1 /* 2 * Luminary Micro Stellaris peripherals 3 * 4 * Copyright (c) 2006 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qapi/error.h" 12 #include "hw/sysbus.h" 13 #include "hw/ssi/ssi.h" 14 #include "hw/arm/boot.h" 15 #include "qemu/timer.h" 16 #include "hw/i2c/i2c.h" 17 #include "net/net.h" 18 #include "hw/boards.h" 19 #include "qemu/log.h" 20 #include "exec/address-spaces.h" 21 #include "sysemu/sysemu.h" 22 #include "hw/arm/armv7m.h" 23 #include "hw/char/pl011.h" 24 #include "hw/input/gamepad.h" 25 #include "hw/irq.h" 26 #include "hw/watchdog/cmsdk-apb-watchdog.h" 27 #include "migration/vmstate.h" 28 #include "hw/misc/unimp.h" 29 #include "hw/timer/stellaris-gptm.h" 30 #include "hw/qdev-clock.h" 31 #include "qom/object.h" 32 33 #define GPIO_A 0 34 #define GPIO_B 1 35 #define GPIO_C 2 36 #define GPIO_D 3 37 #define GPIO_E 4 38 #define GPIO_F 5 39 #define GPIO_G 6 40 41 #define BP_OLED_I2C 0x01 42 #define BP_OLED_SSI 0x02 43 #define BP_GAMEPAD 0x04 44 45 #define NUM_IRQ_LINES 64 46 47 typedef const struct { 48 const char *name; 49 uint32_t did0; 50 uint32_t did1; 51 uint32_t dc0; 52 uint32_t dc1; 53 uint32_t dc2; 54 uint32_t dc3; 55 uint32_t dc4; 56 uint32_t peripherals; 57 } stellaris_board_info; 58 59 /* System controller. */ 60 61 #define TYPE_STELLARIS_SYS "stellaris-sys" 62 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS) 63 64 struct ssys_state { 65 SysBusDevice parent_obj; 66 67 MemoryRegion iomem; 68 uint32_t pborctl; 69 uint32_t ldopctl; 70 uint32_t int_status; 71 uint32_t int_mask; 72 uint32_t resc; 73 uint32_t rcc; 74 uint32_t rcc2; 75 uint32_t rcgc[3]; 76 uint32_t scgc[3]; 77 uint32_t dcgc[3]; 78 uint32_t clkvclr; 79 uint32_t ldoarst; 80 qemu_irq irq; 81 Clock *sysclk; 82 /* Properties (all read-only registers) */ 83 uint32_t user0; 84 uint32_t user1; 85 uint32_t did0; 86 uint32_t did1; 87 uint32_t dc0; 88 uint32_t dc1; 89 uint32_t dc2; 90 uint32_t dc3; 91 uint32_t dc4; 92 }; 93 94 static void ssys_update(ssys_state *s) 95 { 96 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0); 97 } 98 99 static uint32_t pllcfg_sandstorm[16] = { 100 0x31c0, /* 1 Mhz */ 101 0x1ae0, /* 1.8432 Mhz */ 102 0x18c0, /* 2 Mhz */ 103 0xd573, /* 2.4576 Mhz */ 104 0x37a6, /* 3.57954 Mhz */ 105 0x1ae2, /* 3.6864 Mhz */ 106 0x0c40, /* 4 Mhz */ 107 0x98bc, /* 4.906 Mhz */ 108 0x935b, /* 4.9152 Mhz */ 109 0x09c0, /* 5 Mhz */ 110 0x4dee, /* 5.12 Mhz */ 111 0x0c41, /* 6 Mhz */ 112 0x75db, /* 6.144 Mhz */ 113 0x1ae6, /* 7.3728 Mhz */ 114 0x0600, /* 8 Mhz */ 115 0x585b /* 8.192 Mhz */ 116 }; 117 118 static uint32_t pllcfg_fury[16] = { 119 0x3200, /* 1 Mhz */ 120 0x1b20, /* 1.8432 Mhz */ 121 0x1900, /* 2 Mhz */ 122 0xf42b, /* 2.4576 Mhz */ 123 0x37e3, /* 3.57954 Mhz */ 124 0x1b21, /* 3.6864 Mhz */ 125 0x0c80, /* 4 Mhz */ 126 0x98ee, /* 4.906 Mhz */ 127 0xd5b4, /* 4.9152 Mhz */ 128 0x0a00, /* 5 Mhz */ 129 0x4e27, /* 5.12 Mhz */ 130 0x1902, /* 6 Mhz */ 131 0xec1c, /* 6.144 Mhz */ 132 0x1b23, /* 7.3728 Mhz */ 133 0x0640, /* 8 Mhz */ 134 0xb11c /* 8.192 Mhz */ 135 }; 136 137 #define DID0_VER_MASK 0x70000000 138 #define DID0_VER_0 0x00000000 139 #define DID0_VER_1 0x10000000 140 141 #define DID0_CLASS_MASK 0x00FF0000 142 #define DID0_CLASS_SANDSTORM 0x00000000 143 #define DID0_CLASS_FURY 0x00010000 144 145 static int ssys_board_class(const ssys_state *s) 146 { 147 uint32_t did0 = s->did0; 148 switch (did0 & DID0_VER_MASK) { 149 case DID0_VER_0: 150 return DID0_CLASS_SANDSTORM; 151 case DID0_VER_1: 152 switch (did0 & DID0_CLASS_MASK) { 153 case DID0_CLASS_SANDSTORM: 154 case DID0_CLASS_FURY: 155 return did0 & DID0_CLASS_MASK; 156 } 157 /* for unknown classes, fall through */ 158 default: 159 /* This can only happen if the hardwired constant did0 value 160 * in this board's stellaris_board_info struct is wrong. 161 */ 162 g_assert_not_reached(); 163 } 164 } 165 166 static uint64_t ssys_read(void *opaque, hwaddr offset, 167 unsigned size) 168 { 169 ssys_state *s = (ssys_state *)opaque; 170 171 switch (offset) { 172 case 0x000: /* DID0 */ 173 return s->did0; 174 case 0x004: /* DID1 */ 175 return s->did1; 176 case 0x008: /* DC0 */ 177 return s->dc0; 178 case 0x010: /* DC1 */ 179 return s->dc1; 180 case 0x014: /* DC2 */ 181 return s->dc2; 182 case 0x018: /* DC3 */ 183 return s->dc3; 184 case 0x01c: /* DC4 */ 185 return s->dc4; 186 case 0x030: /* PBORCTL */ 187 return s->pborctl; 188 case 0x034: /* LDOPCTL */ 189 return s->ldopctl; 190 case 0x040: /* SRCR0 */ 191 return 0; 192 case 0x044: /* SRCR1 */ 193 return 0; 194 case 0x048: /* SRCR2 */ 195 return 0; 196 case 0x050: /* RIS */ 197 return s->int_status; 198 case 0x054: /* IMC */ 199 return s->int_mask; 200 case 0x058: /* MISC */ 201 return s->int_status & s->int_mask; 202 case 0x05c: /* RESC */ 203 return s->resc; 204 case 0x060: /* RCC */ 205 return s->rcc; 206 case 0x064: /* PLLCFG */ 207 { 208 int xtal; 209 xtal = (s->rcc >> 6) & 0xf; 210 switch (ssys_board_class(s)) { 211 case DID0_CLASS_FURY: 212 return pllcfg_fury[xtal]; 213 case DID0_CLASS_SANDSTORM: 214 return pllcfg_sandstorm[xtal]; 215 default: 216 g_assert_not_reached(); 217 } 218 } 219 case 0x070: /* RCC2 */ 220 return s->rcc2; 221 case 0x100: /* RCGC0 */ 222 return s->rcgc[0]; 223 case 0x104: /* RCGC1 */ 224 return s->rcgc[1]; 225 case 0x108: /* RCGC2 */ 226 return s->rcgc[2]; 227 case 0x110: /* SCGC0 */ 228 return s->scgc[0]; 229 case 0x114: /* SCGC1 */ 230 return s->scgc[1]; 231 case 0x118: /* SCGC2 */ 232 return s->scgc[2]; 233 case 0x120: /* DCGC0 */ 234 return s->dcgc[0]; 235 case 0x124: /* DCGC1 */ 236 return s->dcgc[1]; 237 case 0x128: /* DCGC2 */ 238 return s->dcgc[2]; 239 case 0x150: /* CLKVCLR */ 240 return s->clkvclr; 241 case 0x160: /* LDOARST */ 242 return s->ldoarst; 243 case 0x1e0: /* USER0 */ 244 return s->user0; 245 case 0x1e4: /* USER1 */ 246 return s->user1; 247 default: 248 qemu_log_mask(LOG_GUEST_ERROR, 249 "SSYS: read at bad offset 0x%x\n", (int)offset); 250 return 0; 251 } 252 } 253 254 static bool ssys_use_rcc2(ssys_state *s) 255 { 256 return (s->rcc2 >> 31) & 0x1; 257 } 258 259 /* 260 * Calculate the system clock period. We only want to propagate 261 * this change to the rest of the system if we're not being called 262 * from migration post-load. 263 */ 264 static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock) 265 { 266 int period_ns; 267 /* 268 * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc. Input 269 * clock is 200MHz, which is a period of 5 ns. Dividing the clock 270 * frequency by X is the same as multiplying the period by X. 271 */ 272 if (ssys_use_rcc2(s)) { 273 period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1); 274 } else { 275 period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1); 276 } 277 clock_set_ns(s->sysclk, period_ns); 278 if (propagate_clock) { 279 clock_propagate(s->sysclk); 280 } 281 } 282 283 static void ssys_write(void *opaque, hwaddr offset, 284 uint64_t value, unsigned size) 285 { 286 ssys_state *s = (ssys_state *)opaque; 287 288 switch (offset) { 289 case 0x030: /* PBORCTL */ 290 s->pborctl = value & 0xffff; 291 break; 292 case 0x034: /* LDOPCTL */ 293 s->ldopctl = value & 0x1f; 294 break; 295 case 0x040: /* SRCR0 */ 296 case 0x044: /* SRCR1 */ 297 case 0x048: /* SRCR2 */ 298 qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n"); 299 break; 300 case 0x054: /* IMC */ 301 s->int_mask = value & 0x7f; 302 break; 303 case 0x058: /* MISC */ 304 s->int_status &= ~value; 305 break; 306 case 0x05c: /* RESC */ 307 s->resc = value & 0x3f; 308 break; 309 case 0x060: /* RCC */ 310 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { 311 /* PLL enable. */ 312 s->int_status |= (1 << 6); 313 } 314 s->rcc = value; 315 ssys_calculate_system_clock(s, true); 316 break; 317 case 0x070: /* RCC2 */ 318 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { 319 break; 320 } 321 322 if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { 323 /* PLL enable. */ 324 s->int_status |= (1 << 6); 325 } 326 s->rcc2 = value; 327 ssys_calculate_system_clock(s, true); 328 break; 329 case 0x100: /* RCGC0 */ 330 s->rcgc[0] = value; 331 break; 332 case 0x104: /* RCGC1 */ 333 s->rcgc[1] = value; 334 break; 335 case 0x108: /* RCGC2 */ 336 s->rcgc[2] = value; 337 break; 338 case 0x110: /* SCGC0 */ 339 s->scgc[0] = value; 340 break; 341 case 0x114: /* SCGC1 */ 342 s->scgc[1] = value; 343 break; 344 case 0x118: /* SCGC2 */ 345 s->scgc[2] = value; 346 break; 347 case 0x120: /* DCGC0 */ 348 s->dcgc[0] = value; 349 break; 350 case 0x124: /* DCGC1 */ 351 s->dcgc[1] = value; 352 break; 353 case 0x128: /* DCGC2 */ 354 s->dcgc[2] = value; 355 break; 356 case 0x150: /* CLKVCLR */ 357 s->clkvclr = value; 358 break; 359 case 0x160: /* LDOARST */ 360 s->ldoarst = value; 361 break; 362 default: 363 qemu_log_mask(LOG_GUEST_ERROR, 364 "SSYS: write at bad offset 0x%x\n", (int)offset); 365 } 366 ssys_update(s); 367 } 368 369 static const MemoryRegionOps ssys_ops = { 370 .read = ssys_read, 371 .write = ssys_write, 372 .endianness = DEVICE_NATIVE_ENDIAN, 373 }; 374 375 static void stellaris_sys_reset_enter(Object *obj, ResetType type) 376 { 377 ssys_state *s = STELLARIS_SYS(obj); 378 379 s->pborctl = 0x7ffd; 380 s->rcc = 0x078e3ac0; 381 382 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { 383 s->rcc2 = 0; 384 } else { 385 s->rcc2 = 0x07802810; 386 } 387 s->rcgc[0] = 1; 388 s->scgc[0] = 1; 389 s->dcgc[0] = 1; 390 } 391 392 static void stellaris_sys_reset_hold(Object *obj) 393 { 394 ssys_state *s = STELLARIS_SYS(obj); 395 396 /* OK to propagate clocks from the hold phase */ 397 ssys_calculate_system_clock(s, true); 398 } 399 400 static void stellaris_sys_reset_exit(Object *obj) 401 { 402 } 403 404 static int stellaris_sys_post_load(void *opaque, int version_id) 405 { 406 ssys_state *s = opaque; 407 408 ssys_calculate_system_clock(s, false); 409 410 return 0; 411 } 412 413 static const VMStateDescription vmstate_stellaris_sys = { 414 .name = "stellaris_sys", 415 .version_id = 2, 416 .minimum_version_id = 1, 417 .post_load = stellaris_sys_post_load, 418 .fields = (VMStateField[]) { 419 VMSTATE_UINT32(pborctl, ssys_state), 420 VMSTATE_UINT32(ldopctl, ssys_state), 421 VMSTATE_UINT32(int_mask, ssys_state), 422 VMSTATE_UINT32(int_status, ssys_state), 423 VMSTATE_UINT32(resc, ssys_state), 424 VMSTATE_UINT32(rcc, ssys_state), 425 VMSTATE_UINT32_V(rcc2, ssys_state, 2), 426 VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3), 427 VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3), 428 VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3), 429 VMSTATE_UINT32(clkvclr, ssys_state), 430 VMSTATE_UINT32(ldoarst, ssys_state), 431 /* No field for sysclk -- handled in post-load instead */ 432 VMSTATE_END_OF_LIST() 433 } 434 }; 435 436 static Property stellaris_sys_properties[] = { 437 DEFINE_PROP_UINT32("user0", ssys_state, user0, 0), 438 DEFINE_PROP_UINT32("user1", ssys_state, user1, 0), 439 DEFINE_PROP_UINT32("did0", ssys_state, did0, 0), 440 DEFINE_PROP_UINT32("did1", ssys_state, did1, 0), 441 DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0), 442 DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0), 443 DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0), 444 DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0), 445 DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0), 446 DEFINE_PROP_END_OF_LIST() 447 }; 448 449 static void stellaris_sys_instance_init(Object *obj) 450 { 451 ssys_state *s = STELLARIS_SYS(obj); 452 SysBusDevice *sbd = SYS_BUS_DEVICE(s); 453 454 memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000); 455 sysbus_init_mmio(sbd, &s->iomem); 456 sysbus_init_irq(sbd, &s->irq); 457 s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK"); 458 } 459 460 /* I2C controller. */ 461 462 #define TYPE_STELLARIS_I2C "stellaris-i2c" 463 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C) 464 465 struct stellaris_i2c_state { 466 SysBusDevice parent_obj; 467 468 I2CBus *bus; 469 qemu_irq irq; 470 MemoryRegion iomem; 471 uint32_t msa; 472 uint32_t mcs; 473 uint32_t mdr; 474 uint32_t mtpr; 475 uint32_t mimr; 476 uint32_t mris; 477 uint32_t mcr; 478 }; 479 480 #define STELLARIS_I2C_MCS_BUSY 0x01 481 #define STELLARIS_I2C_MCS_ERROR 0x02 482 #define STELLARIS_I2C_MCS_ADRACK 0x04 483 #define STELLARIS_I2C_MCS_DATACK 0x08 484 #define STELLARIS_I2C_MCS_ARBLST 0x10 485 #define STELLARIS_I2C_MCS_IDLE 0x20 486 #define STELLARIS_I2C_MCS_BUSBSY 0x40 487 488 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset, 489 unsigned size) 490 { 491 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; 492 493 switch (offset) { 494 case 0x00: /* MSA */ 495 return s->msa; 496 case 0x04: /* MCS */ 497 /* We don't emulate timing, so the controller is never busy. */ 498 return s->mcs | STELLARIS_I2C_MCS_IDLE; 499 case 0x08: /* MDR */ 500 return s->mdr; 501 case 0x0c: /* MTPR */ 502 return s->mtpr; 503 case 0x10: /* MIMR */ 504 return s->mimr; 505 case 0x14: /* MRIS */ 506 return s->mris; 507 case 0x18: /* MMIS */ 508 return s->mris & s->mimr; 509 case 0x20: /* MCR */ 510 return s->mcr; 511 default: 512 qemu_log_mask(LOG_GUEST_ERROR, 513 "stellaris_i2c: read at bad offset 0x%x\n", (int)offset); 514 return 0; 515 } 516 } 517 518 static void stellaris_i2c_update(stellaris_i2c_state *s) 519 { 520 int level; 521 522 level = (s->mris & s->mimr) != 0; 523 qemu_set_irq(s->irq, level); 524 } 525 526 static void stellaris_i2c_write(void *opaque, hwaddr offset, 527 uint64_t value, unsigned size) 528 { 529 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; 530 531 switch (offset) { 532 case 0x00: /* MSA */ 533 s->msa = value & 0xff; 534 break; 535 case 0x04: /* MCS */ 536 if ((s->mcr & 0x10) == 0) { 537 /* Disabled. Do nothing. */ 538 break; 539 } 540 /* Grab the bus if this is starting a transfer. */ 541 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { 542 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) { 543 s->mcs |= STELLARIS_I2C_MCS_ARBLST; 544 } else { 545 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST; 546 s->mcs |= STELLARIS_I2C_MCS_BUSBSY; 547 } 548 } 549 /* If we don't have the bus then indicate an error. */ 550 if (!i2c_bus_busy(s->bus) 551 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { 552 s->mcs |= STELLARIS_I2C_MCS_ERROR; 553 break; 554 } 555 s->mcs &= ~STELLARIS_I2C_MCS_ERROR; 556 if (value & 1) { 557 /* Transfer a byte. */ 558 /* TODO: Handle errors. */ 559 if (s->msa & 1) { 560 /* Recv */ 561 s->mdr = i2c_recv(s->bus); 562 } else { 563 /* Send */ 564 i2c_send(s->bus, s->mdr); 565 } 566 /* Raise an interrupt. */ 567 s->mris |= 1; 568 } 569 if (value & 4) { 570 /* Finish transfer. */ 571 i2c_end_transfer(s->bus); 572 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY; 573 } 574 break; 575 case 0x08: /* MDR */ 576 s->mdr = value & 0xff; 577 break; 578 case 0x0c: /* MTPR */ 579 s->mtpr = value & 0xff; 580 break; 581 case 0x10: /* MIMR */ 582 s->mimr = 1; 583 break; 584 case 0x1c: /* MICR */ 585 s->mris &= ~value; 586 break; 587 case 0x20: /* MCR */ 588 if (value & 1) { 589 qemu_log_mask(LOG_UNIMP, 590 "stellaris_i2c: Loopback not implemented\n"); 591 } 592 if (value & 0x20) { 593 qemu_log_mask(LOG_UNIMP, 594 "stellaris_i2c: Slave mode not implemented\n"); 595 } 596 s->mcr = value & 0x31; 597 break; 598 default: 599 qemu_log_mask(LOG_GUEST_ERROR, 600 "stellaris_i2c: write at bad offset 0x%x\n", (int)offset); 601 } 602 stellaris_i2c_update(s); 603 } 604 605 static void stellaris_i2c_reset(stellaris_i2c_state *s) 606 { 607 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY) 608 i2c_end_transfer(s->bus); 609 610 s->msa = 0; 611 s->mcs = 0; 612 s->mdr = 0; 613 s->mtpr = 1; 614 s->mimr = 0; 615 s->mris = 0; 616 s->mcr = 0; 617 stellaris_i2c_update(s); 618 } 619 620 static const MemoryRegionOps stellaris_i2c_ops = { 621 .read = stellaris_i2c_read, 622 .write = stellaris_i2c_write, 623 .endianness = DEVICE_NATIVE_ENDIAN, 624 }; 625 626 static const VMStateDescription vmstate_stellaris_i2c = { 627 .name = "stellaris_i2c", 628 .version_id = 1, 629 .minimum_version_id = 1, 630 .fields = (VMStateField[]) { 631 VMSTATE_UINT32(msa, stellaris_i2c_state), 632 VMSTATE_UINT32(mcs, stellaris_i2c_state), 633 VMSTATE_UINT32(mdr, stellaris_i2c_state), 634 VMSTATE_UINT32(mtpr, stellaris_i2c_state), 635 VMSTATE_UINT32(mimr, stellaris_i2c_state), 636 VMSTATE_UINT32(mris, stellaris_i2c_state), 637 VMSTATE_UINT32(mcr, stellaris_i2c_state), 638 VMSTATE_END_OF_LIST() 639 } 640 }; 641 642 static void stellaris_i2c_init(Object *obj) 643 { 644 DeviceState *dev = DEVICE(obj); 645 stellaris_i2c_state *s = STELLARIS_I2C(obj); 646 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 647 I2CBus *bus; 648 649 sysbus_init_irq(sbd, &s->irq); 650 bus = i2c_init_bus(dev, "i2c"); 651 s->bus = bus; 652 653 memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s, 654 "i2c", 0x1000); 655 sysbus_init_mmio(sbd, &s->iomem); 656 /* ??? For now we only implement the master interface. */ 657 stellaris_i2c_reset(s); 658 } 659 660 /* Analogue to Digital Converter. This is only partially implemented, 661 enough for applications that use a combined ADC and timer tick. */ 662 663 #define STELLARIS_ADC_EM_CONTROLLER 0 664 #define STELLARIS_ADC_EM_COMP 1 665 #define STELLARIS_ADC_EM_EXTERNAL 4 666 #define STELLARIS_ADC_EM_TIMER 5 667 #define STELLARIS_ADC_EM_PWM0 6 668 #define STELLARIS_ADC_EM_PWM1 7 669 #define STELLARIS_ADC_EM_PWM2 8 670 671 #define STELLARIS_ADC_FIFO_EMPTY 0x0100 672 #define STELLARIS_ADC_FIFO_FULL 0x1000 673 674 #define TYPE_STELLARIS_ADC "stellaris-adc" 675 typedef struct StellarisADCState stellaris_adc_state; 676 DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC, 677 TYPE_STELLARIS_ADC) 678 679 struct StellarisADCState { 680 SysBusDevice parent_obj; 681 682 MemoryRegion iomem; 683 uint32_t actss; 684 uint32_t ris; 685 uint32_t im; 686 uint32_t emux; 687 uint32_t ostat; 688 uint32_t ustat; 689 uint32_t sspri; 690 uint32_t sac; 691 struct { 692 uint32_t state; 693 uint32_t data[16]; 694 } fifo[4]; 695 uint32_t ssmux[4]; 696 uint32_t ssctl[4]; 697 uint32_t noise; 698 qemu_irq irq[4]; 699 }; 700 701 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n) 702 { 703 int tail; 704 705 tail = s->fifo[n].state & 0xf; 706 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) { 707 s->ustat |= 1 << n; 708 } else { 709 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf); 710 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL; 711 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf)) 712 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY; 713 } 714 return s->fifo[n].data[tail]; 715 } 716 717 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n, 718 uint32_t value) 719 { 720 int head; 721 722 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry 723 FIFO fir each sequencer. */ 724 head = (s->fifo[n].state >> 4) & 0xf; 725 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) { 726 s->ostat |= 1 << n; 727 return; 728 } 729 s->fifo[n].data[head] = value; 730 head = (head + 1) & 0xf; 731 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY; 732 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4); 733 if ((s->fifo[n].state & 0xf) == head) 734 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL; 735 } 736 737 static void stellaris_adc_update(stellaris_adc_state *s) 738 { 739 int level; 740 int n; 741 742 for (n = 0; n < 4; n++) { 743 level = (s->ris & s->im & (1 << n)) != 0; 744 qemu_set_irq(s->irq[n], level); 745 } 746 } 747 748 static void stellaris_adc_trigger(void *opaque, int irq, int level) 749 { 750 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 751 int n; 752 753 for (n = 0; n < 4; n++) { 754 if ((s->actss & (1 << n)) == 0) { 755 continue; 756 } 757 758 if (((s->emux >> (n * 4)) & 0xff) != 5) { 759 continue; 760 } 761 762 /* Some applications use the ADC as a random number source, so introduce 763 some variation into the signal. */ 764 s->noise = s->noise * 314159 + 1; 765 /* ??? actual inputs not implemented. Return an arbitrary value. */ 766 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7)); 767 s->ris |= (1 << n); 768 stellaris_adc_update(s); 769 } 770 } 771 772 static void stellaris_adc_reset(stellaris_adc_state *s) 773 { 774 int n; 775 776 for (n = 0; n < 4; n++) { 777 s->ssmux[n] = 0; 778 s->ssctl[n] = 0; 779 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY; 780 } 781 } 782 783 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset, 784 unsigned size) 785 { 786 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 787 788 /* TODO: Implement this. */ 789 if (offset >= 0x40 && offset < 0xc0) { 790 int n; 791 n = (offset - 0x40) >> 5; 792 switch (offset & 0x1f) { 793 case 0x00: /* SSMUX */ 794 return s->ssmux[n]; 795 case 0x04: /* SSCTL */ 796 return s->ssctl[n]; 797 case 0x08: /* SSFIFO */ 798 return stellaris_adc_fifo_read(s, n); 799 case 0x0c: /* SSFSTAT */ 800 return s->fifo[n].state; 801 default: 802 break; 803 } 804 } 805 switch (offset) { 806 case 0x00: /* ACTSS */ 807 return s->actss; 808 case 0x04: /* RIS */ 809 return s->ris; 810 case 0x08: /* IM */ 811 return s->im; 812 case 0x0c: /* ISC */ 813 return s->ris & s->im; 814 case 0x10: /* OSTAT */ 815 return s->ostat; 816 case 0x14: /* EMUX */ 817 return s->emux; 818 case 0x18: /* USTAT */ 819 return s->ustat; 820 case 0x20: /* SSPRI */ 821 return s->sspri; 822 case 0x30: /* SAC */ 823 return s->sac; 824 default: 825 qemu_log_mask(LOG_GUEST_ERROR, 826 "stellaris_adc: read at bad offset 0x%x\n", (int)offset); 827 return 0; 828 } 829 } 830 831 static void stellaris_adc_write(void *opaque, hwaddr offset, 832 uint64_t value, unsigned size) 833 { 834 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 835 836 /* TODO: Implement this. */ 837 if (offset >= 0x40 && offset < 0xc0) { 838 int n; 839 n = (offset - 0x40) >> 5; 840 switch (offset & 0x1f) { 841 case 0x00: /* SSMUX */ 842 s->ssmux[n] = value & 0x33333333; 843 return; 844 case 0x04: /* SSCTL */ 845 if (value != 6) { 846 qemu_log_mask(LOG_UNIMP, 847 "ADC: Unimplemented sequence %" PRIx64 "\n", 848 value); 849 } 850 s->ssctl[n] = value; 851 return; 852 default: 853 break; 854 } 855 } 856 switch (offset) { 857 case 0x00: /* ACTSS */ 858 s->actss = value & 0xf; 859 break; 860 case 0x08: /* IM */ 861 s->im = value; 862 break; 863 case 0x0c: /* ISC */ 864 s->ris &= ~value; 865 break; 866 case 0x10: /* OSTAT */ 867 s->ostat &= ~value; 868 break; 869 case 0x14: /* EMUX */ 870 s->emux = value; 871 break; 872 case 0x18: /* USTAT */ 873 s->ustat &= ~value; 874 break; 875 case 0x20: /* SSPRI */ 876 s->sspri = value; 877 break; 878 case 0x28: /* PSSI */ 879 qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n"); 880 break; 881 case 0x30: /* SAC */ 882 s->sac = value; 883 break; 884 default: 885 qemu_log_mask(LOG_GUEST_ERROR, 886 "stellaris_adc: write at bad offset 0x%x\n", (int)offset); 887 } 888 stellaris_adc_update(s); 889 } 890 891 static const MemoryRegionOps stellaris_adc_ops = { 892 .read = stellaris_adc_read, 893 .write = stellaris_adc_write, 894 .endianness = DEVICE_NATIVE_ENDIAN, 895 }; 896 897 static const VMStateDescription vmstate_stellaris_adc = { 898 .name = "stellaris_adc", 899 .version_id = 1, 900 .minimum_version_id = 1, 901 .fields = (VMStateField[]) { 902 VMSTATE_UINT32(actss, stellaris_adc_state), 903 VMSTATE_UINT32(ris, stellaris_adc_state), 904 VMSTATE_UINT32(im, stellaris_adc_state), 905 VMSTATE_UINT32(emux, stellaris_adc_state), 906 VMSTATE_UINT32(ostat, stellaris_adc_state), 907 VMSTATE_UINT32(ustat, stellaris_adc_state), 908 VMSTATE_UINT32(sspri, stellaris_adc_state), 909 VMSTATE_UINT32(sac, stellaris_adc_state), 910 VMSTATE_UINT32(fifo[0].state, stellaris_adc_state), 911 VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16), 912 VMSTATE_UINT32(ssmux[0], stellaris_adc_state), 913 VMSTATE_UINT32(ssctl[0], stellaris_adc_state), 914 VMSTATE_UINT32(fifo[1].state, stellaris_adc_state), 915 VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16), 916 VMSTATE_UINT32(ssmux[1], stellaris_adc_state), 917 VMSTATE_UINT32(ssctl[1], stellaris_adc_state), 918 VMSTATE_UINT32(fifo[2].state, stellaris_adc_state), 919 VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16), 920 VMSTATE_UINT32(ssmux[2], stellaris_adc_state), 921 VMSTATE_UINT32(ssctl[2], stellaris_adc_state), 922 VMSTATE_UINT32(fifo[3].state, stellaris_adc_state), 923 VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16), 924 VMSTATE_UINT32(ssmux[3], stellaris_adc_state), 925 VMSTATE_UINT32(ssctl[3], stellaris_adc_state), 926 VMSTATE_UINT32(noise, stellaris_adc_state), 927 VMSTATE_END_OF_LIST() 928 } 929 }; 930 931 static void stellaris_adc_init(Object *obj) 932 { 933 DeviceState *dev = DEVICE(obj); 934 stellaris_adc_state *s = STELLARIS_ADC(obj); 935 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 936 int n; 937 938 for (n = 0; n < 4; n++) { 939 sysbus_init_irq(sbd, &s->irq[n]); 940 } 941 942 memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s, 943 "adc", 0x1000); 944 sysbus_init_mmio(sbd, &s->iomem); 945 stellaris_adc_reset(s); 946 qdev_init_gpio_in(dev, stellaris_adc_trigger, 1); 947 } 948 949 /* Board init. */ 950 static stellaris_board_info stellaris_boards[] = { 951 { "LM3S811EVB", 952 0, 953 0x0032000e, 954 0x001f001f, /* dc0 */ 955 0x001132bf, 956 0x01071013, 957 0x3f0f01ff, 958 0x0000001f, 959 BP_OLED_I2C 960 }, 961 { "LM3S6965EVB", 962 0x10010002, 963 0x1073402e, 964 0x00ff007f, /* dc0 */ 965 0x001133ff, 966 0x030f5317, 967 0x0f0f87ff, 968 0x5000007f, 969 BP_OLED_SSI | BP_GAMEPAD 970 } 971 }; 972 973 static void stellaris_init(MachineState *ms, stellaris_board_info *board) 974 { 975 static const int uart_irq[] = {5, 6, 33, 34}; 976 static const int timer_irq[] = {19, 21, 23, 35}; 977 static const uint32_t gpio_addr[7] = 978 { 0x40004000, 0x40005000, 0x40006000, 0x40007000, 979 0x40024000, 0x40025000, 0x40026000}; 980 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31}; 981 982 /* Memory map of SoC devices, from 983 * Stellaris LM3S6965 Microcontroller Data Sheet (rev I) 984 * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf 985 * 986 * 40000000 wdtimer 987 * 40002000 i2c (unimplemented) 988 * 40004000 GPIO 989 * 40005000 GPIO 990 * 40006000 GPIO 991 * 40007000 GPIO 992 * 40008000 SSI 993 * 4000c000 UART 994 * 4000d000 UART 995 * 4000e000 UART 996 * 40020000 i2c 997 * 40021000 i2c (unimplemented) 998 * 40024000 GPIO 999 * 40025000 GPIO 1000 * 40026000 GPIO 1001 * 40028000 PWM (unimplemented) 1002 * 4002c000 QEI (unimplemented) 1003 * 4002d000 QEI (unimplemented) 1004 * 40030000 gptimer 1005 * 40031000 gptimer 1006 * 40032000 gptimer 1007 * 40033000 gptimer 1008 * 40038000 ADC 1009 * 4003c000 analogue comparator (unimplemented) 1010 * 40048000 ethernet 1011 * 400fc000 hibernation module (unimplemented) 1012 * 400fd000 flash memory control (unimplemented) 1013 * 400fe000 system control 1014 */ 1015 1016 DeviceState *gpio_dev[7], *nvic; 1017 qemu_irq gpio_in[7][8]; 1018 qemu_irq gpio_out[7][8]; 1019 qemu_irq adc; 1020 int sram_size; 1021 int flash_size; 1022 I2CBus *i2c; 1023 DeviceState *dev; 1024 DeviceState *ssys_dev; 1025 int i; 1026 int j; 1027 const uint8_t *macaddr; 1028 1029 MemoryRegion *sram = g_new(MemoryRegion, 1); 1030 MemoryRegion *flash = g_new(MemoryRegion, 1); 1031 MemoryRegion *system_memory = get_system_memory(); 1032 1033 flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024; 1034 sram_size = ((board->dc0 >> 18) + 1) * 1024; 1035 1036 /* Flash programming is done via the SCU, so pretend it is ROM. */ 1037 memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size, 1038 &error_fatal); 1039 memory_region_add_subregion(system_memory, 0, flash); 1040 1041 memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size, 1042 &error_fatal); 1043 memory_region_add_subregion(system_memory, 0x20000000, sram); 1044 1045 /* 1046 * Create the system-registers object early, because we will 1047 * need its sysclk output. 1048 */ 1049 ssys_dev = qdev_new(TYPE_STELLARIS_SYS); 1050 /* Most devices come preprogrammed with a MAC address in the user data. */ 1051 macaddr = nd_table[0].macaddr.a; 1052 qdev_prop_set_uint32(ssys_dev, "user0", 1053 macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16)); 1054 qdev_prop_set_uint32(ssys_dev, "user1", 1055 macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16)); 1056 qdev_prop_set_uint32(ssys_dev, "did0", board->did0); 1057 qdev_prop_set_uint32(ssys_dev, "did1", board->did1); 1058 qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0); 1059 qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1); 1060 qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2); 1061 qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3); 1062 qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4); 1063 sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal); 1064 1065 nvic = qdev_new(TYPE_ARMV7M); 1066 qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES); 1067 qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type); 1068 qdev_prop_set_bit(nvic, "enable-bitband", true); 1069 qdev_connect_clock_in(nvic, "cpuclk", 1070 qdev_get_clock_out(ssys_dev, "SYSCLK")); 1071 /* This SoC does not connect the systick reference clock */ 1072 object_property_set_link(OBJECT(nvic), "memory", 1073 OBJECT(get_system_memory()), &error_abort); 1074 /* This will exit with an error if the user passed us a bad cpu_type */ 1075 sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal); 1076 1077 /* Now we can wire up the IRQ and MMIO of the system registers */ 1078 sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000); 1079 sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28)); 1080 1081 if (board->dc1 & (1 << 16)) { 1082 dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000, 1083 qdev_get_gpio_in(nvic, 14), 1084 qdev_get_gpio_in(nvic, 15), 1085 qdev_get_gpio_in(nvic, 16), 1086 qdev_get_gpio_in(nvic, 17), 1087 NULL); 1088 adc = qdev_get_gpio_in(dev, 0); 1089 } else { 1090 adc = NULL; 1091 } 1092 for (i = 0; i < 4; i++) { 1093 if (board->dc2 & (0x10000 << i)) { 1094 SysBusDevice *sbd; 1095 1096 dev = qdev_new(TYPE_STELLARIS_GPTM); 1097 sbd = SYS_BUS_DEVICE(dev); 1098 qdev_connect_clock_in(dev, "clk", 1099 qdev_get_clock_out(ssys_dev, "SYSCLK")); 1100 sysbus_realize_and_unref(sbd, &error_fatal); 1101 sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000); 1102 sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i])); 1103 /* TODO: This is incorrect, but we get away with it because 1104 the ADC output is only ever pulsed. */ 1105 qdev_connect_gpio_out(dev, 0, adc); 1106 } 1107 } 1108 1109 if (board->dc1 & (1 << 3)) { /* watchdog present */ 1110 dev = qdev_new(TYPE_LUMINARY_WATCHDOG); 1111 1112 qdev_connect_clock_in(dev, "WDOGCLK", 1113 qdev_get_clock_out(ssys_dev, "SYSCLK")); 1114 1115 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1116 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1117 0, 1118 0x40000000u); 1119 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 1120 0, 1121 qdev_get_gpio_in(nvic, 18)); 1122 } 1123 1124 1125 for (i = 0; i < 7; i++) { 1126 if (board->dc4 & (1 << i)) { 1127 gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i], 1128 qdev_get_gpio_in(nvic, 1129 gpio_irq[i])); 1130 for (j = 0; j < 8; j++) { 1131 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j); 1132 gpio_out[i][j] = NULL; 1133 } 1134 } 1135 } 1136 1137 if (board->dc2 & (1 << 12)) { 1138 dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000, 1139 qdev_get_gpio_in(nvic, 8)); 1140 i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c"); 1141 if (board->peripherals & BP_OLED_I2C) { 1142 i2c_slave_create_simple(i2c, "ssd0303", 0x3d); 1143 } 1144 } 1145 1146 for (i = 0; i < 4; i++) { 1147 if (board->dc2 & (1 << i)) { 1148 pl011_luminary_create(0x4000c000 + i * 0x1000, 1149 qdev_get_gpio_in(nvic, uart_irq[i]), 1150 serial_hd(i)); 1151 } 1152 } 1153 if (board->dc2 & (1 << 4)) { 1154 dev = sysbus_create_simple("pl022", 0x40008000, 1155 qdev_get_gpio_in(nvic, 7)); 1156 if (board->peripherals & BP_OLED_SSI) { 1157 void *bus; 1158 DeviceState *sddev; 1159 DeviceState *ssddev; 1160 1161 /* 1162 * Some boards have both an OLED controller and SD card connected to 1163 * the same SSI port, with the SD card chip select connected to a 1164 * GPIO pin. Technically the OLED chip select is connected to the 1165 * SSI Fss pin. We do not bother emulating that as both devices 1166 * should never be selected simultaneously, and our OLED controller 1167 * ignores stray 0xff commands that occur when deselecting the SD 1168 * card. 1169 * 1170 * The h/w wiring is: 1171 * - GPIO pin D0 is wired to the active-low SD card chip select 1172 * - GPIO pin A3 is wired to the active-low OLED chip select 1173 * - The SoC wiring of the PL061 "auxiliary function" for A3 is 1174 * SSI0Fss ("frame signal"), which is an output from the SoC's 1175 * SSI controller. The SSI controller takes SSI0Fss low when it 1176 * transmits a frame, so it can work as a chip-select signal. 1177 * - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx 1178 * (the OLED never sends data to the CPU, so no wiring needed) 1179 * - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx 1180 * and the OLED display-data-in 1181 * - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED 1182 * serial-clock input 1183 * So a guest that wants to use the OLED can configure the PL061 1184 * to make pins A2, A3, A5 aux-function, so they are connected 1185 * directly to the SSI controller. When the SSI controller sends 1186 * data it asserts SSI0Fss which selects the OLED. 1187 * A guest that wants to use the SD card configures A2, A4 and A5 1188 * as aux-function, but leaves A3 as a software-controlled GPIO 1189 * line. It asserts the SD card chip-select by using the PL061 1190 * to control pin D0, and lets the SSI controller handle Clk, Tx 1191 * and Rx. (The SSI controller asserts Fss during tx cycles as 1192 * usual, but because A3 is not set to aux-function this is not 1193 * forwarded to the OLED, and so the OLED stays unselected.) 1194 * 1195 * The QEMU implementation instead is: 1196 * - GPIO pin D0 is wired to the active-low SD card chip select, 1197 * and also to the OLED chip-select which is implemented 1198 * as *active-high* 1199 * - SSI controller signals go to the devices regardless of 1200 * whether the guest programs A2, A4, A5 as aux-function or not 1201 * 1202 * The problem with this implementation is if the guest doesn't 1203 * care about the SD card and only uses the OLED. In that case it 1204 * may choose never to do anything with D0 (leaving it in its 1205 * default floating state, which reliably leaves the card disabled 1206 * because an SD card has a pullup on CS within the card itself), 1207 * and only set up A2, A3, A5. This for us would mean the OLED 1208 * never gets the chip-select assert it needs. We work around 1209 * this with a manual raise of D0 here (despite board creation 1210 * code being the wrong place to raise IRQ lines) to put the OLED 1211 * into an initially selected state. 1212 * 1213 * In theory the right way to model this would be: 1214 * - Implement aux-function support in the PL061, with an 1215 * extra set of AFIN and AFOUT GPIO lines (set up so that 1216 * if a GPIO line is in auxfn mode the main GPIO in and out 1217 * track the AFIN and AFOUT lines) 1218 * - Wire the AFOUT for D0 up to either a line from the 1219 * SSI controller that's pulled low around every transmit, 1220 * or at least to an always-0 line here on the board 1221 * - Make the ssd0323 OLED controller chipselect active-low 1222 */ 1223 bus = qdev_get_child_bus(dev, "ssi"); 1224 1225 sddev = ssi_create_peripheral(bus, "ssi-sd"); 1226 ssddev = ssi_create_peripheral(bus, "ssd0323"); 1227 gpio_out[GPIO_D][0] = qemu_irq_split( 1228 qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0), 1229 qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0)); 1230 gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0); 1231 1232 /* Make sure the select pin is high. */ 1233 qemu_irq_raise(gpio_out[GPIO_D][0]); 1234 } 1235 } 1236 if (board->dc4 & (1 << 28)) { 1237 DeviceState *enet; 1238 1239 qemu_check_nic_model(&nd_table[0], "stellaris"); 1240 1241 enet = qdev_new("stellaris_enet"); 1242 qdev_set_nic_properties(enet, &nd_table[0]); 1243 sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal); 1244 sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000); 1245 sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42)); 1246 } 1247 if (board->peripherals & BP_GAMEPAD) { 1248 qemu_irq gpad_irq[5]; 1249 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d }; 1250 1251 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */ 1252 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */ 1253 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */ 1254 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */ 1255 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */ 1256 1257 stellaris_gamepad_init(5, gpad_irq, gpad_keycode); 1258 } 1259 for (i = 0; i < 7; i++) { 1260 if (board->dc4 & (1 << i)) { 1261 for (j = 0; j < 8; j++) { 1262 if (gpio_out[i][j]) { 1263 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]); 1264 } 1265 } 1266 } 1267 } 1268 1269 /* Add dummy regions for the devices we don't implement yet, 1270 * so guest accesses don't cause unlogged crashes. 1271 */ 1272 create_unimplemented_device("i2c-0", 0x40002000, 0x1000); 1273 create_unimplemented_device("i2c-2", 0x40021000, 0x1000); 1274 create_unimplemented_device("PWM", 0x40028000, 0x1000); 1275 create_unimplemented_device("QEI-0", 0x4002c000, 0x1000); 1276 create_unimplemented_device("QEI-1", 0x4002d000, 0x1000); 1277 create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000); 1278 create_unimplemented_device("hibernation", 0x400fc000, 0x1000); 1279 create_unimplemented_device("flash-control", 0x400fd000, 0x1000); 1280 1281 armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size); 1282 } 1283 1284 /* FIXME: Figure out how to generate these from stellaris_boards. */ 1285 static void lm3s811evb_init(MachineState *machine) 1286 { 1287 stellaris_init(machine, &stellaris_boards[0]); 1288 } 1289 1290 static void lm3s6965evb_init(MachineState *machine) 1291 { 1292 stellaris_init(machine, &stellaris_boards[1]); 1293 } 1294 1295 static void lm3s811evb_class_init(ObjectClass *oc, void *data) 1296 { 1297 MachineClass *mc = MACHINE_CLASS(oc); 1298 1299 mc->desc = "Stellaris LM3S811EVB (Cortex-M3)"; 1300 mc->init = lm3s811evb_init; 1301 mc->ignore_memory_transaction_failures = true; 1302 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3"); 1303 } 1304 1305 static const TypeInfo lm3s811evb_type = { 1306 .name = MACHINE_TYPE_NAME("lm3s811evb"), 1307 .parent = TYPE_MACHINE, 1308 .class_init = lm3s811evb_class_init, 1309 }; 1310 1311 static void lm3s6965evb_class_init(ObjectClass *oc, void *data) 1312 { 1313 MachineClass *mc = MACHINE_CLASS(oc); 1314 1315 mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)"; 1316 mc->init = lm3s6965evb_init; 1317 mc->ignore_memory_transaction_failures = true; 1318 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3"); 1319 } 1320 1321 static const TypeInfo lm3s6965evb_type = { 1322 .name = MACHINE_TYPE_NAME("lm3s6965evb"), 1323 .parent = TYPE_MACHINE, 1324 .class_init = lm3s6965evb_class_init, 1325 }; 1326 1327 static void stellaris_machine_init(void) 1328 { 1329 type_register_static(&lm3s811evb_type); 1330 type_register_static(&lm3s6965evb_type); 1331 } 1332 1333 type_init(stellaris_machine_init) 1334 1335 static void stellaris_i2c_class_init(ObjectClass *klass, void *data) 1336 { 1337 DeviceClass *dc = DEVICE_CLASS(klass); 1338 1339 dc->vmsd = &vmstate_stellaris_i2c; 1340 } 1341 1342 static const TypeInfo stellaris_i2c_info = { 1343 .name = TYPE_STELLARIS_I2C, 1344 .parent = TYPE_SYS_BUS_DEVICE, 1345 .instance_size = sizeof(stellaris_i2c_state), 1346 .instance_init = stellaris_i2c_init, 1347 .class_init = stellaris_i2c_class_init, 1348 }; 1349 1350 static void stellaris_adc_class_init(ObjectClass *klass, void *data) 1351 { 1352 DeviceClass *dc = DEVICE_CLASS(klass); 1353 1354 dc->vmsd = &vmstate_stellaris_adc; 1355 } 1356 1357 static const TypeInfo stellaris_adc_info = { 1358 .name = TYPE_STELLARIS_ADC, 1359 .parent = TYPE_SYS_BUS_DEVICE, 1360 .instance_size = sizeof(stellaris_adc_state), 1361 .instance_init = stellaris_adc_init, 1362 .class_init = stellaris_adc_class_init, 1363 }; 1364 1365 static void stellaris_sys_class_init(ObjectClass *klass, void *data) 1366 { 1367 DeviceClass *dc = DEVICE_CLASS(klass); 1368 ResettableClass *rc = RESETTABLE_CLASS(klass); 1369 1370 dc->vmsd = &vmstate_stellaris_sys; 1371 rc->phases.enter = stellaris_sys_reset_enter; 1372 rc->phases.hold = stellaris_sys_reset_hold; 1373 rc->phases.exit = stellaris_sys_reset_exit; 1374 device_class_set_props(dc, stellaris_sys_properties); 1375 } 1376 1377 static const TypeInfo stellaris_sys_info = { 1378 .name = TYPE_STELLARIS_SYS, 1379 .parent = TYPE_SYS_BUS_DEVICE, 1380 .instance_size = sizeof(ssys_state), 1381 .instance_init = stellaris_sys_instance_init, 1382 .class_init = stellaris_sys_class_init, 1383 }; 1384 1385 static void stellaris_register_types(void) 1386 { 1387 type_register_static(&stellaris_i2c_info); 1388 type_register_static(&stellaris_adc_info); 1389 type_register_static(&stellaris_sys_info); 1390 } 1391 1392 type_init(stellaris_register_types) 1393