4)) & 0xff) != 5) {
1014             continue;
1015         }
1016 
1017         /* Some applications use the ADC as a random number source, so introduce
1018            some variation into the signal.  */
1019         s->noise = s->noise * 314159 + 1;
1020         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
1021         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1022         s->ris |= (1 << n);
1023         stellaris_adc_update(s);
1024     }
1025 }
1026 
1027 static void stellaris_adc_reset(stellaris_adc_state *s)
1028 {
1029     int n;
1030 
1031     for (n = 0; n < 4; n++) {
1032         s->ssmux[n] = 0;
1033         s->ssctl[n] = 0;
1034         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1035     }
1036 }
1037 
1038 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1039                                    unsigned size)
1040 {
1041     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1042 
1043     /* TODO: Implement this.  */
1044     if (offset >= 0x40 && offset < 0xc0) {
1045         int n;
1046         n = (offset - 0x40) >> 5;
1047         switch (offset & 0x1f) {
1048         case 0x00: /* SSMUX */
1049             return s->ssmux[n];
1050         case 0x04: /* SSCTL */
1051             return s->ssctl[n];
1052         case 0x08: /* SSFIFO */
1053             return stellaris_adc_fifo_read(s, n);
1054         case 0x0c: /* SSFSTAT */
1055             return s->fifo[n].state;
1056         default:
1057             break;
1058         }
1059     }
1060     switch (offset) {
1061     case 0x00: /* ACTSS */
1062         return s->actss;
1063     case 0x04: /* RIS */
1064         return s->ris;
1065     case 0x08: /* IM */
1066         return s->im;
1067     case 0x0c: /* ISC */
1068         return s->ris & s->im;
1069     case 0x10: /* OSTAT */
1070         return s->ostat;
1071     case 0x14: /* EMUX */
1072         return s->emux;
1073     case 0x18: /* USTAT */
1074         return s->ustat;
1075     case 0x20: /* SSPRI */
1076         return s->sspri;
1077     case 0x30: /* SAC */
1078         return s->sac;
1079     default:
1080         qemu_log_mask(LOG_GUEST_ERROR,
1081                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1082         return 0;
1083     }
1084 }
1085 
1086 static void stellaris_adc_write(void *opaque, hwaddr offset,
1087                                 uint64_t value, unsigned size)
1088 {
1089     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1090 
1091     /* TODO: Implement this.  */
1092     if (offset >= 0x40 && offset < 0xc0) {
1093         int n;
1094         n = (offset - 0x40) >> 5;
1095         switch (offset & 0x1f) {
1096         case 0x00: /* SSMUX */
1097             s->ssmux[n] = value & 0x33333333;
1098             return;
1099         case 0x04: /* SSCTL */
1100             if (value != 6) {
1101                 qemu_log_mask(LOG_UNIMP,
1102                               "ADC: Unimplemented sequence %" PRIx64 "\n",
1103                               value);
1104             }
1105             s->ssctl[n] = value;
1106             return;
1107         default:
1108             break;
1109         }
1110     }
1111     switch (offset) {
1112     case 0x00: /* ACTSS */
1113         s->actss = value & 0xf;
1114         break;
1115     case 0x08: /* IM */
1116         s->im = value;
1117         break;
1118     case 0x0c: /* ISC */
1119         s->ris &= ~value;
1120         break;
1121     case 0x10: /* OSTAT */
1122         s->ostat &= ~value;
1123         break;
1124     case 0x14: /* EMUX */
1125         s->emux = value;
1126         break;
1127     case 0x18: /* USTAT */
1128         s->ustat &= ~value;
1129         break;
1130     case 0x20: /* SSPRI */
1131         s->sspri = value;
1132         break;
1133     case 0x28: /* PSSI */
1134         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
1135         break;
1136     case 0x30: /* SAC */
1137         s->sac = value;
1138         break;
1139     default:
1140         qemu_log_mask(LOG_GUEST_ERROR,
1141                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1142     }
1143     stellaris_adc_update(s);
1144 }
1145 
1146 static const MemoryRegionOps stellaris_adc_ops = {
1147     .read = stellaris_adc_read,
1148     .write = stellaris_adc_write,
1149     .endianness = DEVICE_NATIVE_ENDIAN,
1150 };
1151 
1152 static const VMStateDescription vmstate_stellaris_adc = {
1153     .name = "stellaris_adc",
1154     .version_id = 1,
1155     .minimum_version_id = 1,
1156     .fields = (VMStateField[]) {
1157         VMSTATE_UINT32(actss, stellaris_adc_state),
1158         VMSTATE_UINT32(ris, stellaris_adc_state),
1159         VMSTATE_UINT32(im, stellaris_adc_state),
1160         VMSTATE_UINT32(emux, stellaris_adc_state),
1161         VMSTATE_UINT32(ostat, stellaris_adc_state),
1162         VMSTATE_UINT32(ustat, stellaris_adc_state),
1163         VMSTATE_UINT32(sspri, stellaris_adc_state),
1164         VMSTATE_UINT32(sac, stellaris_adc_state),
1165         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1166         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1167         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1168         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1169         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1170         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1171         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1172         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1173         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1174         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1175         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1176         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1177         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1178         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1179         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1180         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1181         VMSTATE_UINT32(noise, stellaris_adc_state),
1182         VMSTATE_END_OF_LIST()
1183     }
1184 };
1185 
1186 static void stellaris_adc_init(Object *obj)
1187 {
1188     DeviceState *dev = DEVICE(obj);
1189     stellaris_adc_state *s = STELLARIS_ADC(obj);
1190     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1191     int n;
1192 
1193     for (n = 0; n < 4; n++) {
1194         sysbus_init_irq(sbd, &s->irq[n]);
1195     }
1196 
1197     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1198                           "adc", 0x1000);
1199     sysbus_init_mmio(sbd, &s->iomem);
1200     stellaris_adc_reset(s);
1201     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1202 }
1203 
1204 static
1205 void do_sys_reset(void *opaque, int n, int level)
1206 {
1207     if (level) {
1208         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1209     }
1210 }
1211 
1212 /* Board init.  */
1213 static stellaris_board_info stellaris_boards[] = {
1214   { "LM3S811EVB",
1215     0,
1216     0x0032000e,
1217     0x001f001f, /* dc0 */
1218     0x001132bf,
1219     0x01071013,
1220     0x3f0f01ff,
1221     0x0000001f,
1222     BP_OLED_I2C
1223   },
1224   { "LM3S6965EVB",
1225     0x10010002,
1226     0x1073402e,
1227     0x00ff007f, /* dc0 */
1228     0x001133ff,
1229     0x030f5317,
1230     0x0f0f87ff,
1231     0x5000007f,
1232     BP_OLED_SSI | BP_GAMEPAD
1233   }
1234 };
1235 
1236 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1237 {
1238     static const int uart_irq[] = {5, 6, 33, 34};
1239     static const int timer_irq[] = {19, 21, 23, 35};
1240     static const uint32_t gpio_addr[7] =
1241       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1242         0x40024000, 0x40025000, 0x40026000};
1243     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1244 
1245     /* Memory map of SoC devices, from
1246      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1247      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1248      *
1249      * 40000000 wdtimer
1250      * 40002000 i2c (unimplemented)
1251      * 40004000 GPIO
1252      * 40005000 GPIO
1253      * 40006000 GPIO
1254      * 40007000 GPIO
1255      * 40008000 SSI
1256      * 4000c000 UART
1257      * 4000d000 UART
1258      * 4000e000 UART
1259      * 40020000 i2c
1260      * 40021000 i2c (unimplemented)
1261      * 40024000 GPIO
1262      * 40025000 GPIO
1263      * 40026000 GPIO
1264      * 40028000 PWM (unimplemented)
1265      * 4002c000 QEI (unimplemented)
1266      * 4002d000 QEI (unimplemented)
1267      * 40030000 gptimer
1268      * 40031000 gptimer
1269      * 40032000 gptimer
1270      * 40033000 gptimer
1271      * 40038000 ADC
1272      * 4003c000 analogue comparator (unimplemented)
1273      * 40048000 ethernet
1274      * 400fc000 hibernation module (unimplemented)
1275      * 400fd000 flash memory control (unimplemented)
1276      * 400fe000 system control
1277      */
1278 
1279     DeviceState *gpio_dev[7], *nvic;
1280     qemu_irq gpio_in[7][8];
1281     qemu_irq gpio_out[7][8];
1282     qemu_irq adc;
1283     int sram_size;
1284     int flash_size;
1285     I2CBus *i2c;
1286     DeviceState *dev;
1287     int i;
1288     int j;
1289 
1290     MemoryRegion *sram = g_new(MemoryRegion, 1);
1291     MemoryRegion *flash = g_new(MemoryRegion, 1);
1292     MemoryRegion *system_memory = get_system_memory();
1293 
1294     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1295     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1296 
1297     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1298     memory_region_init_ram(flash, NULL, "stellaris.flash", flash_size,
1299                            &error_fatal);
1300     memory_region_set_readonly(flash, true);
1301     memory_region_add_subregion(system_memory, 0, flash);
1302 
1303     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1304                            &error_fatal);
1305     memory_region_add_subregion(system_memory, 0x20000000, sram);
1306 
1307     nvic = qdev_create(NULL, TYPE_ARMV7M);
1308     qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1309     qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1310     qdev_prop_set_bit(nvic, "enable-bitband", true);
1311     object_property_set_link(OBJECT(nvic), OBJECT(get_system_memory()),
1312                                      "memory", &error_abort);
1313     /* This will exit with an error if the user passed us a bad cpu_type */
1314     qdev_init_nofail(nvic);
1315 
1316     qdev_connect_gpio_out_named(nvic, "SYSRESETREQ", 0,
1317                                 qemu_allocate_irq(&do_sys_reset, NULL, 0));
1318 
1319     if (board->dc1 & (1 << 16)) {
1320         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1321                                     qdev_get_gpio_in(nvic, 14),
1322                                     qdev_get_gpio_in(nvic, 15),
1323                                     qdev_get_gpio_in(nvic, 16),
1324                                     qdev_get_gpio_in(nvic, 17),
1325                                     NULL);
1326         adc = qdev_get_gpio_in(dev, 0);
1327     } else {
1328         adc = NULL;
1329     }
1330     for (i = 0; i < 4; i++) {
1331         if (board->dc2 & (0x10000 << i)) {
1332             dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1333                                        0x40030000 + i * 0x1000,
1334                                        qdev_get_gpio_in(nvic, timer_irq[i]));
1335             /* TODO: This is incorrect, but we get away with it because
1336                the ADC output is only ever pulsed.  */
1337             qdev_connect_gpio_out(dev, 0, adc);
1338         }
1339     }
1340 
1341     stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1342                        board, nd_table[0].macaddr.a);
1343 
1344 
1345     if (board->dc1 & (1 << 3)) { /* watchdog present */
1346         dev = qdev_create(NULL, TYPE_LUMINARY_WATCHDOG);
1347 
1348         /* system_clock_scale is valid now */
1349         uint32_t mainclk = NANOSECONDS_PER_SECOND / system_clock_scale;
1350         qdev_prop_set_uint32(dev, "wdogclk-frq", mainclk);
1351 
1352         qdev_init_nofail(dev);
1353         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1354                         0,
1355                         0x40000000u);
1356         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1357                            0,
1358                            qdev_get_gpio_in(nvic, 18));
1359     }
1360 
1361 
1362     for (i = 0; i < 7; i++) {
1363         if (board->dc4 & (1 << i)) {
1364             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1365                                                qdev_get_gpio_in(nvic,
1366                                                                 gpio_irq[i]));
1367             for (j = 0; j < 8; j++) {
1368                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1369                 gpio_out[i][j] = NULL;
1370             }
1371         }
1372     }
1373 
1374     if (board->dc2 & (1 << 12)) {
1375         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1376                                    qdev_get_gpio_in(nvic, 8));
1377         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1378         if (board->peripherals & BP_OLED_I2C) {
1379             i2c_create_slave(i2c, "ssd0303", 0x3d);
1380         }
1381     }
1382 
1383     for (i = 0; i < 4; i++) {
1384         if (board->dc2 & (1 << i)) {
1385             pl011_luminary_create(0x4000c000 + i * 0x1000,
1386                                   qdev_get_gpio_in(nvic, uart_irq[i]),
1387                                   serial_hd(i));
1388         }
1389     }
1390     if (board->dc2 & (1 << 4)) {
1391         dev = sysbus_create_simple("pl022", 0x40008000,
1392                                    qdev_get_gpio_in(nvic, 7));
1393         if (board->peripherals & BP_OLED_SSI) {
1394             void *bus;
1395             DeviceState *sddev;
1396             DeviceState *ssddev;
1397 
1398             /* Some boards have both an OLED controller and SD card connected to
1399              * the same SSI port, with the SD card chip select connected to a
1400              * GPIO pin.  Technically the OLED chip select is connected to the
1401              * SSI Fss pin.  We do not bother emulating that as both devices
1402              * should never be selected simultaneously, and our OLED controller
1403              * ignores stray 0xff commands that occur when deselecting the SD
1404              * card.
1405              */
1406             bus = qdev_get_child_bus(dev, "ssi");
1407 
1408             sddev = ssi_create_slave(bus, "ssi-sd");
1409             ssddev = ssi_create_slave(bus, "ssd0323");
1410             gpio_out[GPIO_D][0] = qemu_irq_split(
1411                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1412                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1413             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1414 
1415             /* Make sure the select pin is high.  */
1416             qemu_irq_raise(gpio_out[GPIO_D][0]);
1417         }
1418     }
1419     if (board->dc4 & (1 << 28)) {
1420         DeviceState *enet;
1421 
1422         qemu_check_nic_model(&nd_table[0], "stellaris");
1423 
1424         enet = qdev_create(NULL, "stellaris_enet");
1425         qdev_set_nic_properties(enet, &nd_table[0]);
1426         qdev_init_nofail(enet);
1427         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1428         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1429     }
1430     if (board->peripherals & BP_GAMEPAD) {
1431         qemu_irq gpad_irq[5];
1432         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1433 
1434         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1435         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1436         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1437         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1438         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1439 
1440         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1441     }
1442     for (i = 0; i < 7; i++) {
1443         if (board->dc4 & (1 << i)) {
1444             for (j = 0; j < 8; j++) {
1445                 if (gpio_out[i][j]) {
1446                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1447                 }
1448             }
1449         }
1450     }
1451 
1452     /* Add dummy regions for the devices we don't implement yet,
1453      * so guest accesses don't cause unlogged crashes.
1454      */
1455     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1456     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1457     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1458     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1459     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1460     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1461     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1462     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1463 
1464     armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1465 }
1466 
1467 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1468 static void lm3s811evb_init(MachineState *machine)
1469 {
1470     stellaris_init(machine, &stellaris_boards[0]);
1471 }
1472 
1473 static void lm3s6965evb_init(MachineState *machine)
1474 {
1475     stellaris_init(machine, &stellaris_boards[1]);
1476 }
1477 
1478 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1479 {
1480     MachineClass *mc = MACHINE_CLASS(oc);
1481 
1482     mc->desc = "Stellaris LM3S811EVB";
1483     mc->init = lm3s811evb_init;
1484     mc->ignore_memory_transaction_failures = true;
1485     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1486 }
1487 
1488 static const TypeInfo lm3s811evb_type = {
1489     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1490     .parent = TYPE_MACHINE,
1491     .class_init = lm3s811evb_class_init,
1492 };
1493 
1494 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1495 {
1496     MachineClass *mc = MACHINE_CLASS(oc);
1497 
1498     mc->desc = "Stellaris LM3S6965EVB";
1499     mc->init = lm3s6965evb_init;
1500     mc->ignore_memory_transaction_failures = true;
1501     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1502 }
1503 
1504 static const TypeInfo lm3s6965evb_type = {
1505     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1506     .parent = TYPE_MACHINE,
1507     .class_init = lm3s6965evb_class_init,
1508 };
1509 
1510 static void stellaris_machine_init(void)
1511 {
1512     type_register_static(&lm3s811evb_type);
1513     type_register_static(&lm3s6965evb_type);
1514 }
1515 
1516 type_init(stellaris_machine_init)
1517 
1518 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1519 {
1520     DeviceClass *dc = DEVICE_CLASS(klass);
1521 
1522     dc->vmsd = &vmstate_stellaris_i2c;
1523 }
1524 
1525 static const TypeInfo stellaris_i2c_info = {
1526     .name          = TYPE_STELLARIS_I2C,
1527     .parent        = TYPE_SYS_BUS_DEVICE,
1528     .instance_size = sizeof(stellaris_i2c_state),
1529     .instance_init = stellaris_i2c_init,
1530     .class_init    = stellaris_i2c_class_init,
1531 };
1532 
1533 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1534 {
1535     DeviceClass *dc = DEVICE_CLASS(klass);
1536 
1537     dc->vmsd = &vmstate_stellaris_gptm;
1538 }
1539 
1540 static const TypeInfo stellaris_gptm_info = {
1541     .name          = TYPE_STELLARIS_GPTM,
1542     .parent        = TYPE_SYS_BUS_DEVICE,
1543     .instance_size = sizeof(gptm_state),
1544     .instance_init = stellaris_gptm_init,
1545     .class_init    = stellaris_gptm_class_init,
1546 };
1547 
1548 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1549 {
1550     DeviceClass *dc = DEVICE_CLASS(klass);
1551 
1552     dc->vmsd = &vmstate_stellaris_adc;
1553 }
1554 
1555 static const TypeInfo stellaris_adc_info = {
1556     .name          = TYPE_STELLARIS_ADC,
1557     .parent        = TYPE_SYS_BUS_DEVICE,
1558     .instance_size = sizeof(stellaris_adc_state),
1559     .instance_init = stellaris_adc_init,
1560     .class_init    = stellaris_adc_class_init,
1561 };
1562 
1563 static void stellaris_register_types(void)
1564 {
1565     type_register_static(&stellaris_i2c_info);
1566     type_register_static(&stellaris_gptm_info);
1567     type_register_static(&stellaris_adc_info);
1568 }
1569 
1570 type_init(stellaris_register_types)
1571