xref: /openbmc/qemu/hw/arm/stellaris.c (revision 52f2b8961409be834abaee5189bff2cc9e372851)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/sysbus.h"
13 #include "hw/ssi/ssi.h"
14 #include "hw/arm/boot.h"
15 #include "qemu/timer.h"
16 #include "hw/i2c/i2c.h"
17 #include "net/net.h"
18 #include "hw/boards.h"
19 #include "qemu/log.h"
20 #include "exec/address-spaces.h"
21 #include "sysemu/sysemu.h"
22 #include "hw/arm/armv7m.h"
23 #include "hw/char/pl011.h"
24 #include "hw/input/gamepad.h"
25 #include "hw/watchdog/cmsdk-apb-watchdog.h"
26 #include "hw/misc/unimp.h"
27 #include "cpu.h"
28 
29 #define GPIO_A 0
30 #define GPIO_B 1
31 #define GPIO_C 2
32 #define GPIO_D 3
33 #define GPIO_E 4
34 #define GPIO_F 5
35 #define GPIO_G 6
36 
37 #define BP_OLED_I2C  0x01
38 #define BP_OLED_SSI  0x02
39 #define BP_GAMEPAD   0x04
40 
41 #define NUM_IRQ_LINES 64
42 
43 typedef const struct {
44     const char *name;
45     uint32_t did0;
46     uint32_t did1;
47     uint32_t dc0;
48     uint32_t dc1;
49     uint32_t dc2;
50     uint32_t dc3;
51     uint32_t dc4;
52     uint32_t peripherals;
53 } stellaris_board_info;
54 
55 /* General purpose timer module.  */
56 
57 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
58 #define STELLARIS_GPTM(obj) \
59     OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM)
60 
61 typedef struct gptm_state {
62     SysBusDevice parent_obj;
63 
64     MemoryRegion iomem;
65     uint32_t config;
66     uint32_t mode[2];
67     uint32_t control;
68     uint32_t state;
69     uint32_t mask;
70     uint32_t load[2];
71     uint32_t match[2];
72     uint32_t prescale[2];
73     uint32_t match_prescale[2];
74     uint32_t rtc;
75     int64_t tick[2];
76     struct gptm_state *opaque[2];
77     QEMUTimer *timer[2];
78     /* The timers have an alternate output used to trigger the ADC.  */
79     qemu_irq trigger;
80     qemu_irq irq;
81 } gptm_state;
82 
83 static void gptm_update_irq(gptm_state *s)
84 {
85     int level;
86     level = (s->state & s->mask) != 0;
87     qemu_set_irq(s->irq, level);
88 }
89 
90 static void gptm_stop(gptm_state *s, int n)
91 {
92     timer_del(s->timer[n]);
93 }
94 
95 static void gptm_reload(gptm_state *s, int n, int reset)
96 {
97     int64_t tick;
98     if (reset)
99         tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
100     else
101         tick = s->tick[n];
102 
103     if (s->config == 0) {
104         /* 32-bit CountDown.  */
105         uint32_t count;
106         count = s->load[0] | (s->load[1] << 16);
107         tick += (int64_t)count * system_clock_scale;
108     } else if (s->config == 1) {
109         /* 32-bit RTC.  1Hz tick.  */
110         tick += NANOSECONDS_PER_SECOND;
111     } else if (s->mode[n] == 0xa) {
112         /* PWM mode.  Not implemented.  */
113     } else {
114         qemu_log_mask(LOG_UNIMP,
115                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
116                       s->mode[n]);
117         return;
118     }
119     s->tick[n] = tick;
120     timer_mod(s->timer[n], tick);
121 }
122 
123 static void gptm_tick(void *opaque)
124 {
125     gptm_state **p = (gptm_state **)opaque;
126     gptm_state *s;
127     int n;
128 
129     s = *p;
130     n = p - s->opaque;
131     if (s->config == 0) {
132         s->state |= 1;
133         if ((s->control & 0x20)) {
134             /* Output trigger.  */
135             qemu_irq_pulse(s->trigger);
136         }
137         if (s->mode[0] & 1) {
138             /* One-shot.  */
139             s->control &= ~1;
140         } else {
141             /* Periodic.  */
142             gptm_reload(s, 0, 0);
143         }
144     } else if (s->config == 1) {
145         /* RTC.  */
146         uint32_t match;
147         s->rtc++;
148         match = s->match[0] | (s->match[1] << 16);
149         if (s->rtc > match)
150             s->rtc = 0;
151         if (s->rtc == 0) {
152             s->state |= 8;
153         }
154         gptm_reload(s, 0, 0);
155     } else if (s->mode[n] == 0xa) {
156         /* PWM mode.  Not implemented.  */
157     } else {
158         qemu_log_mask(LOG_UNIMP,
159                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
160                       s->mode[n]);
161     }
162     gptm_update_irq(s);
163 }
164 
165 static uint64_t gptm_read(void *opaque, hwaddr offset,
166                           unsigned size)
167 {
168     gptm_state *s = (gptm_state *)opaque;
169 
170     switch (offset) {
171     case 0x00: /* CFG */
172         return s->config;
173     case 0x04: /* TAMR */
174         return s->mode[0];
175     case 0x08: /* TBMR */
176         return s->mode[1];
177     case 0x0c: /* CTL */
178         return s->control;
179     case 0x18: /* IMR */
180         return s->mask;
181     case 0x1c: /* RIS */
182         return s->state;
183     case 0x20: /* MIS */
184         return s->state & s->mask;
185     case 0x24: /* CR */
186         return 0;
187     case 0x28: /* TAILR */
188         return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
189     case 0x2c: /* TBILR */
190         return s->load[1];
191     case 0x30: /* TAMARCHR */
192         return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
193     case 0x34: /* TBMATCHR */
194         return s->match[1];
195     case 0x38: /* TAPR */
196         return s->prescale[0];
197     case 0x3c: /* TBPR */
198         return s->prescale[1];
199     case 0x40: /* TAPMR */
200         return s->match_prescale[0];
201     case 0x44: /* TBPMR */
202         return s->match_prescale[1];
203     case 0x48: /* TAR */
204         if (s->config == 1) {
205             return s->rtc;
206         }
207         qemu_log_mask(LOG_UNIMP,
208                       "GPTM: read of TAR but timer read not supported\n");
209         return 0;
210     case 0x4c: /* TBR */
211         qemu_log_mask(LOG_UNIMP,
212                       "GPTM: read of TBR but timer read not supported\n");
213         return 0;
214     default:
215         qemu_log_mask(LOG_GUEST_ERROR,
216                       "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
217                       offset);
218         return 0;
219     }
220 }
221 
222 static void gptm_write(void *opaque, hwaddr offset,
223                        uint64_t value, unsigned size)
224 {
225     gptm_state *s = (gptm_state *)opaque;
226     uint32_t oldval;
227 
228     /* The timers should be disabled before changing the configuration.
229        We take advantage of this and defer everything until the timer
230        is enabled.  */
231     switch (offset) {
232     case 0x00: /* CFG */
233         s->config = value;
234         break;
235     case 0x04: /* TAMR */
236         s->mode[0] = value;
237         break;
238     case 0x08: /* TBMR */
239         s->mode[1] = value;
240         break;
241     case 0x0c: /* CTL */
242         oldval = s->control;
243         s->control = value;
244         /* TODO: Implement pause.  */
245         if ((oldval ^ value) & 1) {
246             if (value & 1) {
247                 gptm_reload(s, 0, 1);
248             } else {
249                 gptm_stop(s, 0);
250             }
251         }
252         if (((oldval ^ value) & 0x100) && s->config >= 4) {
253             if (value & 0x100) {
254                 gptm_reload(s, 1, 1);
255             } else {
256                 gptm_stop(s, 1);
257             }
258         }
259         break;
260     case 0x18: /* IMR */
261         s->mask = value & 0x77;
262         gptm_update_irq(s);
263         break;
264     case 0x24: /* CR */
265         s->state &= ~value;
266         break;
267     case 0x28: /* TAILR */
268         s->load[0] = value & 0xffff;
269         if (s->config < 4) {
270             s->load[1] = value >> 16;
271         }
272         break;
273     case 0x2c: /* TBILR */
274         s->load[1] = value & 0xffff;
275         break;
276     case 0x30: /* TAMARCHR */
277         s->match[0] = value & 0xffff;
278         if (s->config < 4) {
279             s->match[1] = value >> 16;
280         }
281         break;
282     case 0x34: /* TBMATCHR */
283         s->match[1] = value >> 16;
284         break;
285     case 0x38: /* TAPR */
286         s->prescale[0] = value;
287         break;
288     case 0x3c: /* TBPR */
289         s->prescale[1] = value;
290         break;
291     case 0x40: /* TAPMR */
292         s->match_prescale[0] = value;
293         break;
294     case 0x44: /* TBPMR */
295         s->match_prescale[0] = value;
296         break;
297     default:
298         qemu_log_mask(LOG_GUEST_ERROR,
299                       "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
300                       offset);
301     }
302     gptm_update_irq(s);
303 }
304 
305 static const MemoryRegionOps gptm_ops = {
306     .read = gptm_read,
307     .write = gptm_write,
308     .endianness = DEVICE_NATIVE_ENDIAN,
309 };
310 
311 static const VMStateDescription vmstate_stellaris_gptm = {
312     .name = "stellaris_gptm",
313     .version_id = 1,
314     .minimum_version_id = 1,
315     .fields = (VMStateField[]) {
316         VMSTATE_UINT32(config, gptm_state),
317         VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
318         VMSTATE_UINT32(control, gptm_state),
319         VMSTATE_UINT32(state, gptm_state),
320         VMSTATE_UINT32(mask, gptm_state),
321         VMSTATE_UNUSED(8),
322         VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
323         VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
324         VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
325         VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
326         VMSTATE_UINT32(rtc, gptm_state),
327         VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
328         VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
329         VMSTATE_END_OF_LIST()
330     }
331 };
332 
333 static void stellaris_gptm_init(Object *obj)
334 {
335     DeviceState *dev = DEVICE(obj);
336     gptm_state *s = STELLARIS_GPTM(obj);
337     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
338 
339     sysbus_init_irq(sbd, &s->irq);
340     qdev_init_gpio_out(dev, &s->trigger, 1);
341 
342     memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
343                           "gptm", 0x1000);
344     sysbus_init_mmio(sbd, &s->iomem);
345 
346     s->opaque[0] = s->opaque[1] = s;
347     s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
348     s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
349 }
350 
351 
352 /* System controller.  */
353 
354 typedef struct {
355     MemoryRegion iomem;
356     uint32_t pborctl;
357     uint32_t ldopctl;
358     uint32_t int_status;
359     uint32_t int_mask;
360     uint32_t resc;
361     uint32_t rcc;
362     uint32_t rcc2;
363     uint32_t rcgc[3];
364     uint32_t scgc[3];
365     uint32_t dcgc[3];
366     uint32_t clkvclr;
367     uint32_t ldoarst;
368     uint32_t user0;
369     uint32_t user1;
370     qemu_irq irq;
371     stellaris_board_info *board;
372 } ssys_state;
373 
374 static void ssys_update(ssys_state *s)
375 {
376   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
377 }
378 
379 static uint32_t pllcfg_sandstorm[16] = {
380     0x31c0, /* 1 Mhz */
381     0x1ae0, /* 1.8432 Mhz */
382     0x18c0, /* 2 Mhz */
383     0xd573, /* 2.4576 Mhz */
384     0x37a6, /* 3.57954 Mhz */
385     0x1ae2, /* 3.6864 Mhz */
386     0x0c40, /* 4 Mhz */
387     0x98bc, /* 4.906 Mhz */
388     0x935b, /* 4.9152 Mhz */
389     0x09c0, /* 5 Mhz */
390     0x4dee, /* 5.12 Mhz */
391     0x0c41, /* 6 Mhz */
392     0x75db, /* 6.144 Mhz */
393     0x1ae6, /* 7.3728 Mhz */
394     0x0600, /* 8 Mhz */
395     0x585b /* 8.192 Mhz */
396 };
397 
398 static uint32_t pllcfg_fury[16] = {
399     0x3200, /* 1 Mhz */
400     0x1b20, /* 1.8432 Mhz */
401     0x1900, /* 2 Mhz */
402     0xf42b, /* 2.4576 Mhz */
403     0x37e3, /* 3.57954 Mhz */
404     0x1b21, /* 3.6864 Mhz */
405     0x0c80, /* 4 Mhz */
406     0x98ee, /* 4.906 Mhz */
407     0xd5b4, /* 4.9152 Mhz */
408     0x0a00, /* 5 Mhz */
409     0x4e27, /* 5.12 Mhz */
410     0x1902, /* 6 Mhz */
411     0xec1c, /* 6.144 Mhz */
412     0x1b23, /* 7.3728 Mhz */
413     0x0640, /* 8 Mhz */
414     0xb11c /* 8.192 Mhz */
415 };
416 
417 #define DID0_VER_MASK        0x70000000
418 #define DID0_VER_0           0x00000000
419 #define DID0_VER_1           0x10000000
420 
421 #define DID0_CLASS_MASK      0x00FF0000
422 #define DID0_CLASS_SANDSTORM 0x00000000
423 #define DID0_CLASS_FURY      0x00010000
424 
425 static int ssys_board_class(const ssys_state *s)
426 {
427     uint32_t did0 = s->board->did0;
428     switch (did0 & DID0_VER_MASK) {
429     case DID0_VER_0:
430         return DID0_CLASS_SANDSTORM;
431     case DID0_VER_1:
432         switch (did0 & DID0_CLASS_MASK) {
433         case DID0_CLASS_SANDSTORM:
434         case DID0_CLASS_FURY:
435             return did0 & DID0_CLASS_MASK;
436         }
437         /* for unknown classes, fall through */
438     default:
439         /* This can only happen if the hardwired constant did0 value
440          * in this board's stellaris_board_info struct is wrong.
441          */
442         g_assert_not_reached();
443     }
444 }
445 
446 static uint64_t ssys_read(void *opaque, hwaddr offset,
447                           unsigned size)
448 {
449     ssys_state *s = (ssys_state *)opaque;
450 
451     switch (offset) {
452     case 0x000: /* DID0 */
453         return s->board->did0;
454     case 0x004: /* DID1 */
455         return s->board->did1;
456     case 0x008: /* DC0 */
457         return s->board->dc0;
458     case 0x010: /* DC1 */
459         return s->board->dc1;
460     case 0x014: /* DC2 */
461         return s->board->dc2;
462     case 0x018: /* DC3 */
463         return s->board->dc3;
464     case 0x01c: /* DC4 */
465         return s->board->dc4;
466     case 0x030: /* PBORCTL */
467         return s->pborctl;
468     case 0x034: /* LDOPCTL */
469         return s->ldopctl;
470     case 0x040: /* SRCR0 */
471         return 0;
472     case 0x044: /* SRCR1 */
473         return 0;
474     case 0x048: /* SRCR2 */
475         return 0;
476     case 0x050: /* RIS */
477         return s->int_status;
478     case 0x054: /* IMC */
479         return s->int_mask;
480     case 0x058: /* MISC */
481         return s->int_status & s->int_mask;
482     case 0x05c: /* RESC */
483         return s->resc;
484     case 0x060: /* RCC */
485         return s->rcc;
486     case 0x064: /* PLLCFG */
487         {
488             int xtal;
489             xtal = (s->rcc >> 6) & 0xf;
490             switch (ssys_board_class(s)) {
491             case DID0_CLASS_FURY:
492                 return pllcfg_fury[xtal];
493             case DID0_CLASS_SANDSTORM:
494                 return pllcfg_sandstorm[xtal];
495             default:
496                 g_assert_not_reached();
497             }
498         }
499     case 0x070: /* RCC2 */
500         return s->rcc2;
501     case 0x100: /* RCGC0 */
502         return s->rcgc[0];
503     case 0x104: /* RCGC1 */
504         return s->rcgc[1];
505     case 0x108: /* RCGC2 */
506         return s->rcgc[2];
507     case 0x110: /* SCGC0 */
508         return s->scgc[0];
509     case 0x114: /* SCGC1 */
510         return s->scgc[1];
511     case 0x118: /* SCGC2 */
512         return s->scgc[2];
513     case 0x120: /* DCGC0 */
514         return s->dcgc[0];
515     case 0x124: /* DCGC1 */
516         return s->dcgc[1];
517     case 0x128: /* DCGC2 */
518         return s->dcgc[2];
519     case 0x150: /* CLKVCLR */
520         return s->clkvclr;
521     case 0x160: /* LDOARST */
522         return s->ldoarst;
523     case 0x1e0: /* USER0 */
524         return s->user0;
525     case 0x1e4: /* USER1 */
526         return s->user1;
527     default:
528         qemu_log_mask(LOG_GUEST_ERROR,
529                       "SSYS: read at bad offset 0x%x\n", (int)offset);
530         return 0;
531     }
532 }
533 
534 static bool ssys_use_rcc2(ssys_state *s)
535 {
536     return (s->rcc2 >> 31) & 0x1;
537 }
538 
539 /*
540  * Caculate the sys. clock period in ms.
541  */
542 static void ssys_calculate_system_clock(ssys_state *s)
543 {
544     if (ssys_use_rcc2(s)) {
545         system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
546     } else {
547         system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
548     }
549 }
550 
551 static void ssys_write(void *opaque, hwaddr offset,
552                        uint64_t value, unsigned size)
553 {
554     ssys_state *s = (ssys_state *)opaque;
555 
556     switch (offset) {
557     case 0x030: /* PBORCTL */
558         s->pborctl = value & 0xffff;
559         break;
560     case 0x034: /* LDOPCTL */
561         s->ldopctl = value & 0x1f;
562         break;
563     case 0x040: /* SRCR0 */
564     case 0x044: /* SRCR1 */
565     case 0x048: /* SRCR2 */
566         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
567         break;
568     case 0x054: /* IMC */
569         s->int_mask = value & 0x7f;
570         break;
571     case 0x058: /* MISC */
572         s->int_status &= ~value;
573         break;
574     case 0x05c: /* RESC */
575         s->resc = value & 0x3f;
576         break;
577     case 0x060: /* RCC */
578         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
579             /* PLL enable.  */
580             s->int_status |= (1 << 6);
581         }
582         s->rcc = value;
583         ssys_calculate_system_clock(s);
584         break;
585     case 0x070: /* RCC2 */
586         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
587             break;
588         }
589 
590         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
591             /* PLL enable.  */
592             s->int_status |= (1 << 6);
593         }
594         s->rcc2 = value;
595         ssys_calculate_system_clock(s);
596         break;
597     case 0x100: /* RCGC0 */
598         s->rcgc[0] = value;
599         break;
600     case 0x104: /* RCGC1 */
601         s->rcgc[1] = value;
602         break;
603     case 0x108: /* RCGC2 */
604         s->rcgc[2] = value;
605         break;
606     case 0x110: /* SCGC0 */
607         s->scgc[0] = value;
608         break;
609     case 0x114: /* SCGC1 */
610         s->scgc[1] = value;
611         break;
612     case 0x118: /* SCGC2 */
613         s->scgc[2] = value;
614         break;
615     case 0x120: /* DCGC0 */
616         s->dcgc[0] = value;
617         break;
618     case 0x124: /* DCGC1 */
619         s->dcgc[1] = value;
620         break;
621     case 0x128: /* DCGC2 */
622         s->dcgc[2] = value;
623         break;
624     case 0x150: /* CLKVCLR */
625         s->clkvclr = value;
626         break;
627     case 0x160: /* LDOARST */
628         s->ldoarst = value;
629         break;
630     default:
631         qemu_log_mask(LOG_GUEST_ERROR,
632                       "SSYS: write at bad offset 0x%x\n", (int)offset);
633     }
634     ssys_update(s);
635 }
636 
637 static const MemoryRegionOps ssys_ops = {
638     .read = ssys_read,
639     .write = ssys_write,
640     .endianness = DEVICE_NATIVE_ENDIAN,
641 };
642 
643 static void ssys_reset(void *opaque)
644 {
645     ssys_state *s = (ssys_state *)opaque;
646 
647     s->pborctl = 0x7ffd;
648     s->rcc = 0x078e3ac0;
649 
650     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
651         s->rcc2 = 0;
652     } else {
653         s->rcc2 = 0x07802810;
654     }
655     s->rcgc[0] = 1;
656     s->scgc[0] = 1;
657     s->dcgc[0] = 1;
658     ssys_calculate_system_clock(s);
659 }
660 
661 static int stellaris_sys_post_load(void *opaque, int version_id)
662 {
663     ssys_state *s = opaque;
664 
665     ssys_calculate_system_clock(s);
666 
667     return 0;
668 }
669 
670 static const VMStateDescription vmstate_stellaris_sys = {
671     .name = "stellaris_sys",
672     .version_id = 2,
673     .minimum_version_id = 1,
674     .post_load = stellaris_sys_post_load,
675     .fields = (VMStateField[]) {
676         VMSTATE_UINT32(pborctl, ssys_state),
677         VMSTATE_UINT32(ldopctl, ssys_state),
678         VMSTATE_UINT32(int_mask, ssys_state),
679         VMSTATE_UINT32(int_status, ssys_state),
680         VMSTATE_UINT32(resc, ssys_state),
681         VMSTATE_UINT32(rcc, ssys_state),
682         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
683         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
684         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
685         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
686         VMSTATE_UINT32(clkvclr, ssys_state),
687         VMSTATE_UINT32(ldoarst, ssys_state),
688         VMSTATE_END_OF_LIST()
689     }
690 };
691 
692 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
693                               stellaris_board_info * board,
694                               uint8_t *macaddr)
695 {
696     ssys_state *s;
697 
698     s = g_new0(ssys_state, 1);
699     s->irq = irq;
700     s->board = board;
701     /* Most devices come preprogrammed with a MAC address in the user data. */
702     s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
703     s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
704 
705     memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000);
706     memory_region_add_subregion(get_system_memory(), base, &s->iomem);
707     ssys_reset(s);
708     vmstate_register(NULL, -1, &vmstate_stellaris_sys, s);
709     return 0;
710 }
711 
712 
713 /* I2C controller.  */
714 
715 #define TYPE_STELLARIS_I2C "stellaris-i2c"
716 #define STELLARIS_I2C(obj) \
717     OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C)
718 
719 typedef struct {
720     SysBusDevice parent_obj;
721 
722     I2CBus *bus;
723     qemu_irq irq;
724     MemoryRegion iomem;
725     uint32_t msa;
726     uint32_t mcs;
727     uint32_t mdr;
728     uint32_t mtpr;
729     uint32_t mimr;
730     uint32_t mris;
731     uint32_t mcr;
732 } stellaris_i2c_state;
733 
734 #define STELLARIS_I2C_MCS_BUSY    0x01
735 #define STELLARIS_I2C_MCS_ERROR   0x02
736 #define STELLARIS_I2C_MCS_ADRACK  0x04
737 #define STELLARIS_I2C_MCS_DATACK  0x08
738 #define STELLARIS_I2C_MCS_ARBLST  0x10
739 #define STELLARIS_I2C_MCS_IDLE    0x20
740 #define STELLARIS_I2C_MCS_BUSBSY  0x40
741 
742 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
743                                    unsigned size)
744 {
745     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
746 
747     switch (offset) {
748     case 0x00: /* MSA */
749         return s->msa;
750     case 0x04: /* MCS */
751         /* We don't emulate timing, so the controller is never busy.  */
752         return s->mcs | STELLARIS_I2C_MCS_IDLE;
753     case 0x08: /* MDR */
754         return s->mdr;
755     case 0x0c: /* MTPR */
756         return s->mtpr;
757     case 0x10: /* MIMR */
758         return s->mimr;
759     case 0x14: /* MRIS */
760         return s->mris;
761     case 0x18: /* MMIS */
762         return s->mris & s->mimr;
763     case 0x20: /* MCR */
764         return s->mcr;
765     default:
766         qemu_log_mask(LOG_GUEST_ERROR,
767                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
768         return 0;
769     }
770 }
771 
772 static void stellaris_i2c_update(stellaris_i2c_state *s)
773 {
774     int level;
775 
776     level = (s->mris & s->mimr) != 0;
777     qemu_set_irq(s->irq, level);
778 }
779 
780 static void stellaris_i2c_write(void *opaque, hwaddr offset,
781                                 uint64_t value, unsigned size)
782 {
783     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
784 
785     switch (offset) {
786     case 0x00: /* MSA */
787         s->msa = value & 0xff;
788         break;
789     case 0x04: /* MCS */
790         if ((s->mcr & 0x10) == 0) {
791             /* Disabled.  Do nothing.  */
792             break;
793         }
794         /* Grab the bus if this is starting a transfer.  */
795         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
796             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
797                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
798             } else {
799                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
800                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
801             }
802         }
803         /* If we don't have the bus then indicate an error.  */
804         if (!i2c_bus_busy(s->bus)
805                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
806             s->mcs |= STELLARIS_I2C_MCS_ERROR;
807             break;
808         }
809         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
810         if (value & 1) {
811             /* Transfer a byte.  */
812             /* TODO: Handle errors.  */
813             if (s->msa & 1) {
814                 /* Recv */
815                 s->mdr = i2c_recv(s->bus);
816             } else {
817                 /* Send */
818                 i2c_send(s->bus, s->mdr);
819             }
820             /* Raise an interrupt.  */
821             s->mris |= 1;
822         }
823         if (value & 4) {
824             /* Finish transfer.  */
825             i2c_end_transfer(s->bus);
826             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
827         }
828         break;
829     case 0x08: /* MDR */
830         s->mdr = value & 0xff;
831         break;
832     case 0x0c: /* MTPR */
833         s->mtpr = value & 0xff;
834         break;
835     case 0x10: /* MIMR */
836         s->mimr = 1;
837         break;
838     case 0x1c: /* MICR */
839         s->mris &= ~value;
840         break;
841     case 0x20: /* MCR */
842         if (value & 1) {
843             qemu_log_mask(LOG_UNIMP,
844                           "stellaris_i2c: Loopback not implemented\n");
845         }
846         if (value & 0x20) {
847             qemu_log_mask(LOG_UNIMP,
848                           "stellaris_i2c: Slave mode not implemented\n");
849         }
850         s->mcr = value & 0x31;
851         break;
852     default:
853         qemu_log_mask(LOG_GUEST_ERROR,
854                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
855     }
856     stellaris_i2c_update(s);
857 }
858 
859 static void stellaris_i2c_reset(stellaris_i2c_state *s)
860 {
861     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
862         i2c_end_transfer(s->bus);
863 
864     s->msa = 0;
865     s->mcs = 0;
866     s->mdr = 0;
867     s->mtpr = 1;
868     s->mimr = 0;
869     s->mris = 0;
870     s->mcr = 0;
871     stellaris_i2c_update(s);
872 }
873 
874 static const MemoryRegionOps stellaris_i2c_ops = {
875     .read = stellaris_i2c_read,
876     .write = stellaris_i2c_write,
877     .endianness = DEVICE_NATIVE_ENDIAN,
878 };
879 
880 static const VMStateDescription vmstate_stellaris_i2c = {
881     .name = "stellaris_i2c",
882     .version_id = 1,
883     .minimum_version_id = 1,
884     .fields = (VMStateField[]) {
885         VMSTATE_UINT32(msa, stellaris_i2c_state),
886         VMSTATE_UINT32(mcs, stellaris_i2c_state),
887         VMSTATE_UINT32(mdr, stellaris_i2c_state),
888         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
889         VMSTATE_UINT32(mimr, stellaris_i2c_state),
890         VMSTATE_UINT32(mris, stellaris_i2c_state),
891         VMSTATE_UINT32(mcr, stellaris_i2c_state),
892         VMSTATE_END_OF_LIST()
893     }
894 };
895 
896 static void stellaris_i2c_init(Object *obj)
897 {
898     DeviceState *dev = DEVICE(obj);
899     stellaris_i2c_state *s = STELLARIS_I2C(obj);
900     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
901     I2CBus *bus;
902 
903     sysbus_init_irq(sbd, &s->irq);
904     bus = i2c_init_bus(dev, "i2c");
905     s->bus = bus;
906 
907     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
908                           "i2c", 0x1000);
909     sysbus_init_mmio(sbd, &s->iomem);
910     /* ??? For now we only implement the master interface.  */
911     stellaris_i2c_reset(s);
912 }
913 
914 /* Analogue to Digital Converter.  This is only partially implemented,
915    enough for applications that use a combined ADC and timer tick.  */
916 
917 #define STELLARIS_ADC_EM_CONTROLLER 0
918 #define STELLARIS_ADC_EM_COMP       1
919 #define STELLARIS_ADC_EM_EXTERNAL   4
920 #define STELLARIS_ADC_EM_TIMER      5
921 #define STELLARIS_ADC_EM_PWM0       6
922 #define STELLARIS_ADC_EM_PWM1       7
923 #define STELLARIS_ADC_EM_PWM2       8
924 
925 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
926 #define STELLARIS_ADC_FIFO_FULL     0x1000
927 
928 #define TYPE_STELLARIS_ADC "stellaris-adc"
929 #define STELLARIS_ADC(obj) \
930     OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC)
931 
932 typedef struct StellarisADCState {
933     SysBusDevice parent_obj;
934 
935     MemoryRegion iomem;
936     uint32_t actss;
937     uint32_t ris;
938     uint32_t im;
939     uint32_t emux;
940     uint32_t ostat;
941     uint32_t ustat;
942     uint32_t sspri;
943     uint32_t sac;
944     struct {
945         uint32_t state;
946         uint32_t data[16];
947     } fifo[4];
948     uint32_t ssmux[4];
949     uint32_t ssctl[4];
950     uint32_t noise;
951     qemu_irq irq[4];
952 } stellaris_adc_state;
953 
954 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
955 {
956     int tail;
957 
958     tail = s->fifo[n].state & 0xf;
959     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
960         s->ustat |= 1 << n;
961     } else {
962         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
963         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
964         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
965             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
966     }
967     return s->fifo[n].data[tail];
968 }
969 
970 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
971                                      uint32_t value)
972 {
973     int head;
974 
975     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
976        FIFO fir each sequencer.  */
977     head = (s->fifo[n].state >> 4) & 0xf;
978     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
979         s->ostat |= 1 << n;
980         return;
981     }
982     s->fifo[n].data[head] = value;
983     head = (head + 1) & 0xf;
984     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
985     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
986     if ((s->fifo[n].state & 0xf) == head)
987         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
988 }
989 
990 static void stellaris_adc_update(stellaris_adc_state *s)
991 {
992     int level;
993     int n;
994 
995     for (n = 0; n < 4; n++) {
996         level = (s->ris & s->im & (1 << n)) != 0;
997         qemu_set_irq(s->irq[n], level);
998     }
999 }
1000 
1001 static void stellaris_adc_trigger(void *opaque, int irq, int level)
1002 {
1003     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1004     int n;
1005 
1006     for (n = 0; n < 4; n++) {
1007         if ((s->actss & (1 << n)) == 0) {
1008             continue;
1009         }
1010 
1011         if (((s->emux >> (n * 4)) & 0xff) != 5) {
1012             continue;
1013         }
1014 
1015         /* Some applications use the ADC as a random number source, so introduce
1016            some variation into the signal.  */
1017         s->noise = s->noise * 314159 + 1;
1018         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
1019         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1020         s->ris |= (1 << n);
1021         stellaris_adc_update(s);
1022     }
1023 }
1024 
1025 static void stellaris_adc_reset(stellaris_adc_state *s)
1026 {
1027     int n;
1028 
1029     for (n = 0; n < 4; n++) {
1030         s->ssmux[n] = 0;
1031         s->ssctl[n] = 0;
1032         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1033     }
1034 }
1035 
1036 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1037                                    unsigned size)
1038 {
1039     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1040 
1041     /* TODO: Implement this.  */
1042     if (offset >= 0x40 && offset < 0xc0) {
1043         int n;
1044         n = (offset - 0x40) >> 5;
1045         switch (offset & 0x1f) {
1046         case 0x00: /* SSMUX */
1047             return s->ssmux[n];
1048         case 0x04: /* SSCTL */
1049             return s->ssctl[n];
1050         case 0x08: /* SSFIFO */
1051             return stellaris_adc_fifo_read(s, n);
1052         case 0x0c: /* SSFSTAT */
1053             return s->fifo[n].state;
1054         default:
1055             break;
1056         }
1057     }
1058     switch (offset) {
1059     case 0x00: /* ACTSS */
1060         return s->actss;
1061     case 0x04: /* RIS */
1062         return s->ris;
1063     case 0x08: /* IM */
1064         return s->im;
1065     case 0x0c: /* ISC */
1066         return s->ris & s->im;
1067     case 0x10: /* OSTAT */
1068         return s->ostat;
1069     case 0x14: /* EMUX */
1070         return s->emux;
1071     case 0x18: /* USTAT */
1072         return s->ustat;
1073     case 0x20: /* SSPRI */
1074         return s->sspri;
1075     case 0x30: /* SAC */
1076         return s->sac;
1077     default:
1078         qemu_log_mask(LOG_GUEST_ERROR,
1079                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1080         return 0;
1081     }
1082 }
1083 
1084 static void stellaris_adc_write(void *opaque, hwaddr offset,
1085                                 uint64_t value, unsigned size)
1086 {
1087     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1088 
1089     /* TODO: Implement this.  */
1090     if (offset >= 0x40 && offset < 0xc0) {
1091         int n;
1092         n = (offset - 0x40) >> 5;
1093         switch (offset & 0x1f) {
1094         case 0x00: /* SSMUX */
1095             s->ssmux[n] = value & 0x33333333;
1096             return;
1097         case 0x04: /* SSCTL */
1098             if (value != 6) {
1099                 qemu_log_mask(LOG_UNIMP,
1100                               "ADC: Unimplemented sequence %" PRIx64 "\n",
1101                               value);
1102             }
1103             s->ssctl[n] = value;
1104             return;
1105         default:
1106             break;
1107         }
1108     }
1109     switch (offset) {
1110     case 0x00: /* ACTSS */
1111         s->actss = value & 0xf;
1112         break;
1113     case 0x08: /* IM */
1114         s->im = value;
1115         break;
1116     case 0x0c: /* ISC */
1117         s->ris &= ~value;
1118         break;
1119     case 0x10: /* OSTAT */
1120         s->ostat &= ~value;
1121         break;
1122     case 0x14: /* EMUX */
1123         s->emux = value;
1124         break;
1125     case 0x18: /* USTAT */
1126         s->ustat &= ~value;
1127         break;
1128     case 0x20: /* SSPRI */
1129         s->sspri = value;
1130         break;
1131     case 0x28: /* PSSI */
1132         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
1133         break;
1134     case 0x30: /* SAC */
1135         s->sac = value;
1136         break;
1137     default:
1138         qemu_log_mask(LOG_GUEST_ERROR,
1139                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1140     }
1141     stellaris_adc_update(s);
1142 }
1143 
1144 static const MemoryRegionOps stellaris_adc_ops = {
1145     .read = stellaris_adc_read,
1146     .write = stellaris_adc_write,
1147     .endianness = DEVICE_NATIVE_ENDIAN,
1148 };
1149 
1150 static const VMStateDescription vmstate_stellaris_adc = {
1151     .name = "stellaris_adc",
1152     .version_id = 1,
1153     .minimum_version_id = 1,
1154     .fields = (VMStateField[]) {
1155         VMSTATE_UINT32(actss, stellaris_adc_state),
1156         VMSTATE_UINT32(ris, stellaris_adc_state),
1157         VMSTATE_UINT32(im, stellaris_adc_state),
1158         VMSTATE_UINT32(emux, stellaris_adc_state),
1159         VMSTATE_UINT32(ostat, stellaris_adc_state),
1160         VMSTATE_UINT32(ustat, stellaris_adc_state),
1161         VMSTATE_UINT32(sspri, stellaris_adc_state),
1162         VMSTATE_UINT32(sac, stellaris_adc_state),
1163         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1164         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1165         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1166         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1167         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1168         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1169         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1170         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1171         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1172         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1173         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1174         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1175         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1176         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1177         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1178         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1179         VMSTATE_UINT32(noise, stellaris_adc_state),
1180         VMSTATE_END_OF_LIST()
1181     }
1182 };
1183 
1184 static void stellaris_adc_init(Object *obj)
1185 {
1186     DeviceState *dev = DEVICE(obj);
1187     stellaris_adc_state *s = STELLARIS_ADC(obj);
1188     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1189     int n;
1190 
1191     for (n = 0; n < 4; n++) {
1192         sysbus_init_irq(sbd, &s->irq[n]);
1193     }
1194 
1195     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1196                           "adc", 0x1000);
1197     sysbus_init_mmio(sbd, &s->iomem);
1198     stellaris_adc_reset(s);
1199     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1200 }
1201 
1202 static
1203 void do_sys_reset(void *opaque, int n, int level)
1204 {
1205     if (level) {
1206         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1207     }
1208 }
1209 
1210 /* Board init.  */
1211 static stellaris_board_info stellaris_boards[] = {
1212   { "LM3S811EVB",
1213     0,
1214     0x0032000e,
1215     0x001f001f, /* dc0 */
1216     0x001132bf,
1217     0x01071013,
1218     0x3f0f01ff,
1219     0x0000001f,
1220     BP_OLED_I2C
1221   },
1222   { "LM3S6965EVB",
1223     0x10010002,
1224     0x1073402e,
1225     0x00ff007f, /* dc0 */
1226     0x001133ff,
1227     0x030f5317,
1228     0x0f0f87ff,
1229     0x5000007f,
1230     BP_OLED_SSI | BP_GAMEPAD
1231   }
1232 };
1233 
1234 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1235 {
1236     static const int uart_irq[] = {5, 6, 33, 34};
1237     static const int timer_irq[] = {19, 21, 23, 35};
1238     static const uint32_t gpio_addr[7] =
1239       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1240         0x40024000, 0x40025000, 0x40026000};
1241     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1242 
1243     /* Memory map of SoC devices, from
1244      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1245      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1246      *
1247      * 40000000 wdtimer
1248      * 40002000 i2c (unimplemented)
1249      * 40004000 GPIO
1250      * 40005000 GPIO
1251      * 40006000 GPIO
1252      * 40007000 GPIO
1253      * 40008000 SSI
1254      * 4000c000 UART
1255      * 4000d000 UART
1256      * 4000e000 UART
1257      * 40020000 i2c
1258      * 40021000 i2c (unimplemented)
1259      * 40024000 GPIO
1260      * 40025000 GPIO
1261      * 40026000 GPIO
1262      * 40028000 PWM (unimplemented)
1263      * 4002c000 QEI (unimplemented)
1264      * 4002d000 QEI (unimplemented)
1265      * 40030000 gptimer
1266      * 40031000 gptimer
1267      * 40032000 gptimer
1268      * 40033000 gptimer
1269      * 40038000 ADC
1270      * 4003c000 analogue comparator (unimplemented)
1271      * 40048000 ethernet
1272      * 400fc000 hibernation module (unimplemented)
1273      * 400fd000 flash memory control (unimplemented)
1274      * 400fe000 system control
1275      */
1276 
1277     DeviceState *gpio_dev[7], *nvic;
1278     qemu_irq gpio_in[7][8];
1279     qemu_irq gpio_out[7][8];
1280     qemu_irq adc;
1281     int sram_size;
1282     int flash_size;
1283     I2CBus *i2c;
1284     DeviceState *dev;
1285     int i;
1286     int j;
1287 
1288     MemoryRegion *sram = g_new(MemoryRegion, 1);
1289     MemoryRegion *flash = g_new(MemoryRegion, 1);
1290     MemoryRegion *system_memory = get_system_memory();
1291 
1292     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1293     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1294 
1295     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1296     memory_region_init_ram(flash, NULL, "stellaris.flash", flash_size,
1297                            &error_fatal);
1298     memory_region_set_readonly(flash, true);
1299     memory_region_add_subregion(system_memory, 0, flash);
1300 
1301     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1302                            &error_fatal);
1303     memory_region_add_subregion(system_memory, 0x20000000, sram);
1304 
1305     nvic = qdev_create(NULL, TYPE_ARMV7M);
1306     qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1307     qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1308     qdev_prop_set_bit(nvic, "enable-bitband", true);
1309     object_property_set_link(OBJECT(nvic), OBJECT(get_system_memory()),
1310                                      "memory", &error_abort);
1311     /* This will exit with an error if the user passed us a bad cpu_type */
1312     qdev_init_nofail(nvic);
1313 
1314     qdev_connect_gpio_out_named(nvic, "SYSRESETREQ", 0,
1315                                 qemu_allocate_irq(&do_sys_reset, NULL, 0));
1316 
1317     if (board->dc1 & (1 << 16)) {
1318         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1319                                     qdev_get_gpio_in(nvic, 14),
1320                                     qdev_get_gpio_in(nvic, 15),
1321                                     qdev_get_gpio_in(nvic, 16),
1322                                     qdev_get_gpio_in(nvic, 17),
1323                                     NULL);
1324         adc = qdev_get_gpio_in(dev, 0);
1325     } else {
1326         adc = NULL;
1327     }
1328     for (i = 0; i < 4; i++) {
1329         if (board->dc2 & (0x10000 << i)) {
1330             dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1331                                        0x40030000 + i * 0x1000,
1332                                        qdev_get_gpio_in(nvic, timer_irq[i]));
1333             /* TODO: This is incorrect, but we get away with it because
1334                the ADC output is only ever pulsed.  */
1335             qdev_connect_gpio_out(dev, 0, adc);
1336         }
1337     }
1338 
1339     stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1340                        board, nd_table[0].macaddr.a);
1341 
1342 
1343     if (board->dc1 & (1 << 3)) { /* watchdog present */
1344         dev = qdev_create(NULL, TYPE_LUMINARY_WATCHDOG);
1345 
1346         /* system_clock_scale is valid now */
1347         uint32_t mainclk = NANOSECONDS_PER_SECOND / system_clock_scale;
1348         qdev_prop_set_uint32(dev, "wdogclk-frq", mainclk);
1349 
1350         qdev_init_nofail(dev);
1351         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1352                         0,
1353                         0x40000000u);
1354         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1355                            0,
1356                            qdev_get_gpio_in(nvic, 18));
1357     }
1358 
1359 
1360     for (i = 0; i < 7; i++) {
1361         if (board->dc4 & (1 << i)) {
1362             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1363                                                qdev_get_gpio_in(nvic,
1364                                                                 gpio_irq[i]));
1365             for (j = 0; j < 8; j++) {
1366                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1367                 gpio_out[i][j] = NULL;
1368             }
1369         }
1370     }
1371 
1372     if (board->dc2 & (1 << 12)) {
1373         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1374                                    qdev_get_gpio_in(nvic, 8));
1375         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1376         if (board->peripherals & BP_OLED_I2C) {
1377             i2c_create_slave(i2c, "ssd0303", 0x3d);
1378         }
1379     }
1380 
1381     for (i = 0; i < 4; i++) {
1382         if (board->dc2 & (1 << i)) {
1383             pl011_luminary_create(0x4000c000 + i * 0x1000,
1384                                   qdev_get_gpio_in(nvic, uart_irq[i]),
1385                                   serial_hd(i));
1386         }
1387     }
1388     if (board->dc2 & (1 << 4)) {
1389         dev = sysbus_create_simple("pl022", 0x40008000,
1390                                    qdev_get_gpio_in(nvic, 7));
1391         if (board->peripherals & BP_OLED_SSI) {
1392             void *bus;
1393             DeviceState *sddev;
1394             DeviceState *ssddev;
1395 
1396             /* Some boards have both an OLED controller and SD card connected to
1397              * the same SSI port, with the SD card chip select connected to a
1398              * GPIO pin.  Technically the OLED chip select is connected to the
1399              * SSI Fss pin.  We do not bother emulating that as both devices
1400              * should never be selected simultaneously, and our OLED controller
1401              * ignores stray 0xff commands that occur when deselecting the SD
1402              * card.
1403              */
1404             bus = qdev_get_child_bus(dev, "ssi");
1405 
1406             sddev = ssi_create_slave(bus, "ssi-sd");
1407             ssddev = ssi_create_slave(bus, "ssd0323");
1408             gpio_out[GPIO_D][0] = qemu_irq_split(
1409                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1410                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1411             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1412 
1413             /* Make sure the select pin is high.  */
1414             qemu_irq_raise(gpio_out[GPIO_D][0]);
1415         }
1416     }
1417     if (board->dc4 & (1 << 28)) {
1418         DeviceState *enet;
1419 
1420         qemu_check_nic_model(&nd_table[0], "stellaris");
1421 
1422         enet = qdev_create(NULL, "stellaris_enet");
1423         qdev_set_nic_properties(enet, &nd_table[0]);
1424         qdev_init_nofail(enet);
1425         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1426         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1427     }
1428     if (board->peripherals & BP_GAMEPAD) {
1429         qemu_irq gpad_irq[5];
1430         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1431 
1432         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1433         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1434         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1435         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1436         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1437 
1438         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1439     }
1440     for (i = 0; i < 7; i++) {
1441         if (board->dc4 & (1 << i)) {
1442             for (j = 0; j < 8; j++) {
1443                 if (gpio_out[i][j]) {
1444                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1445                 }
1446             }
1447         }
1448     }
1449 
1450     /* Add dummy regions for the devices we don't implement yet,
1451      * so guest accesses don't cause unlogged crashes.
1452      */
1453     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1454     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1455     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1456     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1457     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1458     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1459     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1460     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1461 
1462     armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1463 }
1464 
1465 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1466 static void lm3s811evb_init(MachineState *machine)
1467 {
1468     stellaris_init(machine, &stellaris_boards[0]);
1469 }
1470 
1471 static void lm3s6965evb_init(MachineState *machine)
1472 {
1473     stellaris_init(machine, &stellaris_boards[1]);
1474 }
1475 
1476 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1477 {
1478     MachineClass *mc = MACHINE_CLASS(oc);
1479 
1480     mc->desc = "Stellaris LM3S811EVB";
1481     mc->init = lm3s811evb_init;
1482     mc->ignore_memory_transaction_failures = true;
1483     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1484 }
1485 
1486 static const TypeInfo lm3s811evb_type = {
1487     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1488     .parent = TYPE_MACHINE,
1489     .class_init = lm3s811evb_class_init,
1490 };
1491 
1492 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1493 {
1494     MachineClass *mc = MACHINE_CLASS(oc);
1495 
1496     mc->desc = "Stellaris LM3S6965EVB";
1497     mc->init = lm3s6965evb_init;
1498     mc->ignore_memory_transaction_failures = true;
1499     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1500 }
1501 
1502 static const TypeInfo lm3s6965evb_type = {
1503     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1504     .parent = TYPE_MACHINE,
1505     .class_init = lm3s6965evb_class_init,
1506 };
1507 
1508 static void stellaris_machine_init(void)
1509 {
1510     type_register_static(&lm3s811evb_type);
1511     type_register_static(&lm3s6965evb_type);
1512 }
1513 
1514 type_init(stellaris_machine_init)
1515 
1516 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1517 {
1518     DeviceClass *dc = DEVICE_CLASS(klass);
1519 
1520     dc->vmsd = &vmstate_stellaris_i2c;
1521 }
1522 
1523 static const TypeInfo stellaris_i2c_info = {
1524     .name          = TYPE_STELLARIS_I2C,
1525     .parent        = TYPE_SYS_BUS_DEVICE,
1526     .instance_size = sizeof(stellaris_i2c_state),
1527     .instance_init = stellaris_i2c_init,
1528     .class_init    = stellaris_i2c_class_init,
1529 };
1530 
1531 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1532 {
1533     DeviceClass *dc = DEVICE_CLASS(klass);
1534 
1535     dc->vmsd = &vmstate_stellaris_gptm;
1536 }
1537 
1538 static const TypeInfo stellaris_gptm_info = {
1539     .name          = TYPE_STELLARIS_GPTM,
1540     .parent        = TYPE_SYS_BUS_DEVICE,
1541     .instance_size = sizeof(gptm_state),
1542     .instance_init = stellaris_gptm_init,
1543     .class_init    = stellaris_gptm_class_init,
1544 };
1545 
1546 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1547 {
1548     DeviceClass *dc = DEVICE_CLASS(klass);
1549 
1550     dc->vmsd = &vmstate_stellaris_adc;
1551 }
1552 
1553 static const TypeInfo stellaris_adc_info = {
1554     .name          = TYPE_STELLARIS_ADC,
1555     .parent        = TYPE_SYS_BUS_DEVICE,
1556     .instance_size = sizeof(stellaris_adc_state),
1557     .instance_init = stellaris_adc_init,
1558     .class_init    = stellaris_adc_class_init,
1559 };
1560 
1561 static void stellaris_register_types(void)
1562 {
1563     type_register_static(&stellaris_i2c_info);
1564     type_register_static(&stellaris_gptm_info);
1565     type_register_static(&stellaris_adc_info);
1566 }
1567 
1568 type_init(stellaris_register_types)
1569