xref: /openbmc/qemu/hw/arm/stellaris.c (revision 41b8280a)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "hw/sysbus.h"
11 #include "hw/ssi.h"
12 #include "hw/arm/arm.h"
13 #include "hw/devices.h"
14 #include "qemu/timer.h"
15 #include "hw/i2c/i2c.h"
16 #include "net/net.h"
17 #include "hw/boards.h"
18 #include "exec/address-spaces.h"
19 
20 #define GPIO_A 0
21 #define GPIO_B 1
22 #define GPIO_C 2
23 #define GPIO_D 3
24 #define GPIO_E 4
25 #define GPIO_F 5
26 #define GPIO_G 6
27 
28 #define BP_OLED_I2C  0x01
29 #define BP_OLED_SSI  0x02
30 #define BP_GAMEPAD   0x04
31 
32 typedef const struct {
33     const char *name;
34     uint32_t did0;
35     uint32_t did1;
36     uint32_t dc0;
37     uint32_t dc1;
38     uint32_t dc2;
39     uint32_t dc3;
40     uint32_t dc4;
41     uint32_t peripherals;
42 } stellaris_board_info;
43 
44 /* General purpose timer module.  */
45 
46 typedef struct gptm_state {
47     SysBusDevice busdev;
48     MemoryRegion iomem;
49     uint32_t config;
50     uint32_t mode[2];
51     uint32_t control;
52     uint32_t state;
53     uint32_t mask;
54     uint32_t load[2];
55     uint32_t match[2];
56     uint32_t prescale[2];
57     uint32_t match_prescale[2];
58     uint32_t rtc;
59     int64_t tick[2];
60     struct gptm_state *opaque[2];
61     QEMUTimer *timer[2];
62     /* The timers have an alternate output used to trigger the ADC.  */
63     qemu_irq trigger;
64     qemu_irq irq;
65 } gptm_state;
66 
67 static void gptm_update_irq(gptm_state *s)
68 {
69     int level;
70     level = (s->state & s->mask) != 0;
71     qemu_set_irq(s->irq, level);
72 }
73 
74 static void gptm_stop(gptm_state *s, int n)
75 {
76     qemu_del_timer(s->timer[n]);
77 }
78 
79 static void gptm_reload(gptm_state *s, int n, int reset)
80 {
81     int64_t tick;
82     if (reset)
83         tick = qemu_get_clock_ns(vm_clock);
84     else
85         tick = s->tick[n];
86 
87     if (s->config == 0) {
88         /* 32-bit CountDown.  */
89         uint32_t count;
90         count = s->load[0] | (s->load[1] << 16);
91         tick += (int64_t)count * system_clock_scale;
92     } else if (s->config == 1) {
93         /* 32-bit RTC.  1Hz tick.  */
94         tick += get_ticks_per_sec();
95     } else if (s->mode[n] == 0xa) {
96         /* PWM mode.  Not implemented.  */
97     } else {
98         hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
99     }
100     s->tick[n] = tick;
101     qemu_mod_timer(s->timer[n], tick);
102 }
103 
104 static void gptm_tick(void *opaque)
105 {
106     gptm_state **p = (gptm_state **)opaque;
107     gptm_state *s;
108     int n;
109 
110     s = *p;
111     n = p - s->opaque;
112     if (s->config == 0) {
113         s->state |= 1;
114         if ((s->control & 0x20)) {
115             /* Output trigger.  */
116 	    qemu_irq_pulse(s->trigger);
117         }
118         if (s->mode[0] & 1) {
119             /* One-shot.  */
120             s->control &= ~1;
121         } else {
122             /* Periodic.  */
123             gptm_reload(s, 0, 0);
124         }
125     } else if (s->config == 1) {
126         /* RTC.  */
127         uint32_t match;
128         s->rtc++;
129         match = s->match[0] | (s->match[1] << 16);
130         if (s->rtc > match)
131             s->rtc = 0;
132         if (s->rtc == 0) {
133             s->state |= 8;
134         }
135         gptm_reload(s, 0, 0);
136     } else if (s->mode[n] == 0xa) {
137         /* PWM mode.  Not implemented.  */
138     } else {
139         hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
140     }
141     gptm_update_irq(s);
142 }
143 
144 static uint64_t gptm_read(void *opaque, hwaddr offset,
145                           unsigned size)
146 {
147     gptm_state *s = (gptm_state *)opaque;
148 
149     switch (offset) {
150     case 0x00: /* CFG */
151         return s->config;
152     case 0x04: /* TAMR */
153         return s->mode[0];
154     case 0x08: /* TBMR */
155         return s->mode[1];
156     case 0x0c: /* CTL */
157         return s->control;
158     case 0x18: /* IMR */
159         return s->mask;
160     case 0x1c: /* RIS */
161         return s->state;
162     case 0x20: /* MIS */
163         return s->state & s->mask;
164     case 0x24: /* CR */
165         return 0;
166     case 0x28: /* TAILR */
167         return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
168     case 0x2c: /* TBILR */
169         return s->load[1];
170     case 0x30: /* TAMARCHR */
171         return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
172     case 0x34: /* TBMATCHR */
173         return s->match[1];
174     case 0x38: /* TAPR */
175         return s->prescale[0];
176     case 0x3c: /* TBPR */
177         return s->prescale[1];
178     case 0x40: /* TAPMR */
179         return s->match_prescale[0];
180     case 0x44: /* TBPMR */
181         return s->match_prescale[1];
182     case 0x48: /* TAR */
183         if (s->control == 1)
184             return s->rtc;
185     case 0x4c: /* TBR */
186         hw_error("TODO: Timer value read\n");
187     default:
188         hw_error("gptm_read: Bad offset 0x%x\n", (int)offset);
189         return 0;
190     }
191 }
192 
193 static void gptm_write(void *opaque, hwaddr offset,
194                        uint64_t value, unsigned size)
195 {
196     gptm_state *s = (gptm_state *)opaque;
197     uint32_t oldval;
198 
199     /* The timers should be disabled before changing the configuration.
200        We take advantage of this and defer everything until the timer
201        is enabled.  */
202     switch (offset) {
203     case 0x00: /* CFG */
204         s->config = value;
205         break;
206     case 0x04: /* TAMR */
207         s->mode[0] = value;
208         break;
209     case 0x08: /* TBMR */
210         s->mode[1] = value;
211         break;
212     case 0x0c: /* CTL */
213         oldval = s->control;
214         s->control = value;
215         /* TODO: Implement pause.  */
216         if ((oldval ^ value) & 1) {
217             if (value & 1) {
218                 gptm_reload(s, 0, 1);
219             } else {
220                 gptm_stop(s, 0);
221             }
222         }
223         if (((oldval ^ value) & 0x100) && s->config >= 4) {
224             if (value & 0x100) {
225                 gptm_reload(s, 1, 1);
226             } else {
227                 gptm_stop(s, 1);
228             }
229         }
230         break;
231     case 0x18: /* IMR */
232         s->mask = value & 0x77;
233         gptm_update_irq(s);
234         break;
235     case 0x24: /* CR */
236         s->state &= ~value;
237         break;
238     case 0x28: /* TAILR */
239         s->load[0] = value & 0xffff;
240         if (s->config < 4) {
241             s->load[1] = value >> 16;
242         }
243         break;
244     case 0x2c: /* TBILR */
245         s->load[1] = value & 0xffff;
246         break;
247     case 0x30: /* TAMARCHR */
248         s->match[0] = value & 0xffff;
249         if (s->config < 4) {
250             s->match[1] = value >> 16;
251         }
252         break;
253     case 0x34: /* TBMATCHR */
254         s->match[1] = value >> 16;
255         break;
256     case 0x38: /* TAPR */
257         s->prescale[0] = value;
258         break;
259     case 0x3c: /* TBPR */
260         s->prescale[1] = value;
261         break;
262     case 0x40: /* TAPMR */
263         s->match_prescale[0] = value;
264         break;
265     case 0x44: /* TBPMR */
266         s->match_prescale[0] = value;
267         break;
268     default:
269         hw_error("gptm_write: Bad offset 0x%x\n", (int)offset);
270     }
271     gptm_update_irq(s);
272 }
273 
274 static const MemoryRegionOps gptm_ops = {
275     .read = gptm_read,
276     .write = gptm_write,
277     .endianness = DEVICE_NATIVE_ENDIAN,
278 };
279 
280 static const VMStateDescription vmstate_stellaris_gptm = {
281     .name = "stellaris_gptm",
282     .version_id = 1,
283     .minimum_version_id = 1,
284     .minimum_version_id_old = 1,
285     .fields      = (VMStateField[]) {
286         VMSTATE_UINT32(config, gptm_state),
287         VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
288         VMSTATE_UINT32(control, gptm_state),
289         VMSTATE_UINT32(state, gptm_state),
290         VMSTATE_UINT32(mask, gptm_state),
291         VMSTATE_UNUSED(8),
292         VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
293         VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
294         VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
295         VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
296         VMSTATE_UINT32(rtc, gptm_state),
297         VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
298         VMSTATE_TIMER_ARRAY(timer, gptm_state, 2),
299         VMSTATE_END_OF_LIST()
300     }
301 };
302 
303 static int stellaris_gptm_init(SysBusDevice *dev)
304 {
305     gptm_state *s = FROM_SYSBUS(gptm_state, dev);
306 
307     sysbus_init_irq(dev, &s->irq);
308     qdev_init_gpio_out(&dev->qdev, &s->trigger, 1);
309 
310     memory_region_init_io(&s->iomem, OBJECT(s), &gptm_ops, s,
311                           "gptm", 0x1000);
312     sysbus_init_mmio(dev, &s->iomem);
313 
314     s->opaque[0] = s->opaque[1] = s;
315     s->timer[0] = qemu_new_timer_ns(vm_clock, gptm_tick, &s->opaque[0]);
316     s->timer[1] = qemu_new_timer_ns(vm_clock, gptm_tick, &s->opaque[1]);
317     vmstate_register(&dev->qdev, -1, &vmstate_stellaris_gptm, s);
318     return 0;
319 }
320 
321 
322 /* System controller.  */
323 
324 typedef struct {
325     MemoryRegion iomem;
326     uint32_t pborctl;
327     uint32_t ldopctl;
328     uint32_t int_status;
329     uint32_t int_mask;
330     uint32_t resc;
331     uint32_t rcc;
332     uint32_t rcc2;
333     uint32_t rcgc[3];
334     uint32_t scgc[3];
335     uint32_t dcgc[3];
336     uint32_t clkvclr;
337     uint32_t ldoarst;
338     uint32_t user0;
339     uint32_t user1;
340     qemu_irq irq;
341     stellaris_board_info *board;
342 } ssys_state;
343 
344 static void ssys_update(ssys_state *s)
345 {
346   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
347 }
348 
349 static uint32_t pllcfg_sandstorm[16] = {
350     0x31c0, /* 1 Mhz */
351     0x1ae0, /* 1.8432 Mhz */
352     0x18c0, /* 2 Mhz */
353     0xd573, /* 2.4576 Mhz */
354     0x37a6, /* 3.57954 Mhz */
355     0x1ae2, /* 3.6864 Mhz */
356     0x0c40, /* 4 Mhz */
357     0x98bc, /* 4.906 Mhz */
358     0x935b, /* 4.9152 Mhz */
359     0x09c0, /* 5 Mhz */
360     0x4dee, /* 5.12 Mhz */
361     0x0c41, /* 6 Mhz */
362     0x75db, /* 6.144 Mhz */
363     0x1ae6, /* 7.3728 Mhz */
364     0x0600, /* 8 Mhz */
365     0x585b /* 8.192 Mhz */
366 };
367 
368 static uint32_t pllcfg_fury[16] = {
369     0x3200, /* 1 Mhz */
370     0x1b20, /* 1.8432 Mhz */
371     0x1900, /* 2 Mhz */
372     0xf42b, /* 2.4576 Mhz */
373     0x37e3, /* 3.57954 Mhz */
374     0x1b21, /* 3.6864 Mhz */
375     0x0c80, /* 4 Mhz */
376     0x98ee, /* 4.906 Mhz */
377     0xd5b4, /* 4.9152 Mhz */
378     0x0a00, /* 5 Mhz */
379     0x4e27, /* 5.12 Mhz */
380     0x1902, /* 6 Mhz */
381     0xec1c, /* 6.144 Mhz */
382     0x1b23, /* 7.3728 Mhz */
383     0x0640, /* 8 Mhz */
384     0xb11c /* 8.192 Mhz */
385 };
386 
387 #define DID0_VER_MASK        0x70000000
388 #define DID0_VER_0           0x00000000
389 #define DID0_VER_1           0x10000000
390 
391 #define DID0_CLASS_MASK      0x00FF0000
392 #define DID0_CLASS_SANDSTORM 0x00000000
393 #define DID0_CLASS_FURY      0x00010000
394 
395 static int ssys_board_class(const ssys_state *s)
396 {
397     uint32_t did0 = s->board->did0;
398     switch (did0 & DID0_VER_MASK) {
399     case DID0_VER_0:
400         return DID0_CLASS_SANDSTORM;
401     case DID0_VER_1:
402         switch (did0 & DID0_CLASS_MASK) {
403         case DID0_CLASS_SANDSTORM:
404         case DID0_CLASS_FURY:
405             return did0 & DID0_CLASS_MASK;
406         }
407         /* for unknown classes, fall through */
408     default:
409         hw_error("ssys_board_class: Unknown class 0x%08x\n", did0);
410     }
411 }
412 
413 static uint64_t ssys_read(void *opaque, hwaddr offset,
414                           unsigned size)
415 {
416     ssys_state *s = (ssys_state *)opaque;
417 
418     switch (offset) {
419     case 0x000: /* DID0 */
420         return s->board->did0;
421     case 0x004: /* DID1 */
422         return s->board->did1;
423     case 0x008: /* DC0 */
424         return s->board->dc0;
425     case 0x010: /* DC1 */
426         return s->board->dc1;
427     case 0x014: /* DC2 */
428         return s->board->dc2;
429     case 0x018: /* DC3 */
430         return s->board->dc3;
431     case 0x01c: /* DC4 */
432         return s->board->dc4;
433     case 0x030: /* PBORCTL */
434         return s->pborctl;
435     case 0x034: /* LDOPCTL */
436         return s->ldopctl;
437     case 0x040: /* SRCR0 */
438         return 0;
439     case 0x044: /* SRCR1 */
440         return 0;
441     case 0x048: /* SRCR2 */
442         return 0;
443     case 0x050: /* RIS */
444         return s->int_status;
445     case 0x054: /* IMC */
446         return s->int_mask;
447     case 0x058: /* MISC */
448         return s->int_status & s->int_mask;
449     case 0x05c: /* RESC */
450         return s->resc;
451     case 0x060: /* RCC */
452         return s->rcc;
453     case 0x064: /* PLLCFG */
454         {
455             int xtal;
456             xtal = (s->rcc >> 6) & 0xf;
457             switch (ssys_board_class(s)) {
458             case DID0_CLASS_FURY:
459                 return pllcfg_fury[xtal];
460             case DID0_CLASS_SANDSTORM:
461                 return pllcfg_sandstorm[xtal];
462             default:
463                 hw_error("ssys_read: Unhandled class for PLLCFG read.\n");
464                 return 0;
465             }
466         }
467     case 0x070: /* RCC2 */
468         return s->rcc2;
469     case 0x100: /* RCGC0 */
470         return s->rcgc[0];
471     case 0x104: /* RCGC1 */
472         return s->rcgc[1];
473     case 0x108: /* RCGC2 */
474         return s->rcgc[2];
475     case 0x110: /* SCGC0 */
476         return s->scgc[0];
477     case 0x114: /* SCGC1 */
478         return s->scgc[1];
479     case 0x118: /* SCGC2 */
480         return s->scgc[2];
481     case 0x120: /* DCGC0 */
482         return s->dcgc[0];
483     case 0x124: /* DCGC1 */
484         return s->dcgc[1];
485     case 0x128: /* DCGC2 */
486         return s->dcgc[2];
487     case 0x150: /* CLKVCLR */
488         return s->clkvclr;
489     case 0x160: /* LDOARST */
490         return s->ldoarst;
491     case 0x1e0: /* USER0 */
492         return s->user0;
493     case 0x1e4: /* USER1 */
494         return s->user1;
495     default:
496         hw_error("ssys_read: Bad offset 0x%x\n", (int)offset);
497         return 0;
498     }
499 }
500 
501 static bool ssys_use_rcc2(ssys_state *s)
502 {
503     return (s->rcc2 >> 31) & 0x1;
504 }
505 
506 /*
507  * Caculate the sys. clock period in ms.
508  */
509 static void ssys_calculate_system_clock(ssys_state *s)
510 {
511     if (ssys_use_rcc2(s)) {
512         system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
513     } else {
514         system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
515     }
516 }
517 
518 static void ssys_write(void *opaque, hwaddr offset,
519                        uint64_t value, unsigned size)
520 {
521     ssys_state *s = (ssys_state *)opaque;
522 
523     switch (offset) {
524     case 0x030: /* PBORCTL */
525         s->pborctl = value & 0xffff;
526         break;
527     case 0x034: /* LDOPCTL */
528         s->ldopctl = value & 0x1f;
529         break;
530     case 0x040: /* SRCR0 */
531     case 0x044: /* SRCR1 */
532     case 0x048: /* SRCR2 */
533         fprintf(stderr, "Peripheral reset not implemented\n");
534         break;
535     case 0x054: /* IMC */
536         s->int_mask = value & 0x7f;
537         break;
538     case 0x058: /* MISC */
539         s->int_status &= ~value;
540         break;
541     case 0x05c: /* RESC */
542         s->resc = value & 0x3f;
543         break;
544     case 0x060: /* RCC */
545         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
546             /* PLL enable.  */
547             s->int_status |= (1 << 6);
548         }
549         s->rcc = value;
550         ssys_calculate_system_clock(s);
551         break;
552     case 0x070: /* RCC2 */
553         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
554             break;
555         }
556 
557         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
558             /* PLL enable.  */
559             s->int_status |= (1 << 6);
560         }
561         s->rcc2 = value;
562         ssys_calculate_system_clock(s);
563         break;
564     case 0x100: /* RCGC0 */
565         s->rcgc[0] = value;
566         break;
567     case 0x104: /* RCGC1 */
568         s->rcgc[1] = value;
569         break;
570     case 0x108: /* RCGC2 */
571         s->rcgc[2] = value;
572         break;
573     case 0x110: /* SCGC0 */
574         s->scgc[0] = value;
575         break;
576     case 0x114: /* SCGC1 */
577         s->scgc[1] = value;
578         break;
579     case 0x118: /* SCGC2 */
580         s->scgc[2] = value;
581         break;
582     case 0x120: /* DCGC0 */
583         s->dcgc[0] = value;
584         break;
585     case 0x124: /* DCGC1 */
586         s->dcgc[1] = value;
587         break;
588     case 0x128: /* DCGC2 */
589         s->dcgc[2] = value;
590         break;
591     case 0x150: /* CLKVCLR */
592         s->clkvclr = value;
593         break;
594     case 0x160: /* LDOARST */
595         s->ldoarst = value;
596         break;
597     default:
598         hw_error("ssys_write: Bad offset 0x%x\n", (int)offset);
599     }
600     ssys_update(s);
601 }
602 
603 static const MemoryRegionOps ssys_ops = {
604     .read = ssys_read,
605     .write = ssys_write,
606     .endianness = DEVICE_NATIVE_ENDIAN,
607 };
608 
609 static void ssys_reset(void *opaque)
610 {
611     ssys_state *s = (ssys_state *)opaque;
612 
613     s->pborctl = 0x7ffd;
614     s->rcc = 0x078e3ac0;
615 
616     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
617         s->rcc2 = 0;
618     } else {
619         s->rcc2 = 0x07802810;
620     }
621     s->rcgc[0] = 1;
622     s->scgc[0] = 1;
623     s->dcgc[0] = 1;
624     ssys_calculate_system_clock(s);
625 }
626 
627 static int stellaris_sys_post_load(void *opaque, int version_id)
628 {
629     ssys_state *s = opaque;
630 
631     ssys_calculate_system_clock(s);
632 
633     return 0;
634 }
635 
636 static const VMStateDescription vmstate_stellaris_sys = {
637     .name = "stellaris_sys",
638     .version_id = 2,
639     .minimum_version_id = 1,
640     .minimum_version_id_old = 1,
641     .post_load = stellaris_sys_post_load,
642     .fields      = (VMStateField[]) {
643         VMSTATE_UINT32(pborctl, ssys_state),
644         VMSTATE_UINT32(ldopctl, ssys_state),
645         VMSTATE_UINT32(int_mask, ssys_state),
646         VMSTATE_UINT32(int_status, ssys_state),
647         VMSTATE_UINT32(resc, ssys_state),
648         VMSTATE_UINT32(rcc, ssys_state),
649         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
650         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
651         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
652         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
653         VMSTATE_UINT32(clkvclr, ssys_state),
654         VMSTATE_UINT32(ldoarst, ssys_state),
655         VMSTATE_END_OF_LIST()
656     }
657 };
658 
659 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
660                               stellaris_board_info * board,
661                               uint8_t *macaddr)
662 {
663     ssys_state *s;
664 
665     s = (ssys_state *)g_malloc0(sizeof(ssys_state));
666     s->irq = irq;
667     s->board = board;
668     /* Most devices come preprogrammed with a MAC address in the user data. */
669     s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
670     s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
671 
672     memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000);
673     memory_region_add_subregion(get_system_memory(), base, &s->iomem);
674     ssys_reset(s);
675     vmstate_register(NULL, -1, &vmstate_stellaris_sys, s);
676     return 0;
677 }
678 
679 
680 /* I2C controller.  */
681 
682 typedef struct {
683     SysBusDevice busdev;
684     i2c_bus *bus;
685     qemu_irq irq;
686     MemoryRegion iomem;
687     uint32_t msa;
688     uint32_t mcs;
689     uint32_t mdr;
690     uint32_t mtpr;
691     uint32_t mimr;
692     uint32_t mris;
693     uint32_t mcr;
694 } stellaris_i2c_state;
695 
696 #define STELLARIS_I2C_MCS_BUSY    0x01
697 #define STELLARIS_I2C_MCS_ERROR   0x02
698 #define STELLARIS_I2C_MCS_ADRACK  0x04
699 #define STELLARIS_I2C_MCS_DATACK  0x08
700 #define STELLARIS_I2C_MCS_ARBLST  0x10
701 #define STELLARIS_I2C_MCS_IDLE    0x20
702 #define STELLARIS_I2C_MCS_BUSBSY  0x40
703 
704 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
705                                    unsigned size)
706 {
707     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
708 
709     switch (offset) {
710     case 0x00: /* MSA */
711         return s->msa;
712     case 0x04: /* MCS */
713         /* We don't emulate timing, so the controller is never busy.  */
714         return s->mcs | STELLARIS_I2C_MCS_IDLE;
715     case 0x08: /* MDR */
716         return s->mdr;
717     case 0x0c: /* MTPR */
718         return s->mtpr;
719     case 0x10: /* MIMR */
720         return s->mimr;
721     case 0x14: /* MRIS */
722         return s->mris;
723     case 0x18: /* MMIS */
724         return s->mris & s->mimr;
725     case 0x20: /* MCR */
726         return s->mcr;
727     default:
728         hw_error("strllaris_i2c_read: Bad offset 0x%x\n", (int)offset);
729         return 0;
730     }
731 }
732 
733 static void stellaris_i2c_update(stellaris_i2c_state *s)
734 {
735     int level;
736 
737     level = (s->mris & s->mimr) != 0;
738     qemu_set_irq(s->irq, level);
739 }
740 
741 static void stellaris_i2c_write(void *opaque, hwaddr offset,
742                                 uint64_t value, unsigned size)
743 {
744     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
745 
746     switch (offset) {
747     case 0x00: /* MSA */
748         s->msa = value & 0xff;
749         break;
750     case 0x04: /* MCS */
751         if ((s->mcr & 0x10) == 0) {
752             /* Disabled.  Do nothing.  */
753             break;
754         }
755         /* Grab the bus if this is starting a transfer.  */
756         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
757             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
758                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
759             } else {
760                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
761                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
762             }
763         }
764         /* If we don't have the bus then indicate an error.  */
765         if (!i2c_bus_busy(s->bus)
766                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
767             s->mcs |= STELLARIS_I2C_MCS_ERROR;
768             break;
769         }
770         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
771         if (value & 1) {
772             /* Transfer a byte.  */
773             /* TODO: Handle errors.  */
774             if (s->msa & 1) {
775                 /* Recv */
776                 s->mdr = i2c_recv(s->bus) & 0xff;
777             } else {
778                 /* Send */
779                 i2c_send(s->bus, s->mdr);
780             }
781             /* Raise an interrupt.  */
782             s->mris |= 1;
783         }
784         if (value & 4) {
785             /* Finish transfer.  */
786             i2c_end_transfer(s->bus);
787             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
788         }
789         break;
790     case 0x08: /* MDR */
791         s->mdr = value & 0xff;
792         break;
793     case 0x0c: /* MTPR */
794         s->mtpr = value & 0xff;
795         break;
796     case 0x10: /* MIMR */
797         s->mimr = 1;
798         break;
799     case 0x1c: /* MICR */
800         s->mris &= ~value;
801         break;
802     case 0x20: /* MCR */
803         if (value & 1)
804             hw_error(
805                       "stellaris_i2c_write: Loopback not implemented\n");
806         if (value & 0x20)
807             hw_error(
808                       "stellaris_i2c_write: Slave mode not implemented\n");
809         s->mcr = value & 0x31;
810         break;
811     default:
812         hw_error("stellaris_i2c_write: Bad offset 0x%x\n",
813                   (int)offset);
814     }
815     stellaris_i2c_update(s);
816 }
817 
818 static void stellaris_i2c_reset(stellaris_i2c_state *s)
819 {
820     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
821         i2c_end_transfer(s->bus);
822 
823     s->msa = 0;
824     s->mcs = 0;
825     s->mdr = 0;
826     s->mtpr = 1;
827     s->mimr = 0;
828     s->mris = 0;
829     s->mcr = 0;
830     stellaris_i2c_update(s);
831 }
832 
833 static const MemoryRegionOps stellaris_i2c_ops = {
834     .read = stellaris_i2c_read,
835     .write = stellaris_i2c_write,
836     .endianness = DEVICE_NATIVE_ENDIAN,
837 };
838 
839 static const VMStateDescription vmstate_stellaris_i2c = {
840     .name = "stellaris_i2c",
841     .version_id = 1,
842     .minimum_version_id = 1,
843     .minimum_version_id_old = 1,
844     .fields      = (VMStateField[]) {
845         VMSTATE_UINT32(msa, stellaris_i2c_state),
846         VMSTATE_UINT32(mcs, stellaris_i2c_state),
847         VMSTATE_UINT32(mdr, stellaris_i2c_state),
848         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
849         VMSTATE_UINT32(mimr, stellaris_i2c_state),
850         VMSTATE_UINT32(mris, stellaris_i2c_state),
851         VMSTATE_UINT32(mcr, stellaris_i2c_state),
852         VMSTATE_END_OF_LIST()
853     }
854 };
855 
856 static int stellaris_i2c_init(SysBusDevice * dev)
857 {
858     stellaris_i2c_state *s = FROM_SYSBUS(stellaris_i2c_state, dev);
859     i2c_bus *bus;
860 
861     sysbus_init_irq(dev, &s->irq);
862     bus = i2c_init_bus(&dev->qdev, "i2c");
863     s->bus = bus;
864 
865     memory_region_init_io(&s->iomem, OBJECT(s), &stellaris_i2c_ops, s,
866                           "i2c", 0x1000);
867     sysbus_init_mmio(dev, &s->iomem);
868     /* ??? For now we only implement the master interface.  */
869     stellaris_i2c_reset(s);
870     vmstate_register(&dev->qdev, -1, &vmstate_stellaris_i2c, s);
871     return 0;
872 }
873 
874 /* Analogue to Digital Converter.  This is only partially implemented,
875    enough for applications that use a combined ADC and timer tick.  */
876 
877 #define STELLARIS_ADC_EM_CONTROLLER 0
878 #define STELLARIS_ADC_EM_COMP       1
879 #define STELLARIS_ADC_EM_EXTERNAL   4
880 #define STELLARIS_ADC_EM_TIMER      5
881 #define STELLARIS_ADC_EM_PWM0       6
882 #define STELLARIS_ADC_EM_PWM1       7
883 #define STELLARIS_ADC_EM_PWM2       8
884 
885 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
886 #define STELLARIS_ADC_FIFO_FULL     0x1000
887 
888 typedef struct
889 {
890     SysBusDevice busdev;
891     MemoryRegion iomem;
892     uint32_t actss;
893     uint32_t ris;
894     uint32_t im;
895     uint32_t emux;
896     uint32_t ostat;
897     uint32_t ustat;
898     uint32_t sspri;
899     uint32_t sac;
900     struct {
901         uint32_t state;
902         uint32_t data[16];
903     } fifo[4];
904     uint32_t ssmux[4];
905     uint32_t ssctl[4];
906     uint32_t noise;
907     qemu_irq irq[4];
908 } stellaris_adc_state;
909 
910 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
911 {
912     int tail;
913 
914     tail = s->fifo[n].state & 0xf;
915     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
916         s->ustat |= 1 << n;
917     } else {
918         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
919         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
920         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
921             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
922     }
923     return s->fifo[n].data[tail];
924 }
925 
926 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
927                                      uint32_t value)
928 {
929     int head;
930 
931     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
932        FIFO fir each sequencer.  */
933     head = (s->fifo[n].state >> 4) & 0xf;
934     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
935         s->ostat |= 1 << n;
936         return;
937     }
938     s->fifo[n].data[head] = value;
939     head = (head + 1) & 0xf;
940     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
941     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
942     if ((s->fifo[n].state & 0xf) == head)
943         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
944 }
945 
946 static void stellaris_adc_update(stellaris_adc_state *s)
947 {
948     int level;
949     int n;
950 
951     for (n = 0; n < 4; n++) {
952         level = (s->ris & s->im & (1 << n)) != 0;
953         qemu_set_irq(s->irq[n], level);
954     }
955 }
956 
957 static void stellaris_adc_trigger(void *opaque, int irq, int level)
958 {
959     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
960     int n;
961 
962     for (n = 0; n < 4; n++) {
963         if ((s->actss & (1 << n)) == 0) {
964             continue;
965         }
966 
967         if (((s->emux >> (n * 4)) & 0xff) != 5) {
968             continue;
969         }
970 
971         /* Some applications use the ADC as a random number source, so introduce
972            some variation into the signal.  */
973         s->noise = s->noise * 314159 + 1;
974         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
975         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
976         s->ris |= (1 << n);
977         stellaris_adc_update(s);
978     }
979 }
980 
981 static void stellaris_adc_reset(stellaris_adc_state *s)
982 {
983     int n;
984 
985     for (n = 0; n < 4; n++) {
986         s->ssmux[n] = 0;
987         s->ssctl[n] = 0;
988         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
989     }
990 }
991 
992 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
993                                    unsigned size)
994 {
995     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
996 
997     /* TODO: Implement this.  */
998     if (offset >= 0x40 && offset < 0xc0) {
999         int n;
1000         n = (offset - 0x40) >> 5;
1001         switch (offset & 0x1f) {
1002         case 0x00: /* SSMUX */
1003             return s->ssmux[n];
1004         case 0x04: /* SSCTL */
1005             return s->ssctl[n];
1006         case 0x08: /* SSFIFO */
1007             return stellaris_adc_fifo_read(s, n);
1008         case 0x0c: /* SSFSTAT */
1009             return s->fifo[n].state;
1010         default:
1011             break;
1012         }
1013     }
1014     switch (offset) {
1015     case 0x00: /* ACTSS */
1016         return s->actss;
1017     case 0x04: /* RIS */
1018         return s->ris;
1019     case 0x08: /* IM */
1020         return s->im;
1021     case 0x0c: /* ISC */
1022         return s->ris & s->im;
1023     case 0x10: /* OSTAT */
1024         return s->ostat;
1025     case 0x14: /* EMUX */
1026         return s->emux;
1027     case 0x18: /* USTAT */
1028         return s->ustat;
1029     case 0x20: /* SSPRI */
1030         return s->sspri;
1031     case 0x30: /* SAC */
1032         return s->sac;
1033     default:
1034         hw_error("strllaris_adc_read: Bad offset 0x%x\n",
1035                   (int)offset);
1036         return 0;
1037     }
1038 }
1039 
1040 static void stellaris_adc_write(void *opaque, hwaddr offset,
1041                                 uint64_t value, unsigned size)
1042 {
1043     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1044 
1045     /* TODO: Implement this.  */
1046     if (offset >= 0x40 && offset < 0xc0) {
1047         int n;
1048         n = (offset - 0x40) >> 5;
1049         switch (offset & 0x1f) {
1050         case 0x00: /* SSMUX */
1051             s->ssmux[n] = value & 0x33333333;
1052             return;
1053         case 0x04: /* SSCTL */
1054             if (value != 6) {
1055                 hw_error("ADC: Unimplemented sequence %" PRIx64 "\n",
1056                           value);
1057             }
1058             s->ssctl[n] = value;
1059             return;
1060         default:
1061             break;
1062         }
1063     }
1064     switch (offset) {
1065     case 0x00: /* ACTSS */
1066         s->actss = value & 0xf;
1067         break;
1068     case 0x08: /* IM */
1069         s->im = value;
1070         break;
1071     case 0x0c: /* ISC */
1072         s->ris &= ~value;
1073         break;
1074     case 0x10: /* OSTAT */
1075         s->ostat &= ~value;
1076         break;
1077     case 0x14: /* EMUX */
1078         s->emux = value;
1079         break;
1080     case 0x18: /* USTAT */
1081         s->ustat &= ~value;
1082         break;
1083     case 0x20: /* SSPRI */
1084         s->sspri = value;
1085         break;
1086     case 0x28: /* PSSI */
1087         hw_error("Not implemented:  ADC sample initiate\n");
1088         break;
1089     case 0x30: /* SAC */
1090         s->sac = value;
1091         break;
1092     default:
1093         hw_error("stellaris_adc_write: Bad offset 0x%x\n", (int)offset);
1094     }
1095     stellaris_adc_update(s);
1096 }
1097 
1098 static const MemoryRegionOps stellaris_adc_ops = {
1099     .read = stellaris_adc_read,
1100     .write = stellaris_adc_write,
1101     .endianness = DEVICE_NATIVE_ENDIAN,
1102 };
1103 
1104 static const VMStateDescription vmstate_stellaris_adc = {
1105     .name = "stellaris_adc",
1106     .version_id = 1,
1107     .minimum_version_id = 1,
1108     .minimum_version_id_old = 1,
1109     .fields      = (VMStateField[]) {
1110         VMSTATE_UINT32(actss, stellaris_adc_state),
1111         VMSTATE_UINT32(ris, stellaris_adc_state),
1112         VMSTATE_UINT32(im, stellaris_adc_state),
1113         VMSTATE_UINT32(emux, stellaris_adc_state),
1114         VMSTATE_UINT32(ostat, stellaris_adc_state),
1115         VMSTATE_UINT32(ustat, stellaris_adc_state),
1116         VMSTATE_UINT32(sspri, stellaris_adc_state),
1117         VMSTATE_UINT32(sac, stellaris_adc_state),
1118         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1119         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1120         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1121         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1122         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1123         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1124         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1125         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1126         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1127         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1128         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1129         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1130         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1131         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1132         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1133         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1134         VMSTATE_UINT32(noise, stellaris_adc_state),
1135         VMSTATE_END_OF_LIST()
1136     }
1137 };
1138 
1139 static int stellaris_adc_init(SysBusDevice *dev)
1140 {
1141     stellaris_adc_state *s = FROM_SYSBUS(stellaris_adc_state, dev);
1142     int n;
1143 
1144     for (n = 0; n < 4; n++) {
1145         sysbus_init_irq(dev, &s->irq[n]);
1146     }
1147 
1148     memory_region_init_io(&s->iomem, OBJECT(s), &stellaris_adc_ops, s,
1149                           "adc", 0x1000);
1150     sysbus_init_mmio(dev, &s->iomem);
1151     stellaris_adc_reset(s);
1152     qdev_init_gpio_in(&dev->qdev, stellaris_adc_trigger, 1);
1153     vmstate_register(&dev->qdev, -1, &vmstate_stellaris_adc, s);
1154     return 0;
1155 }
1156 
1157 /* Board init.  */
1158 static stellaris_board_info stellaris_boards[] = {
1159   { "LM3S811EVB",
1160     0,
1161     0x0032000e,
1162     0x001f001f, /* dc0 */
1163     0x001132bf,
1164     0x01071013,
1165     0x3f0f01ff,
1166     0x0000001f,
1167     BP_OLED_I2C
1168   },
1169   { "LM3S6965EVB",
1170     0x10010002,
1171     0x1073402e,
1172     0x00ff007f, /* dc0 */
1173     0x001133ff,
1174     0x030f5317,
1175     0x0f0f87ff,
1176     0x5000007f,
1177     BP_OLED_SSI | BP_GAMEPAD
1178   }
1179 };
1180 
1181 static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1182                            stellaris_board_info *board)
1183 {
1184     static const int uart_irq[] = {5, 6, 33, 34};
1185     static const int timer_irq[] = {19, 21, 23, 35};
1186     static const uint32_t gpio_addr[7] =
1187       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1188         0x40024000, 0x40025000, 0x40026000};
1189     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1190 
1191     MemoryRegion *address_space_mem = get_system_memory();
1192     qemu_irq *pic;
1193     DeviceState *gpio_dev[7];
1194     qemu_irq gpio_in[7][8];
1195     qemu_irq gpio_out[7][8];
1196     qemu_irq adc;
1197     int sram_size;
1198     int flash_size;
1199     i2c_bus *i2c;
1200     DeviceState *dev;
1201     int i;
1202     int j;
1203 
1204     flash_size = ((board->dc0 & 0xffff) + 1) << 1;
1205     sram_size = (board->dc0 >> 18) + 1;
1206     pic = armv7m_init(address_space_mem,
1207                       flash_size, sram_size, kernel_filename, cpu_model);
1208 
1209     if (board->dc1 & (1 << 16)) {
1210         dev = sysbus_create_varargs("stellaris-adc", 0x40038000,
1211                                     pic[14], pic[15], pic[16], pic[17], NULL);
1212         adc = qdev_get_gpio_in(dev, 0);
1213     } else {
1214         adc = NULL;
1215     }
1216     for (i = 0; i < 4; i++) {
1217         if (board->dc2 & (0x10000 << i)) {
1218             dev = sysbus_create_simple("stellaris-gptm",
1219                                        0x40030000 + i * 0x1000,
1220                                        pic[timer_irq[i]]);
1221             /* TODO: This is incorrect, but we get away with it because
1222                the ADC output is only ever pulsed.  */
1223             qdev_connect_gpio_out(dev, 0, adc);
1224         }
1225     }
1226 
1227     stellaris_sys_init(0x400fe000, pic[28], board, nd_table[0].macaddr.a);
1228 
1229     for (i = 0; i < 7; i++) {
1230         if (board->dc4 & (1 << i)) {
1231             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1232                                                pic[gpio_irq[i]]);
1233             for (j = 0; j < 8; j++) {
1234                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1235                 gpio_out[i][j] = NULL;
1236             }
1237         }
1238     }
1239 
1240     if (board->dc2 & (1 << 12)) {
1241         dev = sysbus_create_simple("stellaris-i2c", 0x40020000, pic[8]);
1242         i2c = (i2c_bus *)qdev_get_child_bus(dev, "i2c");
1243         if (board->peripherals & BP_OLED_I2C) {
1244             i2c_create_slave(i2c, "ssd0303", 0x3d);
1245         }
1246     }
1247 
1248     for (i = 0; i < 4; i++) {
1249         if (board->dc2 & (1 << i)) {
1250             sysbus_create_simple("pl011_luminary", 0x4000c000 + i * 0x1000,
1251                                  pic[uart_irq[i]]);
1252         }
1253     }
1254     if (board->dc2 & (1 << 4)) {
1255         dev = sysbus_create_simple("pl022", 0x40008000, pic[7]);
1256         if (board->peripherals & BP_OLED_SSI) {
1257             void *bus;
1258             DeviceState *sddev;
1259             DeviceState *ssddev;
1260 
1261             /* Some boards have both an OLED controller and SD card connected to
1262              * the same SSI port, with the SD card chip select connected to a
1263              * GPIO pin.  Technically the OLED chip select is connected to the
1264              * SSI Fss pin.  We do not bother emulating that as both devices
1265              * should never be selected simultaneously, and our OLED controller
1266              * ignores stray 0xff commands that occur when deselecting the SD
1267              * card.
1268              */
1269             bus = qdev_get_child_bus(dev, "ssi");
1270 
1271             sddev = ssi_create_slave(bus, "ssi-sd");
1272             ssddev = ssi_create_slave(bus, "ssd0323");
1273             gpio_out[GPIO_D][0] = qemu_irq_split(qdev_get_gpio_in(sddev, 0),
1274                                                  qdev_get_gpio_in(ssddev, 0));
1275             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 1);
1276 
1277             /* Make sure the select pin is high.  */
1278             qemu_irq_raise(gpio_out[GPIO_D][0]);
1279         }
1280     }
1281     if (board->dc4 & (1 << 28)) {
1282         DeviceState *enet;
1283 
1284         qemu_check_nic_model(&nd_table[0], "stellaris");
1285 
1286         enet = qdev_create(NULL, "stellaris_enet");
1287         qdev_set_nic_properties(enet, &nd_table[0]);
1288         qdev_init_nofail(enet);
1289         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1290         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, pic[42]);
1291     }
1292     if (board->peripherals & BP_GAMEPAD) {
1293         qemu_irq gpad_irq[5];
1294         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1295 
1296         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1297         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1298         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1299         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1300         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1301 
1302         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1303     }
1304     for (i = 0; i < 7; i++) {
1305         if (board->dc4 & (1 << i)) {
1306             for (j = 0; j < 8; j++) {
1307                 if (gpio_out[i][j]) {
1308                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1309                 }
1310             }
1311         }
1312     }
1313 }
1314 
1315 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1316 static void lm3s811evb_init(QEMUMachineInitArgs *args)
1317 {
1318     const char *cpu_model = args->cpu_model;
1319     const char *kernel_filename = args->kernel_filename;
1320     stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]);
1321 }
1322 
1323 static void lm3s6965evb_init(QEMUMachineInitArgs *args)
1324 {
1325     const char *cpu_model = args->cpu_model;
1326     const char *kernel_filename = args->kernel_filename;
1327     stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]);
1328 }
1329 
1330 static QEMUMachine lm3s811evb_machine = {
1331     .name = "lm3s811evb",
1332     .desc = "Stellaris LM3S811EVB",
1333     .init = lm3s811evb_init,
1334     DEFAULT_MACHINE_OPTIONS,
1335 };
1336 
1337 static QEMUMachine lm3s6965evb_machine = {
1338     .name = "lm3s6965evb",
1339     .desc = "Stellaris LM3S6965EVB",
1340     .init = lm3s6965evb_init,
1341     DEFAULT_MACHINE_OPTIONS,
1342 };
1343 
1344 static void stellaris_machine_init(void)
1345 {
1346     qemu_register_machine(&lm3s811evb_machine);
1347     qemu_register_machine(&lm3s6965evb_machine);
1348 }
1349 
1350 machine_init(stellaris_machine_init);
1351 
1352 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1353 {
1354     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1355 
1356     sdc->init = stellaris_i2c_init;
1357 }
1358 
1359 static const TypeInfo stellaris_i2c_info = {
1360     .name          = "stellaris-i2c",
1361     .parent        = TYPE_SYS_BUS_DEVICE,
1362     .instance_size = sizeof(stellaris_i2c_state),
1363     .class_init    = stellaris_i2c_class_init,
1364 };
1365 
1366 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1367 {
1368     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1369 
1370     sdc->init = stellaris_gptm_init;
1371 }
1372 
1373 static const TypeInfo stellaris_gptm_info = {
1374     .name          = "stellaris-gptm",
1375     .parent        = TYPE_SYS_BUS_DEVICE,
1376     .instance_size = sizeof(gptm_state),
1377     .class_init    = stellaris_gptm_class_init,
1378 };
1379 
1380 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1381 {
1382     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1383 
1384     sdc->init = stellaris_adc_init;
1385 }
1386 
1387 static const TypeInfo stellaris_adc_info = {
1388     .name          = "stellaris-adc",
1389     .parent        = TYPE_SYS_BUS_DEVICE,
1390     .instance_size = sizeof(stellaris_adc_state),
1391     .class_init    = stellaris_adc_class_init,
1392 };
1393 
1394 static void stellaris_register_types(void)
1395 {
1396     type_register_static(&stellaris_i2c_info);
1397     type_register_static(&stellaris_gptm_info);
1398     type_register_static(&stellaris_adc_info);
1399 }
1400 
1401 type_init(stellaris_register_types)
1402