xref: /openbmc/qemu/hw/arm/stellaris.c (revision 64ed6f92)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/sysbus.h"
13 #include "hw/ssi/ssi.h"
14 #include "hw/arm/boot.h"
15 #include "qemu/timer.h"
16 #include "hw/i2c/i2c.h"
17 #include "net/net.h"
18 #include "hw/boards.h"
19 #include "qemu/log.h"
20 #include "exec/address-spaces.h"
21 #include "sysemu/sysemu.h"
22 #include "hw/arm/armv7m.h"
23 #include "hw/char/pl011.h"
24 #include "hw/input/gamepad.h"
25 #include "hw/irq.h"
26 #include "hw/watchdog/cmsdk-apb-watchdog.h"
27 #include "migration/vmstate.h"
28 #include "hw/misc/unimp.h"
29 #include "cpu.h"
30 
31 #define GPIO_A 0
32 #define GPIO_B 1
33 #define GPIO_C 2
34 #define GPIO_D 3
35 #define GPIO_E 4
36 #define GPIO_F 5
37 #define GPIO_G 6
38 
39 #define BP_OLED_I2C  0x01
40 #define BP_OLED_SSI  0x02
41 #define BP_GAMEPAD   0x04
42 
43 #define NUM_IRQ_LINES 64
44 
45 typedef const struct {
46     const char *name;
47     uint32_t did0;
48     uint32_t did1;
49     uint32_t dc0;
50     uint32_t dc1;
51     uint32_t dc2;
52     uint32_t dc3;
53     uint32_t dc4;
54     uint32_t peripherals;
55 } stellaris_board_info;
56 
57 /* General purpose timer module.  */
58 
59 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
60 #define STELLARIS_GPTM(obj) \
61     OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM)
62 
63 typedef struct gptm_state {
64     SysBusDevice parent_obj;
65 
66     MemoryRegion iomem;
67     uint32_t config;
68     uint32_t mode[2];
69     uint32_t control;
70     uint32_t state;
71     uint32_t mask;
72     uint32_t load[2];
73     uint32_t match[2];
74     uint32_t prescale[2];
75     uint32_t match_prescale[2];
76     uint32_t rtc;
77     int64_t tick[2];
78     struct gptm_state *opaque[2];
79     QEMUTimer *timer[2];
80     /* The timers have an alternate output used to trigger the ADC.  */
81     qemu_irq trigger;
82     qemu_irq irq;
83 } gptm_state;
84 
85 static void gptm_update_irq(gptm_state *s)
86 {
87     int level;
88     level = (s->state & s->mask) != 0;
89     qemu_set_irq(s->irq, level);
90 }
91 
92 static void gptm_stop(gptm_state *s, int n)
93 {
94     timer_del(s->timer[n]);
95 }
96 
97 static void gptm_reload(gptm_state *s, int n, int reset)
98 {
99     int64_t tick;
100     if (reset)
101         tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
102     else
103         tick = s->tick[n];
104 
105     if (s->config == 0) {
106         /* 32-bit CountDown.  */
107         uint32_t count;
108         count = s->load[0] | (s->load[1] << 16);
109         tick += (int64_t)count * system_clock_scale;
110     } else if (s->config == 1) {
111         /* 32-bit RTC.  1Hz tick.  */
112         tick += NANOSECONDS_PER_SECOND;
113     } else if (s->mode[n] == 0xa) {
114         /* PWM mode.  Not implemented.  */
115     } else {
116         qemu_log_mask(LOG_UNIMP,
117                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
118                       s->mode[n]);
119         return;
120     }
121     s->tick[n] = tick;
122     timer_mod(s->timer[n], tick);
123 }
124 
125 static void gptm_tick(void *opaque)
126 {
127     gptm_state **p = (gptm_state **)opaque;
128     gptm_state *s;
129     int n;
130 
131     s = *p;
132     n = p - s->opaque;
133     if (s->config == 0) {
134         s->state |= 1;
135         if ((s->control & 0x20)) {
136             /* Output trigger.  */
137             qemu_irq_pulse(s->trigger);
138         }
139         if (s->mode[0] & 1) {
140             /* One-shot.  */
141             s->control &= ~1;
142         } else {
143             /* Periodic.  */
144             gptm_reload(s, 0, 0);
145         }
146     } else if (s->config == 1) {
147         /* RTC.  */
148         uint32_t match;
149         s->rtc++;
150         match = s->match[0] | (s->match[1] << 16);
151         if (s->rtc > match)
152             s->rtc = 0;
153         if (s->rtc == 0) {
154             s->state |= 8;
155         }
156         gptm_reload(s, 0, 0);
157     } else if (s->mode[n] == 0xa) {
158         /* PWM mode.  Not implemented.  */
159     } else {
160         qemu_log_mask(LOG_UNIMP,
161                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
162                       s->mode[n]);
163     }
164     gptm_update_irq(s);
165 }
166 
167 static uint64_t gptm_read(void *opaque, hwaddr offset,
168                           unsigned size)
169 {
170     gptm_state *s = (gptm_state *)opaque;
171 
172     switch (offset) {
173     case 0x00: /* CFG */
174         return s->config;
175     case 0x04: /* TAMR */
176         return s->mode[0];
177     case 0x08: /* TBMR */
178         return s->mode[1];
179     case 0x0c: /* CTL */
180         return s->control;
181     case 0x18: /* IMR */
182         return s->mask;
183     case 0x1c: /* RIS */
184         return s->state;
185     case 0x20: /* MIS */
186         return s->state & s->mask;
187     case 0x24: /* CR */
188         return 0;
189     case 0x28: /* TAILR */
190         return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
191     case 0x2c: /* TBILR */
192         return s->load[1];
193     case 0x30: /* TAMARCHR */
194         return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
195     case 0x34: /* TBMATCHR */
196         return s->match[1];
197     case 0x38: /* TAPR */
198         return s->prescale[0];
199     case 0x3c: /* TBPR */
200         return s->prescale[1];
201     case 0x40: /* TAPMR */
202         return s->match_prescale[0];
203     case 0x44: /* TBPMR */
204         return s->match_prescale[1];
205     case 0x48: /* TAR */
206         if (s->config == 1) {
207             return s->rtc;
208         }
209         qemu_log_mask(LOG_UNIMP,
210                       "GPTM: read of TAR but timer read not supported\n");
211         return 0;
212     case 0x4c: /* TBR */
213         qemu_log_mask(LOG_UNIMP,
214                       "GPTM: read of TBR but timer read not supported\n");
215         return 0;
216     default:
217         qemu_log_mask(LOG_GUEST_ERROR,
218                       "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
219                       offset);
220         return 0;
221     }
222 }
223 
224 static void gptm_write(void *opaque, hwaddr offset,
225                        uint64_t value, unsigned size)
226 {
227     gptm_state *s = (gptm_state *)opaque;
228     uint32_t oldval;
229 
230     /* The timers should be disabled before changing the configuration.
231        We take advantage of this and defer everything until the timer
232        is enabled.  */
233     switch (offset) {
234     case 0x00: /* CFG */
235         s->config = value;
236         break;
237     case 0x04: /* TAMR */
238         s->mode[0] = value;
239         break;
240     case 0x08: /* TBMR */
241         s->mode[1] = value;
242         break;
243     case 0x0c: /* CTL */
244         oldval = s->control;
245         s->control = value;
246         /* TODO: Implement pause.  */
247         if ((oldval ^ value) & 1) {
248             if (value & 1) {
249                 gptm_reload(s, 0, 1);
250             } else {
251                 gptm_stop(s, 0);
252             }
253         }
254         if (((oldval ^ value) & 0x100) && s->config >= 4) {
255             if (value & 0x100) {
256                 gptm_reload(s, 1, 1);
257             } else {
258                 gptm_stop(s, 1);
259             }
260         }
261         break;
262     case 0x18: /* IMR */
263         s->mask = value & 0x77;
264         gptm_update_irq(s);
265         break;
266     case 0x24: /* CR */
267         s->state &= ~value;
268         break;
269     case 0x28: /* TAILR */
270         s->load[0] = value & 0xffff;
271         if (s->config < 4) {
272             s->load[1] = value >> 16;
273         }
274         break;
275     case 0x2c: /* TBILR */
276         s->load[1] = value & 0xffff;
277         break;
278     case 0x30: /* TAMARCHR */
279         s->match[0] = value & 0xffff;
280         if (s->config < 4) {
281             s->match[1] = value >> 16;
282         }
283         break;
284     case 0x34: /* TBMATCHR */
285         s->match[1] = value >> 16;
286         break;
287     case 0x38: /* TAPR */
288         s->prescale[0] = value;
289         break;
290     case 0x3c: /* TBPR */
291         s->prescale[1] = value;
292         break;
293     case 0x40: /* TAPMR */
294         s->match_prescale[0] = value;
295         break;
296     case 0x44: /* TBPMR */
297         s->match_prescale[0] = value;
298         break;
299     default:
300         qemu_log_mask(LOG_GUEST_ERROR,
301                       "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
302                       offset);
303     }
304     gptm_update_irq(s);
305 }
306 
307 static const MemoryRegionOps gptm_ops = {
308     .read = gptm_read,
309     .write = gptm_write,
310     .endianness = DEVICE_NATIVE_ENDIAN,
311 };
312 
313 static const VMStateDescription vmstate_stellaris_gptm = {
314     .name = "stellaris_gptm",
315     .version_id = 1,
316     .minimum_version_id = 1,
317     .fields = (VMStateField[]) {
318         VMSTATE_UINT32(config, gptm_state),
319         VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
320         VMSTATE_UINT32(control, gptm_state),
321         VMSTATE_UINT32(state, gptm_state),
322         VMSTATE_UINT32(mask, gptm_state),
323         VMSTATE_UNUSED(8),
324         VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
325         VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
326         VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
327         VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
328         VMSTATE_UINT32(rtc, gptm_state),
329         VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
330         VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
331         VMSTATE_END_OF_LIST()
332     }
333 };
334 
335 static void stellaris_gptm_init(Object *obj)
336 {
337     DeviceState *dev = DEVICE(obj);
338     gptm_state *s = STELLARIS_GPTM(obj);
339     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
340 
341     sysbus_init_irq(sbd, &s->irq);
342     qdev_init_gpio_out(dev, &s->trigger, 1);
343 
344     memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
345                           "gptm", 0x1000);
346     sysbus_init_mmio(sbd, &s->iomem);
347 
348     s->opaque[0] = s->opaque[1] = s;
349 }
350 
351 static void stellaris_gptm_realize(DeviceState *dev, Error **errp)
352 {
353     gptm_state *s = STELLARIS_GPTM(dev);
354     s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
355     s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
356 }
357 
358 /* System controller.  */
359 
360 typedef struct {
361     MemoryRegion iomem;
362     uint32_t pborctl;
363     uint32_t ldopctl;
364     uint32_t int_status;
365     uint32_t int_mask;
366     uint32_t resc;
367     uint32_t rcc;
368     uint32_t rcc2;
369     uint32_t rcgc[3];
370     uint32_t scgc[3];
371     uint32_t dcgc[3];
372     uint32_t clkvclr;
373     uint32_t ldoarst;
374     uint32_t user0;
375     uint32_t user1;
376     qemu_irq irq;
377     stellaris_board_info *board;
378 } ssys_state;
379 
380 static void ssys_update(ssys_state *s)
381 {
382   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
383 }
384 
385 static uint32_t pllcfg_sandstorm[16] = {
386     0x31c0, /* 1 Mhz */
387     0x1ae0, /* 1.8432 Mhz */
388     0x18c0, /* 2 Mhz */
389     0xd573, /* 2.4576 Mhz */
390     0x37a6, /* 3.57954 Mhz */
391     0x1ae2, /* 3.6864 Mhz */
392     0x0c40, /* 4 Mhz */
393     0x98bc, /* 4.906 Mhz */
394     0x935b, /* 4.9152 Mhz */
395     0x09c0, /* 5 Mhz */
396     0x4dee, /* 5.12 Mhz */
397     0x0c41, /* 6 Mhz */
398     0x75db, /* 6.144 Mhz */
399     0x1ae6, /* 7.3728 Mhz */
400     0x0600, /* 8 Mhz */
401     0x585b /* 8.192 Mhz */
402 };
403 
404 static uint32_t pllcfg_fury[16] = {
405     0x3200, /* 1 Mhz */
406     0x1b20, /* 1.8432 Mhz */
407     0x1900, /* 2 Mhz */
408     0xf42b, /* 2.4576 Mhz */
409     0x37e3, /* 3.57954 Mhz */
410     0x1b21, /* 3.6864 Mhz */
411     0x0c80, /* 4 Mhz */
412     0x98ee, /* 4.906 Mhz */
413     0xd5b4, /* 4.9152 Mhz */
414     0x0a00, /* 5 Mhz */
415     0x4e27, /* 5.12 Mhz */
416     0x1902, /* 6 Mhz */
417     0xec1c, /* 6.144 Mhz */
418     0x1b23, /* 7.3728 Mhz */
419     0x0640, /* 8 Mhz */
420     0xb11c /* 8.192 Mhz */
421 };
422 
423 #define DID0_VER_MASK        0x70000000
424 #define DID0_VER_0           0x00000000
425 #define DID0_VER_1           0x10000000
426 
427 #define DID0_CLASS_MASK      0x00FF0000
428 #define DID0_CLASS_SANDSTORM 0x00000000
429 #define DID0_CLASS_FURY      0x00010000
430 
431 static int ssys_board_class(const ssys_state *s)
432 {
433     uint32_t did0 = s->board->did0;
434     switch (did0 & DID0_VER_MASK) {
435     case DID0_VER_0:
436         return DID0_CLASS_SANDSTORM;
437     case DID0_VER_1:
438         switch (did0 & DID0_CLASS_MASK) {
439         case DID0_CLASS_SANDSTORM:
440         case DID0_CLASS_FURY:
441             return did0 & DID0_CLASS_MASK;
442         }
443         /* for unknown classes, fall through */
444     default:
445         /* This can only happen if the hardwired constant did0 value
446          * in this board's stellaris_board_info struct is wrong.
447          */
448         g_assert_not_reached();
449     }
450 }
451 
452 static uint64_t ssys_read(void *opaque, hwaddr offset,
453                           unsigned size)
454 {
455     ssys_state *s = (ssys_state *)opaque;
456 
457     switch (offset) {
458     case 0x000: /* DID0 */
459         return s->board->did0;
460     case 0x004: /* DID1 */
461         return s->board->did1;
462     case 0x008: /* DC0 */
463         return s->board->dc0;
464     case 0x010: /* DC1 */
465         return s->board->dc1;
466     case 0x014: /* DC2 */
467         return s->board->dc2;
468     case 0x018: /* DC3 */
469         return s->board->dc3;
470     case 0x01c: /* DC4 */
471         return s->board->dc4;
472     case 0x030: /* PBORCTL */
473         return s->pborctl;
474     case 0x034: /* LDOPCTL */
475         return s->ldopctl;
476     case 0x040: /* SRCR0 */
477         return 0;
478     case 0x044: /* SRCR1 */
479         return 0;
480     case 0x048: /* SRCR2 */
481         return 0;
482     case 0x050: /* RIS */
483         return s->int_status;
484     case 0x054: /* IMC */
485         return s->int_mask;
486     case 0x058: /* MISC */
487         return s->int_status & s->int_mask;
488     case 0x05c: /* RESC */
489         return s->resc;
490     case 0x060: /* RCC */
491         return s->rcc;
492     case 0x064: /* PLLCFG */
493         {
494             int xtal;
495             xtal = (s->rcc >> 6) & 0xf;
496             switch (ssys_board_class(s)) {
497             case DID0_CLASS_FURY:
498                 return pllcfg_fury[xtal];
499             case DID0_CLASS_SANDSTORM:
500                 return pllcfg_sandstorm[xtal];
501             default:
502                 g_assert_not_reached();
503             }
504         }
505     case 0x070: /* RCC2 */
506         return s->rcc2;
507     case 0x100: /* RCGC0 */
508         return s->rcgc[0];
509     case 0x104: /* RCGC1 */
510         return s->rcgc[1];
511     case 0x108: /* RCGC2 */
512         return s->rcgc[2];
513     case 0x110: /* SCGC0 */
514         return s->scgc[0];
515     case 0x114: /* SCGC1 */
516         return s->scgc[1];
517     case 0x118: /* SCGC2 */
518         return s->scgc[2];
519     case 0x120: /* DCGC0 */
520         return s->dcgc[0];
521     case 0x124: /* DCGC1 */
522         return s->dcgc[1];
523     case 0x128: /* DCGC2 */
524         return s->dcgc[2];
525     case 0x150: /* CLKVCLR */
526         return s->clkvclr;
527     case 0x160: /* LDOARST */
528         return s->ldoarst;
529     case 0x1e0: /* USER0 */
530         return s->user0;
531     case 0x1e4: /* USER1 */
532         return s->user1;
533     default:
534         qemu_log_mask(LOG_GUEST_ERROR,
535                       "SSYS: read at bad offset 0x%x\n", (int)offset);
536         return 0;
537     }
538 }
539 
540 static bool ssys_use_rcc2(ssys_state *s)
541 {
542     return (s->rcc2 >> 31) & 0x1;
543 }
544 
545 /*
546  * Caculate the sys. clock period in ms.
547  */
548 static void ssys_calculate_system_clock(ssys_state *s)
549 {
550     if (ssys_use_rcc2(s)) {
551         system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
552     } else {
553         system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
554     }
555 }
556 
557 static void ssys_write(void *opaque, hwaddr offset,
558                        uint64_t value, unsigned size)
559 {
560     ssys_state *s = (ssys_state *)opaque;
561 
562     switch (offset) {
563     case 0x030: /* PBORCTL */
564         s->pborctl = value & 0xffff;
565         break;
566     case 0x034: /* LDOPCTL */
567         s->ldopctl = value & 0x1f;
568         break;
569     case 0x040: /* SRCR0 */
570     case 0x044: /* SRCR1 */
571     case 0x048: /* SRCR2 */
572         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
573         break;
574     case 0x054: /* IMC */
575         s->int_mask = value & 0x7f;
576         break;
577     case 0x058: /* MISC */
578         s->int_status &= ~value;
579         break;
580     case 0x05c: /* RESC */
581         s->resc = value & 0x3f;
582         break;
583     case 0x060: /* RCC */
584         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
585             /* PLL enable.  */
586             s->int_status |= (1 << 6);
587         }
588         s->rcc = value;
589         ssys_calculate_system_clock(s);
590         break;
591     case 0x070: /* RCC2 */
592         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
593             break;
594         }
595 
596         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
597             /* PLL enable.  */
598             s->int_status |= (1 << 6);
599         }
600         s->rcc2 = value;
601         ssys_calculate_system_clock(s);
602         break;
603     case 0x100: /* RCGC0 */
604         s->rcgc[0] = value;
605         break;
606     case 0x104: /* RCGC1 */
607         s->rcgc[1] = value;
608         break;
609     case 0x108: /* RCGC2 */
610         s->rcgc[2] = value;
611         break;
612     case 0x110: /* SCGC0 */
613         s->scgc[0] = value;
614         break;
615     case 0x114: /* SCGC1 */
616         s->scgc[1] = value;
617         break;
618     case 0x118: /* SCGC2 */
619         s->scgc[2] = value;
620         break;
621     case 0x120: /* DCGC0 */
622         s->dcgc[0] = value;
623         break;
624     case 0x124: /* DCGC1 */
625         s->dcgc[1] = value;
626         break;
627     case 0x128: /* DCGC2 */
628         s->dcgc[2] = value;
629         break;
630     case 0x150: /* CLKVCLR */
631         s->clkvclr = value;
632         break;
633     case 0x160: /* LDOARST */
634         s->ldoarst = value;
635         break;
636     default:
637         qemu_log_mask(LOG_GUEST_ERROR,
638                       "SSYS: write at bad offset 0x%x\n", (int)offset);
639     }
640     ssys_update(s);
641 }
642 
643 static const MemoryRegionOps ssys_ops = {
644     .read = ssys_read,
645     .write = ssys_write,
646     .endianness = DEVICE_NATIVE_ENDIAN,
647 };
648 
649 static void ssys_reset(void *opaque)
650 {
651     ssys_state *s = (ssys_state *)opaque;
652 
653     s->pborctl = 0x7ffd;
654     s->rcc = 0x078e3ac0;
655 
656     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
657         s->rcc2 = 0;
658     } else {
659         s->rcc2 = 0x07802810;
660     }
661     s->rcgc[0] = 1;
662     s->scgc[0] = 1;
663     s->dcgc[0] = 1;
664     ssys_calculate_system_clock(s);
665 }
666 
667 static int stellaris_sys_post_load(void *opaque, int version_id)
668 {
669     ssys_state *s = opaque;
670 
671     ssys_calculate_system_clock(s);
672 
673     return 0;
674 }
675 
676 static const VMStateDescription vmstate_stellaris_sys = {
677     .name = "stellaris_sys",
678     .version_id = 2,
679     .minimum_version_id = 1,
680     .post_load = stellaris_sys_post_load,
681     .fields = (VMStateField[]) {
682         VMSTATE_UINT32(pborctl, ssys_state),
683         VMSTATE_UINT32(ldopctl, ssys_state),
684         VMSTATE_UINT32(int_mask, ssys_state),
685         VMSTATE_UINT32(int_status, ssys_state),
686         VMSTATE_UINT32(resc, ssys_state),
687         VMSTATE_UINT32(rcc, ssys_state),
688         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
689         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
690         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
691         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
692         VMSTATE_UINT32(clkvclr, ssys_state),
693         VMSTATE_UINT32(ldoarst, ssys_state),
694         VMSTATE_END_OF_LIST()
695     }
696 };
697 
698 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
699                               stellaris_board_info * board,
700                               uint8_t *macaddr)
701 {
702     ssys_state *s;
703 
704     s = g_new0(ssys_state, 1);
705     s->irq = irq;
706     s->board = board;
707     /* Most devices come preprogrammed with a MAC address in the user data. */
708     s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
709     s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
710 
711     memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000);
712     memory_region_add_subregion(get_system_memory(), base, &s->iomem);
713     ssys_reset(s);
714     vmstate_register(NULL, VMSTATE_INSTANCE_ID_ANY, &vmstate_stellaris_sys, s);
715     return 0;
716 }
717 
718 
719 /* I2C controller.  */
720 
721 #define TYPE_STELLARIS_I2C "stellaris-i2c"
722 #define STELLARIS_I2C(obj) \
723     OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C)
724 
725 typedef struct {
726     SysBusDevice parent_obj;
727 
728     I2CBus *bus;
729     qemu_irq irq;
730     MemoryRegion iomem;
731     uint32_t msa;
732     uint32_t mcs;
733     uint32_t mdr;
734     uint32_t mtpr;
735     uint32_t mimr;
736     uint32_t mris;
737     uint32_t mcr;
738 } stellaris_i2c_state;
739 
740 #define STELLARIS_I2C_MCS_BUSY    0x01
741 #define STELLARIS_I2C_MCS_ERROR   0x02
742 #define STELLARIS_I2C_MCS_ADRACK  0x04
743 #define STELLARIS_I2C_MCS_DATACK  0x08
744 #define STELLARIS_I2C_MCS_ARBLST  0x10
745 #define STELLARIS_I2C_MCS_IDLE    0x20
746 #define STELLARIS_I2C_MCS_BUSBSY  0x40
747 
748 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
749                                    unsigned size)
750 {
751     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
752 
753     switch (offset) {
754     case 0x00: /* MSA */
755         return s->msa;
756     case 0x04: /* MCS */
757         /* We don't emulate timing, so the controller is never busy.  */
758         return s->mcs | STELLARIS_I2C_MCS_IDLE;
759     case 0x08: /* MDR */
760         return s->mdr;
761     case 0x0c: /* MTPR */
762         return s->mtpr;
763     case 0x10: /* MIMR */
764         return s->mimr;
765     case 0x14: /* MRIS */
766         return s->mris;
767     case 0x18: /* MMIS */
768         return s->mris & s->mimr;
769     case 0x20: /* MCR */
770         return s->mcr;
771     default:
772         qemu_log_mask(LOG_GUEST_ERROR,
773                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
774         return 0;
775     }
776 }
777 
778 static void stellaris_i2c_update(stellaris_i2c_state *s)
779 {
780     int level;
781 
782     level = (s->mris & s->mimr) != 0;
783     qemu_set_irq(s->irq, level);
784 }
785 
786 static void stellaris_i2c_write(void *opaque, hwaddr offset,
787                                 uint64_t value, unsigned size)
788 {
789     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
790 
791     switch (offset) {
792     case 0x00: /* MSA */
793         s->msa = value & 0xff;
794         break;
795     case 0x04: /* MCS */
796         if ((s->mcr & 0x10) == 0) {
797             /* Disabled.  Do nothing.  */
798             break;
799         }
800         /* Grab the bus if this is starting a transfer.  */
801         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
802             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
803                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
804             } else {
805                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
806                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
807             }
808         }
809         /* If we don't have the bus then indicate an error.  */
810         if (!i2c_bus_busy(s->bus)
811                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
812             s->mcs |= STELLARIS_I2C_MCS_ERROR;
813             break;
814         }
815         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
816         if (value & 1) {
817             /* Transfer a byte.  */
818             /* TODO: Handle errors.  */
819             if (s->msa & 1) {
820                 /* Recv */
821                 s->mdr = i2c_recv(s->bus);
822             } else {
823                 /* Send */
824                 i2c_send(s->bus, s->mdr);
825             }
826             /* Raise an interrupt.  */
827             s->mris |= 1;
828         }
829         if (value & 4) {
830             /* Finish transfer.  */
831             i2c_end_transfer(s->bus);
832             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
833         }
834         break;
835     case 0x08: /* MDR */
836         s->mdr = value & 0xff;
837         break;
838     case 0x0c: /* MTPR */
839         s->mtpr = value & 0xff;
840         break;
841     case 0x10: /* MIMR */
842         s->mimr = 1;
843         break;
844     case 0x1c: /* MICR */
845         s->mris &= ~value;
846         break;
847     case 0x20: /* MCR */
848         if (value & 1) {
849             qemu_log_mask(LOG_UNIMP,
850                           "stellaris_i2c: Loopback not implemented\n");
851         }
852         if (value & 0x20) {
853             qemu_log_mask(LOG_UNIMP,
854                           "stellaris_i2c: Slave mode not implemented\n");
855         }
856         s->mcr = value & 0x31;
857         break;
858     default:
859         qemu_log_mask(LOG_GUEST_ERROR,
860                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
861     }
862     stellaris_i2c_update(s);
863 }
864 
865 static void stellaris_i2c_reset(stellaris_i2c_state *s)
866 {
867     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
868         i2c_end_transfer(s->bus);
869 
870     s->msa = 0;
871     s->mcs = 0;
872     s->mdr = 0;
873     s->mtpr = 1;
874     s->mimr = 0;
875     s->mris = 0;
876     s->mcr = 0;
877     stellaris_i2c_update(s);
878 }
879 
880 static const MemoryRegionOps stellaris_i2c_ops = {
881     .read = stellaris_i2c_read,
882     .write = stellaris_i2c_write,
883     .endianness = DEVICE_NATIVE_ENDIAN,
884 };
885 
886 static const VMStateDescription vmstate_stellaris_i2c = {
887     .name = "stellaris_i2c",
888     .version_id = 1,
889     .minimum_version_id = 1,
890     .fields = (VMStateField[]) {
891         VMSTATE_UINT32(msa, stellaris_i2c_state),
892         VMSTATE_UINT32(mcs, stellaris_i2c_state),
893         VMSTATE_UINT32(mdr, stellaris_i2c_state),
894         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
895         VMSTATE_UINT32(mimr, stellaris_i2c_state),
896         VMSTATE_UINT32(mris, stellaris_i2c_state),
897         VMSTATE_UINT32(mcr, stellaris_i2c_state),
898         VMSTATE_END_OF_LIST()
899     }
900 };
901 
902 static void stellaris_i2c_init(Object *obj)
903 {
904     DeviceState *dev = DEVICE(obj);
905     stellaris_i2c_state *s = STELLARIS_I2C(obj);
906     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
907     I2CBus *bus;
908 
909     sysbus_init_irq(sbd, &s->irq);
910     bus = i2c_init_bus(dev, "i2c");
911     s->bus = bus;
912 
913     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
914                           "i2c", 0x1000);
915     sysbus_init_mmio(sbd, &s->iomem);
916     /* ??? For now we only implement the master interface.  */
917     stellaris_i2c_reset(s);
918 }
919 
920 /* Analogue to Digital Converter.  This is only partially implemented,
921    enough for applications that use a combined ADC and timer tick.  */
922 
923 #define STELLARIS_ADC_EM_CONTROLLER 0
924 #define STELLARIS_ADC_EM_COMP       1
925 #define STELLARIS_ADC_EM_EXTERNAL   4
926 #define STELLARIS_ADC_EM_TIMER      5
927 #define STELLARIS_ADC_EM_PWM0       6
928 #define STELLARIS_ADC_EM_PWM1       7
929 #define STELLARIS_ADC_EM_PWM2       8
930 
931 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
932 #define STELLARIS_ADC_FIFO_FULL     0x1000
933 
934 #define TYPE_STELLARIS_ADC "stellaris-adc"
935 #define STELLARIS_ADC(obj) \
936     OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC)
937 
938 typedef struct StellarisADCState {
939     SysBusDevice parent_obj;
940 
941     MemoryRegion iomem;
942     uint32_t actss;
943     uint32_t ris;
944     uint32_t im;
945     uint32_t emux;
946     uint32_t ostat;
947     uint32_t ustat;
948     uint32_t sspri;
949     uint32_t sac;
950     struct {
951         uint32_t state;
952         uint32_t data[16];
953     } fifo[4];
954     uint32_t ssmux[4];
955     uint32_t ssctl[4];
956     uint32_t noise;
957     qemu_irq irq[4];
958 } stellaris_adc_state;
959 
960 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
961 {
962     int tail;
963 
964     tail = s->fifo[n].state & 0xf;
965     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
966         s->ustat |= 1 << n;
967     } else {
968         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
969         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
970         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
971             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
972     }
973     return s->fifo[n].data[tail];
974 }
975 
976 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
977                                      uint32_t value)
978 {
979     int head;
980 
981     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
982        FIFO fir each sequencer.  */
983     head = (s->fifo[n].state >> 4) & 0xf;
984     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
985         s->ostat |= 1 << n;
986         return;
987     }
988     s->fifo[n].data[head] = value;
989     head = (head + 1) & 0xf;
990     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
991     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
992     if ((s->fifo[n].state & 0xf) == head)
993         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
994 }
995 
996 static void stellaris_adc_update(stellaris_adc_state *s)
997 {
998     int level;
999     int n;
1000 
1001     for (n = 0; n < 4; n++) {
1002         level = (s->ris & s->im & (1 << n)) != 0;
1003         qemu_set_irq(s->irq[n], level);
1004     }
1005 }
1006 
1007 static void stellaris_adc_trigger(void *opaque, int irq, int level)
1008 {
1009     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1010     int n;
1011 
1012     for (n = 0; n < 4; n++) {
1013         if ((s->actss & (1 << n)) == 0) {
1014             continue;
1015         }
1016 
1017         if (((s->emux >> (n * 4)) & 0xff) != 5) {
1018             continue;
1019         }
1020 
1021         /* Some applications use the ADC as a random number source, so introduce
1022            some variation into the signal.  */
1023         s->noise = s->noise * 314159 + 1;
1024         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
1025         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1026         s->ris |= (1 << n);
1027         stellaris_adc_update(s);
1028     }
1029 }
1030 
1031 static void stellaris_adc_reset(stellaris_adc_state *s)
1032 {
1033     int n;
1034 
1035     for (n = 0; n < 4; n++) {
1036         s->ssmux[n] = 0;
1037         s->ssctl[n] = 0;
1038         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1039     }
1040 }
1041 
1042 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1043                                    unsigned size)
1044 {
1045     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1046 
1047     /* TODO: Implement this.  */
1048     if (offset >= 0x40 && offset < 0xc0) {
1049         int n;
1050         n = (offset - 0x40) >> 5;
1051         switch (offset & 0x1f) {
1052         case 0x00: /* SSMUX */
1053             return s->ssmux[n];
1054         case 0x04: /* SSCTL */
1055             return s->ssctl[n];
1056         case 0x08: /* SSFIFO */
1057             return stellaris_adc_fifo_read(s, n);
1058         case 0x0c: /* SSFSTAT */
1059             return s->fifo[n].state;
1060         default:
1061             break;
1062         }
1063     }
1064     switch (offset) {
1065     case 0x00: /* ACTSS */
1066         return s->actss;
1067     case 0x04: /* RIS */
1068         return s->ris;
1069     case 0x08: /* IM */
1070         return s->im;
1071     case 0x0c: /* ISC */
1072         return s->ris & s->im;
1073     case 0x10: /* OSTAT */
1074         return s->ostat;
1075     case 0x14: /* EMUX */
1076         return s->emux;
1077     case 0x18: /* USTAT */
1078         return s->ustat;
1079     case 0x20: /* SSPRI */
1080         return s->sspri;
1081     case 0x30: /* SAC */
1082         return s->sac;
1083     default:
1084         qemu_log_mask(LOG_GUEST_ERROR,
1085                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1086         return 0;
1087     }
1088 }
1089 
1090 static void stellaris_adc_write(void *opaque, hwaddr offset,
1091                                 uint64_t value, unsigned size)
1092 {
1093     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1094 
1095     /* TODO: Implement this.  */
1096     if (offset >= 0x40 && offset < 0xc0) {
1097         int n;
1098         n = (offset - 0x40) >> 5;
1099         switch (offset & 0x1f) {
1100         case 0x00: /* SSMUX */
1101             s->ssmux[n] = value & 0x33333333;
1102             return;
1103         case 0x04: /* SSCTL */
1104             if (value != 6) {
1105                 qemu_log_mask(LOG_UNIMP,
1106                               "ADC: Unimplemented sequence %" PRIx64 "\n",
1107                               value);
1108             }
1109             s->ssctl[n] = value;
1110             return;
1111         default:
1112             break;
1113         }
1114     }
1115     switch (offset) {
1116     case 0x00: /* ACTSS */
1117         s->actss = value & 0xf;
1118         break;
1119     case 0x08: /* IM */
1120         s->im = value;
1121         break;
1122     case 0x0c: /* ISC */
1123         s->ris &= ~value;
1124         break;
1125     case 0x10: /* OSTAT */
1126         s->ostat &= ~value;
1127         break;
1128     case 0x14: /* EMUX */
1129         s->emux = value;
1130         break;
1131     case 0x18: /* USTAT */
1132         s->ustat &= ~value;
1133         break;
1134     case 0x20: /* SSPRI */
1135         s->sspri = value;
1136         break;
1137     case 0x28: /* PSSI */
1138         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
1139         break;
1140     case 0x30: /* SAC */
1141         s->sac = value;
1142         break;
1143     default:
1144         qemu_log_mask(LOG_GUEST_ERROR,
1145                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1146     }
1147     stellaris_adc_update(s);
1148 }
1149 
1150 static const MemoryRegionOps stellaris_adc_ops = {
1151     .read = stellaris_adc_read,
1152     .write = stellaris_adc_write,
1153     .endianness = DEVICE_NATIVE_ENDIAN,
1154 };
1155 
1156 static const VMStateDescription vmstate_stellaris_adc = {
1157     .name = "stellaris_adc",
1158     .version_id = 1,
1159     .minimum_version_id = 1,
1160     .fields = (VMStateField[]) {
1161         VMSTATE_UINT32(actss, stellaris_adc_state),
1162         VMSTATE_UINT32(ris, stellaris_adc_state),
1163         VMSTATE_UINT32(im, stellaris_adc_state),
1164         VMSTATE_UINT32(emux, stellaris_adc_state),
1165         VMSTATE_UINT32(ostat, stellaris_adc_state),
1166         VMSTATE_UINT32(ustat, stellaris_adc_state),
1167         VMSTATE_UINT32(sspri, stellaris_adc_state),
1168         VMSTATE_UINT32(sac, stellaris_adc_state),
1169         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1170         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1171         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1172         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1173         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1174         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1175         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1176         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1177         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1178         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1179         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1180         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1181         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1182         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1183         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1184         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1185         VMSTATE_UINT32(noise, stellaris_adc_state),
1186         VMSTATE_END_OF_LIST()
1187     }
1188 };
1189 
1190 static void stellaris_adc_init(Object *obj)
1191 {
1192     DeviceState *dev = DEVICE(obj);
1193     stellaris_adc_state *s = STELLARIS_ADC(obj);
1194     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1195     int n;
1196 
1197     for (n = 0; n < 4; n++) {
1198         sysbus_init_irq(sbd, &s->irq[n]);
1199     }
1200 
1201     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1202                           "adc", 0x1000);
1203     sysbus_init_mmio(sbd, &s->iomem);
1204     stellaris_adc_reset(s);
1205     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1206 }
1207 
1208 /* Board init.  */
1209 static stellaris_board_info stellaris_boards[] = {
1210   { "LM3S811EVB",
1211     0,
1212     0x0032000e,
1213     0x001f001f, /* dc0 */
1214     0x001132bf,
1215     0x01071013,
1216     0x3f0f01ff,
1217     0x0000001f,
1218     BP_OLED_I2C
1219   },
1220   { "LM3S6965EVB",
1221     0x10010002,
1222     0x1073402e,
1223     0x00ff007f, /* dc0 */
1224     0x001133ff,
1225     0x030f5317,
1226     0x0f0f87ff,
1227     0x5000007f,
1228     BP_OLED_SSI | BP_GAMEPAD
1229   }
1230 };
1231 
1232 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1233 {
1234     static const int uart_irq[] = {5, 6, 33, 34};
1235     static const int timer_irq[] = {19, 21, 23, 35};
1236     static const uint32_t gpio_addr[7] =
1237       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1238         0x40024000, 0x40025000, 0x40026000};
1239     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1240 
1241     /* Memory map of SoC devices, from
1242      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1243      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1244      *
1245      * 40000000 wdtimer
1246      * 40002000 i2c (unimplemented)
1247      * 40004000 GPIO
1248      * 40005000 GPIO
1249      * 40006000 GPIO
1250      * 40007000 GPIO
1251      * 40008000 SSI
1252      * 4000c000 UART
1253      * 4000d000 UART
1254      * 4000e000 UART
1255      * 40020000 i2c
1256      * 40021000 i2c (unimplemented)
1257      * 40024000 GPIO
1258      * 40025000 GPIO
1259      * 40026000 GPIO
1260      * 40028000 PWM (unimplemented)
1261      * 4002c000 QEI (unimplemented)
1262      * 4002d000 QEI (unimplemented)
1263      * 40030000 gptimer
1264      * 40031000 gptimer
1265      * 40032000 gptimer
1266      * 40033000 gptimer
1267      * 40038000 ADC
1268      * 4003c000 analogue comparator (unimplemented)
1269      * 40048000 ethernet
1270      * 400fc000 hibernation module (unimplemented)
1271      * 400fd000 flash memory control (unimplemented)
1272      * 400fe000 system control
1273      */
1274 
1275     DeviceState *gpio_dev[7], *nvic;
1276     qemu_irq gpio_in[7][8];
1277     qemu_irq gpio_out[7][8];
1278     qemu_irq adc;
1279     int sram_size;
1280     int flash_size;
1281     I2CBus *i2c;
1282     DeviceState *dev;
1283     int i;
1284     int j;
1285 
1286     MemoryRegion *sram = g_new(MemoryRegion, 1);
1287     MemoryRegion *flash = g_new(MemoryRegion, 1);
1288     MemoryRegion *system_memory = get_system_memory();
1289 
1290     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1291     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1292 
1293     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1294     memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1295                            &error_fatal);
1296     memory_region_add_subregion(system_memory, 0, flash);
1297 
1298     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1299                            &error_fatal);
1300     memory_region_add_subregion(system_memory, 0x20000000, sram);
1301 
1302     nvic = qdev_new(TYPE_ARMV7M);
1303     qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1304     qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1305     qdev_prop_set_bit(nvic, "enable-bitband", true);
1306     object_property_set_link(OBJECT(nvic), "memory",
1307                              OBJECT(get_system_memory()), &error_abort);
1308     /* This will exit with an error if the user passed us a bad cpu_type */
1309     sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
1310 
1311     if (board->dc1 & (1 << 16)) {
1312         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1313                                     qdev_get_gpio_in(nvic, 14),
1314                                     qdev_get_gpio_in(nvic, 15),
1315                                     qdev_get_gpio_in(nvic, 16),
1316                                     qdev_get_gpio_in(nvic, 17),
1317                                     NULL);
1318         adc = qdev_get_gpio_in(dev, 0);
1319     } else {
1320         adc = NULL;
1321     }
1322     for (i = 0; i < 4; i++) {
1323         if (board->dc2 & (0x10000 << i)) {
1324             dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1325                                        0x40030000 + i * 0x1000,
1326                                        qdev_get_gpio_in(nvic, timer_irq[i]));
1327             /* TODO: This is incorrect, but we get away with it because
1328                the ADC output is only ever pulsed.  */
1329             qdev_connect_gpio_out(dev, 0, adc);
1330         }
1331     }
1332 
1333     stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1334                        board, nd_table[0].macaddr.a);
1335 
1336 
1337     if (board->dc1 & (1 << 3)) { /* watchdog present */
1338         dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1339 
1340         /* system_clock_scale is valid now */
1341         uint32_t mainclk = NANOSECONDS_PER_SECOND / system_clock_scale;
1342         qdev_prop_set_uint32(dev, "wdogclk-frq", mainclk);
1343 
1344         sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1345         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1346                         0,
1347                         0x40000000u);
1348         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1349                            0,
1350                            qdev_get_gpio_in(nvic, 18));
1351     }
1352 
1353 
1354     for (i = 0; i < 7; i++) {
1355         if (board->dc4 & (1 << i)) {
1356             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1357                                                qdev_get_gpio_in(nvic,
1358                                                                 gpio_irq[i]));
1359             for (j = 0; j < 8; j++) {
1360                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1361                 gpio_out[i][j] = NULL;
1362             }
1363         }
1364     }
1365 
1366     if (board->dc2 & (1 << 12)) {
1367         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1368                                    qdev_get_gpio_in(nvic, 8));
1369         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1370         if (board->peripherals & BP_OLED_I2C) {
1371             i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1372         }
1373     }
1374 
1375     for (i = 0; i < 4; i++) {
1376         if (board->dc2 & (1 << i)) {
1377             pl011_luminary_create(0x4000c000 + i * 0x1000,
1378                                   qdev_get_gpio_in(nvic, uart_irq[i]),
1379                                   serial_hd(i));
1380         }
1381     }
1382     if (board->dc2 & (1 << 4)) {
1383         dev = sysbus_create_simple("pl022", 0x40008000,
1384                                    qdev_get_gpio_in(nvic, 7));
1385         if (board->peripherals & BP_OLED_SSI) {
1386             void *bus;
1387             DeviceState *sddev;
1388             DeviceState *ssddev;
1389 
1390             /* Some boards have both an OLED controller and SD card connected to
1391              * the same SSI port, with the SD card chip select connected to a
1392              * GPIO pin.  Technically the OLED chip select is connected to the
1393              * SSI Fss pin.  We do not bother emulating that as both devices
1394              * should never be selected simultaneously, and our OLED controller
1395              * ignores stray 0xff commands that occur when deselecting the SD
1396              * card.
1397              */
1398             bus = qdev_get_child_bus(dev, "ssi");
1399 
1400             sddev = ssi_create_slave(bus, "ssi-sd");
1401             ssddev = ssi_create_slave(bus, "ssd0323");
1402             gpio_out[GPIO_D][0] = qemu_irq_split(
1403                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1404                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1405             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1406 
1407             /* Make sure the select pin is high.  */
1408             qemu_irq_raise(gpio_out[GPIO_D][0]);
1409         }
1410     }
1411     if (board->dc4 & (1 << 28)) {
1412         DeviceState *enet;
1413 
1414         qemu_check_nic_model(&nd_table[0], "stellaris");
1415 
1416         enet = qdev_new("stellaris_enet");
1417         qdev_set_nic_properties(enet, &nd_table[0]);
1418         sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1419         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1420         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1421     }
1422     if (board->peripherals & BP_GAMEPAD) {
1423         qemu_irq gpad_irq[5];
1424         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1425 
1426         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1427         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1428         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1429         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1430         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1431 
1432         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1433     }
1434     for (i = 0; i < 7; i++) {
1435         if (board->dc4 & (1 << i)) {
1436             for (j = 0; j < 8; j++) {
1437                 if (gpio_out[i][j]) {
1438                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1439                 }
1440             }
1441         }
1442     }
1443 
1444     /* Add dummy regions for the devices we don't implement yet,
1445      * so guest accesses don't cause unlogged crashes.
1446      */
1447     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1448     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1449     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1450     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1451     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1452     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1453     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1454     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1455 
1456     armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1457 }
1458 
1459 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1460 static void lm3s811evb_init(MachineState *machine)
1461 {
1462     stellaris_init(machine, &stellaris_boards[0]);
1463 }
1464 
1465 static void lm3s6965evb_init(MachineState *machine)
1466 {
1467     stellaris_init(machine, &stellaris_boards[1]);
1468 }
1469 
1470 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1471 {
1472     MachineClass *mc = MACHINE_CLASS(oc);
1473 
1474     mc->desc = "Stellaris LM3S811EVB";
1475     mc->init = lm3s811evb_init;
1476     mc->ignore_memory_transaction_failures = true;
1477     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1478 }
1479 
1480 static const TypeInfo lm3s811evb_type = {
1481     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1482     .parent = TYPE_MACHINE,
1483     .class_init = lm3s811evb_class_init,
1484 };
1485 
1486 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1487 {
1488     MachineClass *mc = MACHINE_CLASS(oc);
1489 
1490     mc->desc = "Stellaris LM3S6965EVB";
1491     mc->init = lm3s6965evb_init;
1492     mc->ignore_memory_transaction_failures = true;
1493     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1494 }
1495 
1496 static const TypeInfo lm3s6965evb_type = {
1497     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1498     .parent = TYPE_MACHINE,
1499     .class_init = lm3s6965evb_class_init,
1500 };
1501 
1502 static void stellaris_machine_init(void)
1503 {
1504     type_register_static(&lm3s811evb_type);
1505     type_register_static(&lm3s6965evb_type);
1506 }
1507 
1508 type_init(stellaris_machine_init)
1509 
1510 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1511 {
1512     DeviceClass *dc = DEVICE_CLASS(klass);
1513 
1514     dc->vmsd = &vmstate_stellaris_i2c;
1515 }
1516 
1517 static const TypeInfo stellaris_i2c_info = {
1518     .name          = TYPE_STELLARIS_I2C,
1519     .parent        = TYPE_SYS_BUS_DEVICE,
1520     .instance_size = sizeof(stellaris_i2c_state),
1521     .instance_init = stellaris_i2c_init,
1522     .class_init    = stellaris_i2c_class_init,
1523 };
1524 
1525 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1526 {
1527     DeviceClass *dc = DEVICE_CLASS(klass);
1528 
1529     dc->vmsd = &vmstate_stellaris_gptm;
1530     dc->realize = stellaris_gptm_realize;
1531 }
1532 
1533 static const TypeInfo stellaris_gptm_info = {
1534     .name          = TYPE_STELLARIS_GPTM,
1535     .parent        = TYPE_SYS_BUS_DEVICE,
1536     .instance_size = sizeof(gptm_state),
1537     .instance_init = stellaris_gptm_init,
1538     .class_init    = stellaris_gptm_class_init,
1539 };
1540 
1541 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1542 {
1543     DeviceClass *dc = DEVICE_CLASS(klass);
1544 
1545     dc->vmsd = &vmstate_stellaris_adc;
1546 }
1547 
1548 static const TypeInfo stellaris_adc_info = {
1549     .name          = TYPE_STELLARIS_ADC,
1550     .parent        = TYPE_SYS_BUS_DEVICE,
1551     .instance_size = sizeof(stellaris_adc_state),
1552     .instance_init = stellaris_adc_init,
1553     .class_init    = stellaris_adc_class_init,
1554 };
1555 
1556 static void stellaris_register_types(void)
1557 {
1558     type_register_static(&stellaris_i2c_info);
1559     type_register_static(&stellaris_gptm_info);
1560     type_register_static(&stellaris_adc_info);
1561 }
1562 
1563 type_init(stellaris_register_types)
1564