1 /* 2 * Luminary Micro Stellaris peripherals 3 * 4 * Copyright (c) 2006 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qapi/error.h" 12 #include "hw/sysbus.h" 13 #include "hw/ssi/ssi.h" 14 #include "hw/arm/boot.h" 15 #include "qemu/timer.h" 16 #include "hw/i2c/i2c.h" 17 #include "net/net.h" 18 #include "hw/boards.h" 19 #include "qemu/log.h" 20 #include "exec/address-spaces.h" 21 #include "sysemu/runstate.h" 22 #include "sysemu/sysemu.h" 23 #include "hw/arm/armv7m.h" 24 #include "hw/char/pl011.h" 25 #include "hw/input/gamepad.h" 26 #include "hw/irq.h" 27 #include "hw/watchdog/cmsdk-apb-watchdog.h" 28 #include "migration/vmstate.h" 29 #include "hw/misc/unimp.h" 30 #include "cpu.h" 31 32 #define GPIO_A 0 33 #define GPIO_B 1 34 #define GPIO_C 2 35 #define GPIO_D 3 36 #define GPIO_E 4 37 #define GPIO_F 5 38 #define GPIO_G 6 39 40 #define BP_OLED_I2C 0x01 41 #define BP_OLED_SSI 0x02 42 #define BP_GAMEPAD 0x04 43 44 #define NUM_IRQ_LINES 64 45 46 typedef const struct { 47 const char *name; 48 uint32_t did0; 49 uint32_t did1; 50 uint32_t dc0; 51 uint32_t dc1; 52 uint32_t dc2; 53 uint32_t dc3; 54 uint32_t dc4; 55 uint32_t peripherals; 56 } stellaris_board_info; 57 58 /* General purpose timer module. */ 59 60 #define TYPE_STELLARIS_GPTM "stellaris-gptm" 61 #define STELLARIS_GPTM(obj) \ 62 OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM) 63 64 typedef struct gptm_state { 65 SysBusDevice parent_obj; 66 67 MemoryRegion iomem; 68 uint32_t config; 69 uint32_t mode[2]; 70 uint32_t control; 71 uint32_t state; 72 uint32_t mask; 73 uint32_t load[2]; 74 uint32_t match[2]; 75 uint32_t prescale[2]; 76 uint32_t match_prescale[2]; 77 uint32_t rtc; 78 int64_t tick[2]; 79 struct gptm_state *opaque[2]; 80 QEMUTimer *timer[2]; 81 /* The timers have an alternate output used to trigger the ADC. */ 82 qemu_irq trigger; 83 qemu_irq irq; 84 } gptm_state; 85 86 static void gptm_update_irq(gptm_state *s) 87 { 88 int level; 89 level = (s->state & s->mask) != 0; 90 qemu_set_irq(s->irq, level); 91 } 92 93 static void gptm_stop(gptm_state *s, int n) 94 { 95 timer_del(s->timer[n]); 96 } 97 98 static void gptm_reload(gptm_state *s, int n, int reset) 99 { 100 int64_t tick; 101 if (reset) 102 tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 103 else 104 tick = s->tick[n]; 105 106 if (s->config == 0) { 107 /* 32-bit CountDown. */ 108 uint32_t count; 109 count = s->load[0] | (s->load[1] << 16); 110 tick += (int64_t)count * system_clock_scale; 111 } else if (s->config == 1) { 112 /* 32-bit RTC. 1Hz tick. */ 113 tick += NANOSECONDS_PER_SECOND; 114 } else if (s->mode[n] == 0xa) { 115 /* PWM mode. Not implemented. */ 116 } else { 117 qemu_log_mask(LOG_UNIMP, 118 "GPTM: 16-bit timer mode unimplemented: 0x%x\n", 119 s->mode[n]); 120 return; 121 } 122 s->tick[n] = tick; 123 timer_mod(s->timer[n], tick); 124 } 125 126 static void gptm_tick(void *opaque) 127 { 128 gptm_state **p = (gptm_state **)opaque; 129 gptm_state *s; 130 int n; 131 132 s = *p; 133 n = p - s->opaque; 134 if (s->config == 0) { 135 s->state |= 1; 136 if ((s->control & 0x20)) { 137 /* Output trigger. */ 138 qemu_irq_pulse(s->trigger); 139 } 140 if (s->mode[0] & 1) { 141 /* One-shot. */ 142 s->control &= ~1; 143 } else { 144 /* Periodic. */ 145 gptm_reload(s, 0, 0); 146 } 147 } else if (s->config == 1) { 148 /* RTC. */ 149 uint32_t match; 150 s->rtc++; 151 match = s->match[0] | (s->match[1] << 16); 152 if (s->rtc > match) 153 s->rtc = 0; 154 if (s->rtc == 0) { 155 s->state |= 8; 156 } 157 gptm_reload(s, 0, 0); 158 } else if (s->mode[n] == 0xa) { 159 /* PWM mode. Not implemented. */ 160 } else { 161 qemu_log_mask(LOG_UNIMP, 162 "GPTM: 16-bit timer mode unimplemented: 0x%x\n", 163 s->mode[n]); 164 } 165 gptm_update_irq(s); 166 } 167 168 static uint64_t gptm_read(void *opaque, hwaddr offset, 169 unsigned size) 170 { 171 gptm_state *s = (gptm_state *)opaque; 172 173 switch (offset) { 174 case 0x00: /* CFG */ 175 return s->config; 176 case 0x04: /* TAMR */ 177 return s->mode[0]; 178 case 0x08: /* TBMR */ 179 return s->mode[1]; 180 case 0x0c: /* CTL */ 181 return s->control; 182 case 0x18: /* IMR */ 183 return s->mask; 184 case 0x1c: /* RIS */ 185 return s->state; 186 case 0x20: /* MIS */ 187 return s->state & s->mask; 188 case 0x24: /* CR */ 189 return 0; 190 case 0x28: /* TAILR */ 191 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0); 192 case 0x2c: /* TBILR */ 193 return s->load[1]; 194 case 0x30: /* TAMARCHR */ 195 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0); 196 case 0x34: /* TBMATCHR */ 197 return s->match[1]; 198 case 0x38: /* TAPR */ 199 return s->prescale[0]; 200 case 0x3c: /* TBPR */ 201 return s->prescale[1]; 202 case 0x40: /* TAPMR */ 203 return s->match_prescale[0]; 204 case 0x44: /* TBPMR */ 205 return s->match_prescale[1]; 206 case 0x48: /* TAR */ 207 if (s->config == 1) { 208 return s->rtc; 209 } 210 qemu_log_mask(LOG_UNIMP, 211 "GPTM: read of TAR but timer read not supported\n"); 212 return 0; 213 case 0x4c: /* TBR */ 214 qemu_log_mask(LOG_UNIMP, 215 "GPTM: read of TBR but timer read not supported\n"); 216 return 0; 217 default: 218 qemu_log_mask(LOG_GUEST_ERROR, 219 "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n", 220 offset); 221 return 0; 222 } 223 } 224 225 static void gptm_write(void *opaque, hwaddr offset, 226 uint64_t value, unsigned size) 227 { 228 gptm_state *s = (gptm_state *)opaque; 229 uint32_t oldval; 230 231 /* The timers should be disabled before changing the configuration. 232 We take advantage of this and defer everything until the timer 233 is enabled. */ 234 switch (offset) { 235 case 0x00: /* CFG */ 236 s->config = value; 237 break; 238 case 0x04: /* TAMR */ 239 s->mode[0] = value; 240 break; 241 case 0x08: /* TBMR */ 242 s->mode[1] = value; 243 break; 244 case 0x0c: /* CTL */ 245 oldval = s->control; 246 s->control = value; 247 /* TODO: Implement pause. */ 248 if ((oldval ^ value) & 1) { 249 if (value & 1) { 250 gptm_reload(s, 0, 1); 251 } else { 252 gptm_stop(s, 0); 253 } 254 } 255 if (((oldval ^ value) & 0x100) && s->config >= 4) { 256 if (value & 0x100) { 257 gptm_reload(s, 1, 1); 258 } else { 259 gptm_stop(s, 1); 260 } 261 } 262 break; 263 case 0x18: /* IMR */ 264 s->mask = value & 0x77; 265 gptm_update_irq(s); 266 break; 267 case 0x24: /* CR */ 268 s->state &= ~value; 269 break; 270 case 0x28: /* TAILR */ 271 s->load[0] = value & 0xffff; 272 if (s->config < 4) { 273 s->load[1] = value >> 16; 274 } 275 break; 276 case 0x2c: /* TBILR */ 277 s->load[1] = value & 0xffff; 278 break; 279 case 0x30: /* TAMARCHR */ 280 s->match[0] = value & 0xffff; 281 if (s->config < 4) { 282 s->match[1] = value >> 16; 283 } 284 break; 285 case 0x34: /* TBMATCHR */ 286 s->match[1] = value >> 16; 287 break; 288 case 0x38: /* TAPR */ 289 s->prescale[0] = value; 290 break; 291 case 0x3c: /* TBPR */ 292 s->prescale[1] = value; 293 break; 294 case 0x40: /* TAPMR */ 295 s->match_prescale[0] = value; 296 break; 297 case 0x44: /* TBPMR */ 298 s->match_prescale[0] = value; 299 break; 300 default: 301 qemu_log_mask(LOG_GUEST_ERROR, 302 "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n", 303 offset); 304 } 305 gptm_update_irq(s); 306 } 307 308 static const MemoryRegionOps gptm_ops = { 309 .read = gptm_read, 310 .write = gptm_write, 311 .endianness = DEVICE_NATIVE_ENDIAN, 312 }; 313 314 static const VMStateDescription vmstate_stellaris_gptm = { 315 .name = "stellaris_gptm", 316 .version_id = 1, 317 .minimum_version_id = 1, 318 .fields = (VMStateField[]) { 319 VMSTATE_UINT32(config, gptm_state), 320 VMSTATE_UINT32_ARRAY(mode, gptm_state, 2), 321 VMSTATE_UINT32(control, gptm_state), 322 VMSTATE_UINT32(state, gptm_state), 323 VMSTATE_UINT32(mask, gptm_state), 324 VMSTATE_UNUSED(8), 325 VMSTATE_UINT32_ARRAY(load, gptm_state, 2), 326 VMSTATE_UINT32_ARRAY(match, gptm_state, 2), 327 VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2), 328 VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2), 329 VMSTATE_UINT32(rtc, gptm_state), 330 VMSTATE_INT64_ARRAY(tick, gptm_state, 2), 331 VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2), 332 VMSTATE_END_OF_LIST() 333 } 334 }; 335 336 static void stellaris_gptm_init(Object *obj) 337 { 338 DeviceState *dev = DEVICE(obj); 339 gptm_state *s = STELLARIS_GPTM(obj); 340 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 341 342 sysbus_init_irq(sbd, &s->irq); 343 qdev_init_gpio_out(dev, &s->trigger, 1); 344 345 memory_region_init_io(&s->iomem, obj, &gptm_ops, s, 346 "gptm", 0x1000); 347 sysbus_init_mmio(sbd, &s->iomem); 348 349 s->opaque[0] = s->opaque[1] = s; 350 } 351 352 static void stellaris_gptm_realize(DeviceState *dev, Error **errp) 353 { 354 gptm_state *s = STELLARIS_GPTM(dev); 355 s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]); 356 s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]); 357 } 358 359 /* System controller. */ 360 361 typedef struct { 362 MemoryRegion iomem; 363 uint32_t pborctl; 364 uint32_t ldopctl; 365 uint32_t int_status; 366 uint32_t int_mask; 367 uint32_t resc; 368 uint32_t rcc; 369 uint32_t rcc2; 370 uint32_t rcgc[3]; 371 uint32_t scgc[3]; 372 uint32_t dcgc[3]; 373 uint32_t clkvclr; 374 uint32_t ldoarst; 375 uint32_t user0; 376 uint32_t user1; 377 qemu_irq irq; 378 stellaris_board_info *board; 379 } ssys_state; 380 381 static void ssys_update(ssys_state *s) 382 { 383 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0); 384 } 385 386 static uint32_t pllcfg_sandstorm[16] = { 387 0x31c0, /* 1 Mhz */ 388 0x1ae0, /* 1.8432 Mhz */ 389 0x18c0, /* 2 Mhz */ 390 0xd573, /* 2.4576 Mhz */ 391 0x37a6, /* 3.57954 Mhz */ 392 0x1ae2, /* 3.6864 Mhz */ 393 0x0c40, /* 4 Mhz */ 394 0x98bc, /* 4.906 Mhz */ 395 0x935b, /* 4.9152 Mhz */ 396 0x09c0, /* 5 Mhz */ 397 0x4dee, /* 5.12 Mhz */ 398 0x0c41, /* 6 Mhz */ 399 0x75db, /* 6.144 Mhz */ 400 0x1ae6, /* 7.3728 Mhz */ 401 0x0600, /* 8 Mhz */ 402 0x585b /* 8.192 Mhz */ 403 }; 404 405 static uint32_t pllcfg_fury[16] = { 406 0x3200, /* 1 Mhz */ 407 0x1b20, /* 1.8432 Mhz */ 408 0x1900, /* 2 Mhz */ 409 0xf42b, /* 2.4576 Mhz */ 410 0x37e3, /* 3.57954 Mhz */ 411 0x1b21, /* 3.6864 Mhz */ 412 0x0c80, /* 4 Mhz */ 413 0x98ee, /* 4.906 Mhz */ 414 0xd5b4, /* 4.9152 Mhz */ 415 0x0a00, /* 5 Mhz */ 416 0x4e27, /* 5.12 Mhz */ 417 0x1902, /* 6 Mhz */ 418 0xec1c, /* 6.144 Mhz */ 419 0x1b23, /* 7.3728 Mhz */ 420 0x0640, /* 8 Mhz */ 421 0xb11c /* 8.192 Mhz */ 422 }; 423 424 #define DID0_VER_MASK 0x70000000 425 #define DID0_VER_0 0x00000000 426 #define DID0_VER_1 0x10000000 427 428 #define DID0_CLASS_MASK 0x00FF0000 429 #define DID0_CLASS_SANDSTORM 0x00000000 430 #define DID0_CLASS_FURY 0x00010000 431 432 static int ssys_board_class(const ssys_state *s) 433 { 434 uint32_t did0 = s->board->did0; 435 switch (did0 & DID0_VER_MASK) { 436 case DID0_VER_0: 437 return DID0_CLASS_SANDSTORM; 438 case DID0_VER_1: 439 switch (did0 & DID0_CLASS_MASK) { 440 case DID0_CLASS_SANDSTORM: 441 case DID0_CLASS_FURY: 442 return did0 & DID0_CLASS_MASK; 443 } 444 /* for unknown classes, fall through */ 445 default: 446 /* This can only happen if the hardwired constant did0 value 447 * in this board's stellaris_board_info struct is wrong. 448 */ 449 g_assert_not_reached(); 450 } 451 } 452 453 static uint64_t ssys_read(void *opaque, hwaddr offset, 454 unsigned size) 455 { 456 ssys_state *s = (ssys_state *)opaque; 457 458 switch (offset) { 459 case 0x000: /* DID0 */ 460 return s->board->did0; 461 case 0x004: /* DID1 */ 462 return s->board->did1; 463 case 0x008: /* DC0 */ 464 return s->board->dc0; 465 case 0x010: /* DC1 */ 466 return s->board->dc1; 467 case 0x014: /* DC2 */ 468 return s->board->dc2; 469 case 0x018: /* DC3 */ 470 return s->board->dc3; 471 case 0x01c: /* DC4 */ 472 return s->board->dc4; 473 case 0x030: /* PBORCTL */ 474 return s->pborctl; 475 case 0x034: /* LDOPCTL */ 476 return s->ldopctl; 477 case 0x040: /* SRCR0 */ 478 return 0; 479 case 0x044: /* SRCR1 */ 480 return 0; 481 case 0x048: /* SRCR2 */ 482 return 0; 483 case 0x050: /* RIS */ 484 return s->int_status; 485 case 0x054: /* IMC */ 486 return s->int_mask; 487 case 0x058: /* MISC */ 488 return s->int_status & s->int_mask; 489 case 0x05c: /* RESC */ 490 return s->resc; 491 case 0x060: /* RCC */ 492 return s->rcc; 493 case 0x064: /* PLLCFG */ 494 { 495 int xtal; 496 xtal = (s->rcc >> 6) & 0xf; 497 switch (ssys_board_class(s)) { 498 case DID0_CLASS_FURY: 499 return pllcfg_fury[xtal]; 500 case DID0_CLASS_SANDSTORM: 501 return pllcfg_sandstorm[xtal]; 502 default: 503 g_assert_not_reached(); 504 } 505 } 506 case 0x070: /* RCC2 */ 507 return s->rcc2; 508 case 0x100: /* RCGC0 */ 509 return s->rcgc[0]; 510 case 0x104: /* RCGC1 */ 511 return s->rcgc[1]; 512 case 0x108: /* RCGC2 */ 513 return s->rcgc[2]; 514 case 0x110: /* SCGC0 */ 515 return s->scgc[0]; 516 case 0x114: /* SCGC1 */ 517 return s->scgc[1]; 518 case 0x118: /* SCGC2 */ 519 return s->scgc[2]; 520 case 0x120: /* DCGC0 */ 521 return s->dcgc[0]; 522 case 0x124: /* DCGC1 */ 523 return s->dcgc[1]; 524 case 0x128: /* DCGC2 */ 525 return s->dcgc[2]; 526 case 0x150: /* CLKVCLR */ 527 return s->clkvclr; 528 case 0x160: /* LDOARST */ 529 return s->ldoarst; 530 case 0x1e0: /* USER0 */ 531 return s->user0; 532 case 0x1e4: /* USER1 */ 533 return s->user1; 534 default: 535 qemu_log_mask(LOG_GUEST_ERROR, 536 "SSYS: read at bad offset 0x%x\n", (int)offset); 537 return 0; 538 } 539 } 540 541 static bool ssys_use_rcc2(ssys_state *s) 542 { 543 return (s->rcc2 >> 31) & 0x1; 544 } 545 546 /* 547 * Caculate the sys. clock period in ms. 548 */ 549 static void ssys_calculate_system_clock(ssys_state *s) 550 { 551 if (ssys_use_rcc2(s)) { 552 system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1); 553 } else { 554 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1); 555 } 556 } 557 558 static void ssys_write(void *opaque, hwaddr offset, 559 uint64_t value, unsigned size) 560 { 561 ssys_state *s = (ssys_state *)opaque; 562 563 switch (offset) { 564 case 0x030: /* PBORCTL */ 565 s->pborctl = value & 0xffff; 566 break; 567 case 0x034: /* LDOPCTL */ 568 s->ldopctl = value & 0x1f; 569 break; 570 case 0x040: /* SRCR0 */ 571 case 0x044: /* SRCR1 */ 572 case 0x048: /* SRCR2 */ 573 qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n"); 574 break; 575 case 0x054: /* IMC */ 576 s->int_mask = value & 0x7f; 577 break; 578 case 0x058: /* MISC */ 579 s->int_status &= ~value; 580 break; 581 case 0x05c: /* RESC */ 582 s->resc = value & 0x3f; 583 break; 584 case 0x060: /* RCC */ 585 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { 586 /* PLL enable. */ 587 s->int_status |= (1 << 6); 588 } 589 s->rcc = value; 590 ssys_calculate_system_clock(s); 591 break; 592 case 0x070: /* RCC2 */ 593 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { 594 break; 595 } 596 597 if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { 598 /* PLL enable. */ 599 s->int_status |= (1 << 6); 600 } 601 s->rcc2 = value; 602 ssys_calculate_system_clock(s); 603 break; 604 case 0x100: /* RCGC0 */ 605 s->rcgc[0] = value; 606 break; 607 case 0x104: /* RCGC1 */ 608 s->rcgc[1] = value; 609 break; 610 case 0x108: /* RCGC2 */ 611 s->rcgc[2] = value; 612 break; 613 case 0x110: /* SCGC0 */ 614 s->scgc[0] = value; 615 break; 616 case 0x114: /* SCGC1 */ 617 s->scgc[1] = value; 618 break; 619 case 0x118: /* SCGC2 */ 620 s->scgc[2] = value; 621 break; 622 case 0x120: /* DCGC0 */ 623 s->dcgc[0] = value; 624 break; 625 case 0x124: /* DCGC1 */ 626 s->dcgc[1] = value; 627 break; 628 case 0x128: /* DCGC2 */ 629 s->dcgc[2] = value; 630 break; 631 case 0x150: /* CLKVCLR */ 632 s->clkvclr = value; 633 break; 634 case 0x160: /* LDOARST */ 635 s->ldoarst = value; 636 break; 637 default: 638 qemu_log_mask(LOG_GUEST_ERROR, 639 "SSYS: write at bad offset 0x%x\n", (int)offset); 640 } 641 ssys_update(s); 642 } 643 644 static const MemoryRegionOps ssys_ops = { 645 .read = ssys_read, 646 .write = ssys_write, 647 .endianness = DEVICE_NATIVE_ENDIAN, 648 }; 649 650 static void ssys_reset(void *opaque) 651 { 652 ssys_state *s = (ssys_state *)opaque; 653 654 s->pborctl = 0x7ffd; 655 s->rcc = 0x078e3ac0; 656 657 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { 658 s->rcc2 = 0; 659 } else { 660 s->rcc2 = 0x07802810; 661 } 662 s->rcgc[0] = 1; 663 s->scgc[0] = 1; 664 s->dcgc[0] = 1; 665 ssys_calculate_system_clock(s); 666 } 667 668 static int stellaris_sys_post_load(void *opaque, int version_id) 669 { 670 ssys_state *s = opaque; 671 672 ssys_calculate_system_clock(s); 673 674 return 0; 675 } 676 677 static const VMStateDescription vmstate_stellaris_sys = { 678 .name = "stellaris_sys", 679 .version_id = 2, 680 .minimum_version_id = 1, 681 .post_load = stellaris_sys_post_load, 682 .fields = (VMStateField[]) { 683 VMSTATE_UINT32(pborctl, ssys_state), 684 VMSTATE_UINT32(ldopctl, ssys_state), 685 VMSTATE_UINT32(int_mask, ssys_state), 686 VMSTATE_UINT32(int_status, ssys_state), 687 VMSTATE_UINT32(resc, ssys_state), 688 VMSTATE_UINT32(rcc, ssys_state), 689 VMSTATE_UINT32_V(rcc2, ssys_state, 2), 690 VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3), 691 VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3), 692 VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3), 693 VMSTATE_UINT32(clkvclr, ssys_state), 694 VMSTATE_UINT32(ldoarst, ssys_state), 695 VMSTATE_END_OF_LIST() 696 } 697 }; 698 699 static int stellaris_sys_init(uint32_t base, qemu_irq irq, 700 stellaris_board_info * board, 701 uint8_t *macaddr) 702 { 703 ssys_state *s; 704 705 s = g_new0(ssys_state, 1); 706 s->irq = irq; 707 s->board = board; 708 /* Most devices come preprogrammed with a MAC address in the user data. */ 709 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16); 710 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16); 711 712 memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000); 713 memory_region_add_subregion(get_system_memory(), base, &s->iomem); 714 ssys_reset(s); 715 vmstate_register(NULL, VMSTATE_INSTANCE_ID_ANY, &vmstate_stellaris_sys, s); 716 return 0; 717 } 718 719 720 /* I2C controller. */ 721 722 #define TYPE_STELLARIS_I2C "stellaris-i2c" 723 #define STELLARIS_I2C(obj) \ 724 OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C) 725 726 typedef struct { 727 SysBusDevice parent_obj; 728 729 I2CBus *bus; 730 qemu_irq irq; 731 MemoryRegion iomem; 732 uint32_t msa; 733 uint32_t mcs; 734 uint32_t mdr; 735 uint32_t mtpr; 736 uint32_t mimr; 737 uint32_t mris; 738 uint32_t mcr; 739 } stellaris_i2c_state; 740 741 #define STELLARIS_I2C_MCS_BUSY 0x01 742 #define STELLARIS_I2C_MCS_ERROR 0x02 743 #define STELLARIS_I2C_MCS_ADRACK 0x04 744 #define STELLARIS_I2C_MCS_DATACK 0x08 745 #define STELLARIS_I2C_MCS_ARBLST 0x10 746 #define STELLARIS_I2C_MCS_IDLE 0x20 747 #define STELLARIS_I2C_MCS_BUSBSY 0x40 748 749 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset, 750 unsigned size) 751 { 752 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; 753 754 switch (offset) { 755 case 0x00: /* MSA */ 756 return s->msa; 757 case 0x04: /* MCS */ 758 /* We don't emulate timing, so the controller is never busy. */ 759 return s->mcs | STELLARIS_I2C_MCS_IDLE; 760 case 0x08: /* MDR */ 761 return s->mdr; 762 case 0x0c: /* MTPR */ 763 return s->mtpr; 764 case 0x10: /* MIMR */ 765 return s->mimr; 766 case 0x14: /* MRIS */ 767 return s->mris; 768 case 0x18: /* MMIS */ 769 return s->mris & s->mimr; 770 case 0x20: /* MCR */ 771 return s->mcr; 772 default: 773 qemu_log_mask(LOG_GUEST_ERROR, 774 "stellaris_i2c: read at bad offset 0x%x\n", (int)offset); 775 return 0; 776 } 777 } 778 779 static void stellaris_i2c_update(stellaris_i2c_state *s) 780 { 781 int level; 782 783 level = (s->mris & s->mimr) != 0; 784 qemu_set_irq(s->irq, level); 785 } 786 787 static void stellaris_i2c_write(void *opaque, hwaddr offset, 788 uint64_t value, unsigned size) 789 { 790 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; 791 792 switch (offset) { 793 case 0x00: /* MSA */ 794 s->msa = value & 0xff; 795 break; 796 case 0x04: /* MCS */ 797 if ((s->mcr & 0x10) == 0) { 798 /* Disabled. Do nothing. */ 799 break; 800 } 801 /* Grab the bus if this is starting a transfer. */ 802 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { 803 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) { 804 s->mcs |= STELLARIS_I2C_MCS_ARBLST; 805 } else { 806 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST; 807 s->mcs |= STELLARIS_I2C_MCS_BUSBSY; 808 } 809 } 810 /* If we don't have the bus then indicate an error. */ 811 if (!i2c_bus_busy(s->bus) 812 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { 813 s->mcs |= STELLARIS_I2C_MCS_ERROR; 814 break; 815 } 816 s->mcs &= ~STELLARIS_I2C_MCS_ERROR; 817 if (value & 1) { 818 /* Transfer a byte. */ 819 /* TODO: Handle errors. */ 820 if (s->msa & 1) { 821 /* Recv */ 822 s->mdr = i2c_recv(s->bus); 823 } else { 824 /* Send */ 825 i2c_send(s->bus, s->mdr); 826 } 827 /* Raise an interrupt. */ 828 s->mris |= 1; 829 } 830 if (value & 4) { 831 /* Finish transfer. */ 832 i2c_end_transfer(s->bus); 833 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY; 834 } 835 break; 836 case 0x08: /* MDR */ 837 s->mdr = value & 0xff; 838 break; 839 case 0x0c: /* MTPR */ 840 s->mtpr = value & 0xff; 841 break; 842 case 0x10: /* MIMR */ 843 s->mimr = 1; 844 break; 845 case 0x1c: /* MICR */ 846 s->mris &= ~value; 847 break; 848 case 0x20: /* MCR */ 849 if (value & 1) { 850 qemu_log_mask(LOG_UNIMP, 851 "stellaris_i2c: Loopback not implemented\n"); 852 } 853 if (value & 0x20) { 854 qemu_log_mask(LOG_UNIMP, 855 "stellaris_i2c: Slave mode not implemented\n"); 856 } 857 s->mcr = value & 0x31; 858 break; 859 default: 860 qemu_log_mask(LOG_GUEST_ERROR, 861 "stellaris_i2c: write at bad offset 0x%x\n", (int)offset); 862 } 863 stellaris_i2c_update(s); 864 } 865 866 static void stellaris_i2c_reset(stellaris_i2c_state *s) 867 { 868 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY) 869 i2c_end_transfer(s->bus); 870 871 s->msa = 0; 872 s->mcs = 0; 873 s->mdr = 0; 874 s->mtpr = 1; 875 s->mimr = 0; 876 s->mris = 0; 877 s->mcr = 0; 878 stellaris_i2c_update(s); 879 } 880 881 static const MemoryRegionOps stellaris_i2c_ops = { 882 .read = stellaris_i2c_read, 883 .write = stellaris_i2c_write, 884 .endianness = DEVICE_NATIVE_ENDIAN, 885 }; 886 887 static const VMStateDescription vmstate_stellaris_i2c = { 888 .name = "stellaris_i2c", 889 .version_id = 1, 890 .minimum_version_id = 1, 891 .fields = (VMStateField[]) { 892 VMSTATE_UINT32(msa, stellaris_i2c_state), 893 VMSTATE_UINT32(mcs, stellaris_i2c_state), 894 VMSTATE_UINT32(mdr, stellaris_i2c_state), 895 VMSTATE_UINT32(mtpr, stellaris_i2c_state), 896 VMSTATE_UINT32(mimr, stellaris_i2c_state), 897 VMSTATE_UINT32(mris, stellaris_i2c_state), 898 VMSTATE_UINT32(mcr, stellaris_i2c_state), 899 VMSTATE_END_OF_LIST() 900 } 901 }; 902 903 static void stellaris_i2c_init(Object *obj) 904 { 905 DeviceState *dev = DEVICE(obj); 906 stellaris_i2c_state *s = STELLARIS_I2C(obj); 907 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 908 I2CBus *bus; 909 910 sysbus_init_irq(sbd, &s->irq); 911 bus = i2c_init_bus(dev, "i2c"); 912 s->bus = bus; 913 914 memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s, 915 "i2c", 0x1000); 916 sysbus_init_mmio(sbd, &s->iomem); 917 /* ??? For now we only implement the master interface. */ 918 stellaris_i2c_reset(s); 919 } 920 921 /* Analogue to Digital Converter. This is only partially implemented, 922 enough for applications that use a combined ADC and timer tick. */ 923 924 #define STELLARIS_ADC_EM_CONTROLLER 0 925 #define STELLARIS_ADC_EM_COMP 1 926 #define STELLARIS_ADC_EM_EXTERNAL 4 927 #define STELLARIS_ADC_EM_TIMER 5 928 #define STELLARIS_ADC_EM_PWM0 6 929 #define STELLARIS_ADC_EM_PWM1 7 930 #define STELLARIS_ADC_EM_PWM2 8 931 932 #define STELLARIS_ADC_FIFO_EMPTY 0x0100 933 #define STELLARIS_ADC_FIFO_FULL 0x1000 934 935 #define TYPE_STELLARIS_ADC "stellaris-adc" 936 #define STELLARIS_ADC(obj) \ 937 OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC) 938 939 typedef struct StellarisADCState { 940 SysBusDevice parent_obj; 941 942 MemoryRegion iomem; 943 uint32_t actss; 944 uint32_t ris; 945 uint32_t im; 946 uint32_t emux; 947 uint32_t ostat; 948 uint32_t ustat; 949 uint32_t sspri; 950 uint32_t sac; 951 struct { 952 uint32_t state; 953 uint32_t data[16]; 954 } fifo[4]; 955 uint32_t ssmux[4]; 956 uint32_t ssctl[4]; 957 uint32_t noise; 958 qemu_irq irq[4]; 959 } stellaris_adc_state; 960 961 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n) 962 { 963 int tail; 964 965 tail = s->fifo[n].state & 0xf; 966 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) { 967 s->ustat |= 1 << n; 968 } else { 969 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf); 970 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL; 971 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf)) 972 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY; 973 } 974 return s->fifo[n].data[tail]; 975 } 976 977 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n, 978 uint32_t value) 979 { 980 int head; 981 982 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry 983 FIFO fir each sequencer. */ 984 head = (s->fifo[n].state >> 4) & 0xf; 985 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) { 986 s->ostat |= 1 << n; 987 return; 988 } 989 s->fifo[n].data[head] = value; 990 head = (head + 1) & 0xf; 991 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY; 992 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4); 993 if ((s->fifo[n].state & 0xf) == head) 994 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL; 995 } 996 997 static void stellaris_adc_update(stellaris_adc_state *s) 998 { 999 int level; 1000 int n; 1001 1002 for (n = 0; n < 4; n++) { 1003 level = (s->ris & s->im & (1 << n)) != 0; 1004 qemu_set_irq(s->irq[n], level); 1005 } 1006 } 1007 1008 static void stellaris_adc_trigger(void *opaque, int irq, int level) 1009 { 1010 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 1011 int n; 1012 1013 for (n = 0; n < 4; n++) { 1014 if ((s->actss & (1 << n)) == 0) { 1015 continue; 1016 } 1017 1018 if (((s->emux >> (n * 4)) & 0xff) != 5) { 1019 continue; 1020 } 1021 1022 /* Some applications use the ADC as a random number source, so introduce 1023 some variation into the signal. */ 1024 s->noise = s->noise * 314159 + 1; 1025 /* ??? actual inputs not implemented. Return an arbitrary value. */ 1026 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7)); 1027 s->ris |= (1 << n); 1028 stellaris_adc_update(s); 1029 } 1030 } 1031 1032 static void stellaris_adc_reset(stellaris_adc_state *s) 1033 { 1034 int n; 1035 1036 for (n = 0; n < 4; n++) { 1037 s->ssmux[n] = 0; 1038 s->ssctl[n] = 0; 1039 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY; 1040 } 1041 } 1042 1043 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset, 1044 unsigned size) 1045 { 1046 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 1047 1048 /* TODO: Implement this. */ 1049 if (offset >= 0x40 && offset < 0xc0) { 1050 int n; 1051 n = (offset - 0x40) >> 5; 1052 switch (offset & 0x1f) { 1053 case 0x00: /* SSMUX */ 1054 return s->ssmux[n]; 1055 case 0x04: /* SSCTL */ 1056 return s->ssctl[n]; 1057 case 0x08: /* SSFIFO */ 1058 return stellaris_adc_fifo_read(s, n); 1059 case 0x0c: /* SSFSTAT */ 1060 return s->fifo[n].state; 1061 default: 1062 break; 1063 } 1064 } 1065 switch (offset) { 1066 case 0x00: /* ACTSS */ 1067 return s->actss; 1068 case 0x04: /* RIS */ 1069 return s->ris; 1070 case 0x08: /* IM */ 1071 return s->im; 1072 case 0x0c: /* ISC */ 1073 return s->ris & s->im; 1074 case 0x10: /* OSTAT */ 1075 return s->ostat; 1076 case 0x14: /* EMUX */ 1077 return s->emux; 1078 case 0x18: /* USTAT */ 1079 return s->ustat; 1080 case 0x20: /* SSPRI */ 1081 return s->sspri; 1082 case 0x30: /* SAC */ 1083 return s->sac; 1084 default: 1085 qemu_log_mask(LOG_GUEST_ERROR, 1086 "stellaris_adc: read at bad offset 0x%x\n", (int)offset); 1087 return 0; 1088 } 1089 } 1090 1091 static void stellaris_adc_write(void *opaque, hwaddr offset, 1092 uint64_t value, unsigned size) 1093 { 1094 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 1095 1096 /* TODO: Implement this. */ 1097 if (offset >= 0x40 && offset < 0xc0) { 1098 int n; 1099 n = (offset - 0x40) >> 5; 1100 switch (offset & 0x1f) { 1101 case 0x00: /* SSMUX */ 1102 s->ssmux[n] = value & 0x33333333; 1103 return; 1104 case 0x04: /* SSCTL */ 1105 if (value != 6) { 1106 qemu_log_mask(LOG_UNIMP, 1107 "ADC: Unimplemented sequence %" PRIx64 "\n", 1108 value); 1109 } 1110 s->ssctl[n] = value; 1111 return; 1112 default: 1113 break; 1114 } 1115 } 1116 switch (offset) { 1117 case 0x00: /* ACTSS */ 1118 s->actss = value & 0xf; 1119 break; 1120 case 0x08: /* IM */ 1121 s->im = value; 1122 break; 1123 case 0x0c: /* ISC */ 1124 s->ris &= ~value; 1125 break; 1126 case 0x10: /* OSTAT */ 1127 s->ostat &= ~value; 1128 break; 1129 case 0x14: /* EMUX */ 1130 s->emux = value; 1131 break; 1132 case 0x18: /* USTAT */ 1133 s->ustat &= ~value; 1134 break; 1135 case 0x20: /* SSPRI */ 1136 s->sspri = value; 1137 break; 1138 case 0x28: /* PSSI */ 1139 qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n"); 1140 break; 1141 case 0x30: /* SAC */ 1142 s->sac = value; 1143 break; 1144 default: 1145 qemu_log_mask(LOG_GUEST_ERROR, 1146 "stellaris_adc: write at bad offset 0x%x\n", (int)offset); 1147 } 1148 stellaris_adc_update(s); 1149 } 1150 1151 static const MemoryRegionOps stellaris_adc_ops = { 1152 .read = stellaris_adc_read, 1153 .write = stellaris_adc_write, 1154 .endianness = DEVICE_NATIVE_ENDIAN, 1155 }; 1156 1157 static const VMStateDescription vmstate_stellaris_adc = { 1158 .name = "stellaris_adc", 1159 .version_id = 1, 1160 .minimum_version_id = 1, 1161 .fields = (VMStateField[]) { 1162 VMSTATE_UINT32(actss, stellaris_adc_state), 1163 VMSTATE_UINT32(ris, stellaris_adc_state), 1164 VMSTATE_UINT32(im, stellaris_adc_state), 1165 VMSTATE_UINT32(emux, stellaris_adc_state), 1166 VMSTATE_UINT32(ostat, stellaris_adc_state), 1167 VMSTATE_UINT32(ustat, stellaris_adc_state), 1168 VMSTATE_UINT32(sspri, stellaris_adc_state), 1169 VMSTATE_UINT32(sac, stellaris_adc_state), 1170 VMSTATE_UINT32(fifo[0].state, stellaris_adc_state), 1171 VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16), 1172 VMSTATE_UINT32(ssmux[0], stellaris_adc_state), 1173 VMSTATE_UINT32(ssctl[0], stellaris_adc_state), 1174 VMSTATE_UINT32(fifo[1].state, stellaris_adc_state), 1175 VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16), 1176 VMSTATE_UINT32(ssmux[1], stellaris_adc_state), 1177 VMSTATE_UINT32(ssctl[1], stellaris_adc_state), 1178 VMSTATE_UINT32(fifo[2].state, stellaris_adc_state), 1179 VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16), 1180 VMSTATE_UINT32(ssmux[2], stellaris_adc_state), 1181 VMSTATE_UINT32(ssctl[2], stellaris_adc_state), 1182 VMSTATE_UINT32(fifo[3].state, stellaris_adc_state), 1183 VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16), 1184 VMSTATE_UINT32(ssmux[3], stellaris_adc_state), 1185 VMSTATE_UINT32(ssctl[3], stellaris_adc_state), 1186 VMSTATE_UINT32(noise, stellaris_adc_state), 1187 VMSTATE_END_OF_LIST() 1188 } 1189 }; 1190 1191 static void stellaris_adc_init(Object *obj) 1192 { 1193 DeviceState *dev = DEVICE(obj); 1194 stellaris_adc_state *s = STELLARIS_ADC(obj); 1195 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 1196 int n; 1197 1198 for (n = 0; n < 4; n++) { 1199 sysbus_init_irq(sbd, &s->irq[n]); 1200 } 1201 1202 memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s, 1203 "adc", 0x1000); 1204 sysbus_init_mmio(sbd, &s->iomem); 1205 stellaris_adc_reset(s); 1206 qdev_init_gpio_in(dev, stellaris_adc_trigger, 1); 1207 } 1208 1209 static 1210 void do_sys_reset(void *opaque, int n, int level) 1211 { 1212 if (level) { 1213 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1214 } 1215 } 1216 1217 /* Board init. */ 1218 static stellaris_board_info stellaris_boards[] = { 1219 { "LM3S811EVB", 1220 0, 1221 0x0032000e, 1222 0x001f001f, /* dc0 */ 1223 0x001132bf, 1224 0x01071013, 1225 0x3f0f01ff, 1226 0x0000001f, 1227 BP_OLED_I2C 1228 }, 1229 { "LM3S6965EVB", 1230 0x10010002, 1231 0x1073402e, 1232 0x00ff007f, /* dc0 */ 1233 0x001133ff, 1234 0x030f5317, 1235 0x0f0f87ff, 1236 0x5000007f, 1237 BP_OLED_SSI | BP_GAMEPAD 1238 } 1239 }; 1240 1241 static void stellaris_init(MachineState *ms, stellaris_board_info *board) 1242 { 1243 static const int uart_irq[] = {5, 6, 33, 34}; 1244 static const int timer_irq[] = {19, 21, 23, 35}; 1245 static const uint32_t gpio_addr[7] = 1246 { 0x40004000, 0x40005000, 0x40006000, 0x40007000, 1247 0x40024000, 0x40025000, 0x40026000}; 1248 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31}; 1249 1250 /* Memory map of SoC devices, from 1251 * Stellaris LM3S6965 Microcontroller Data Sheet (rev I) 1252 * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf 1253 * 1254 * 40000000 wdtimer 1255 * 40002000 i2c (unimplemented) 1256 * 40004000 GPIO 1257 * 40005000 GPIO 1258 * 40006000 GPIO 1259 * 40007000 GPIO 1260 * 40008000 SSI 1261 * 4000c000 UART 1262 * 4000d000 UART 1263 * 4000e000 UART 1264 * 40020000 i2c 1265 * 40021000 i2c (unimplemented) 1266 * 40024000 GPIO 1267 * 40025000 GPIO 1268 * 40026000 GPIO 1269 * 40028000 PWM (unimplemented) 1270 * 4002c000 QEI (unimplemented) 1271 * 4002d000 QEI (unimplemented) 1272 * 40030000 gptimer 1273 * 40031000 gptimer 1274 * 40032000 gptimer 1275 * 40033000 gptimer 1276 * 40038000 ADC 1277 * 4003c000 analogue comparator (unimplemented) 1278 * 40048000 ethernet 1279 * 400fc000 hibernation module (unimplemented) 1280 * 400fd000 flash memory control (unimplemented) 1281 * 400fe000 system control 1282 */ 1283 1284 DeviceState *gpio_dev[7], *nvic; 1285 qemu_irq gpio_in[7][8]; 1286 qemu_irq gpio_out[7][8]; 1287 qemu_irq adc; 1288 int sram_size; 1289 int flash_size; 1290 I2CBus *i2c; 1291 DeviceState *dev; 1292 int i; 1293 int j; 1294 1295 MemoryRegion *sram = g_new(MemoryRegion, 1); 1296 MemoryRegion *flash = g_new(MemoryRegion, 1); 1297 MemoryRegion *system_memory = get_system_memory(); 1298 1299 flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024; 1300 sram_size = ((board->dc0 >> 18) + 1) * 1024; 1301 1302 /* Flash programming is done via the SCU, so pretend it is ROM. */ 1303 memory_region_init_ram(flash, NULL, "stellaris.flash", flash_size, 1304 &error_fatal); 1305 memory_region_set_readonly(flash, true); 1306 memory_region_add_subregion(system_memory, 0, flash); 1307 1308 memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size, 1309 &error_fatal); 1310 memory_region_add_subregion(system_memory, 0x20000000, sram); 1311 1312 nvic = qdev_create(NULL, TYPE_ARMV7M); 1313 qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES); 1314 qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type); 1315 qdev_prop_set_bit(nvic, "enable-bitband", true); 1316 object_property_set_link(OBJECT(nvic), OBJECT(get_system_memory()), 1317 "memory", &error_abort); 1318 /* This will exit with an error if the user passed us a bad cpu_type */ 1319 qdev_init_nofail(nvic); 1320 1321 qdev_connect_gpio_out_named(nvic, "SYSRESETREQ", 0, 1322 qemu_allocate_irq(&do_sys_reset, NULL, 0)); 1323 1324 if (board->dc1 & (1 << 16)) { 1325 dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000, 1326 qdev_get_gpio_in(nvic, 14), 1327 qdev_get_gpio_in(nvic, 15), 1328 qdev_get_gpio_in(nvic, 16), 1329 qdev_get_gpio_in(nvic, 17), 1330 NULL); 1331 adc = qdev_get_gpio_in(dev, 0); 1332 } else { 1333 adc = NULL; 1334 } 1335 for (i = 0; i < 4; i++) { 1336 if (board->dc2 & (0x10000 << i)) { 1337 dev = sysbus_create_simple(TYPE_STELLARIS_GPTM, 1338 0x40030000 + i * 0x1000, 1339 qdev_get_gpio_in(nvic, timer_irq[i])); 1340 /* TODO: This is incorrect, but we get away with it because 1341 the ADC output is only ever pulsed. */ 1342 qdev_connect_gpio_out(dev, 0, adc); 1343 } 1344 } 1345 1346 stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28), 1347 board, nd_table[0].macaddr.a); 1348 1349 1350 if (board->dc1 & (1 << 3)) { /* watchdog present */ 1351 dev = qdev_create(NULL, TYPE_LUMINARY_WATCHDOG); 1352 1353 /* system_clock_scale is valid now */ 1354 uint32_t mainclk = NANOSECONDS_PER_SECOND / system_clock_scale; 1355 qdev_prop_set_uint32(dev, "wdogclk-frq", mainclk); 1356 1357 qdev_init_nofail(dev); 1358 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1359 0, 1360 0x40000000u); 1361 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 1362 0, 1363 qdev_get_gpio_in(nvic, 18)); 1364 } 1365 1366 1367 for (i = 0; i < 7; i++) { 1368 if (board->dc4 & (1 << i)) { 1369 gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i], 1370 qdev_get_gpio_in(nvic, 1371 gpio_irq[i])); 1372 for (j = 0; j < 8; j++) { 1373 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j); 1374 gpio_out[i][j] = NULL; 1375 } 1376 } 1377 } 1378 1379 if (board->dc2 & (1 << 12)) { 1380 dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000, 1381 qdev_get_gpio_in(nvic, 8)); 1382 i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c"); 1383 if (board->peripherals & BP_OLED_I2C) { 1384 i2c_create_slave(i2c, "ssd0303", 0x3d); 1385 } 1386 } 1387 1388 for (i = 0; i < 4; i++) { 1389 if (board->dc2 & (1 << i)) { 1390 pl011_luminary_create(0x4000c000 + i * 0x1000, 1391 qdev_get_gpio_in(nvic, uart_irq[i]), 1392 serial_hd(i)); 1393 } 1394 } 1395 if (board->dc2 & (1 << 4)) { 1396 dev = sysbus_create_simple("pl022", 0x40008000, 1397 qdev_get_gpio_in(nvic, 7)); 1398 if (board->peripherals & BP_OLED_SSI) { 1399 void *bus; 1400 DeviceState *sddev; 1401 DeviceState *ssddev; 1402 1403 /* Some boards have both an OLED controller and SD card connected to 1404 * the same SSI port, with the SD card chip select connected to a 1405 * GPIO pin. Technically the OLED chip select is connected to the 1406 * SSI Fss pin. We do not bother emulating that as both devices 1407 * should never be selected simultaneously, and our OLED controller 1408 * ignores stray 0xff commands that occur when deselecting the SD 1409 * card. 1410 */ 1411 bus = qdev_get_child_bus(dev, "ssi"); 1412 1413 sddev = ssi_create_slave(bus, "ssi-sd"); 1414 ssddev = ssi_create_slave(bus, "ssd0323"); 1415 gpio_out[GPIO_D][0] = qemu_irq_split( 1416 qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0), 1417 qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0)); 1418 gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0); 1419 1420 /* Make sure the select pin is high. */ 1421 qemu_irq_raise(gpio_out[GPIO_D][0]); 1422 } 1423 } 1424 if (board->dc4 & (1 << 28)) { 1425 DeviceState *enet; 1426 1427 qemu_check_nic_model(&nd_table[0], "stellaris"); 1428 1429 enet = qdev_create(NULL, "stellaris_enet"); 1430 qdev_set_nic_properties(enet, &nd_table[0]); 1431 qdev_init_nofail(enet); 1432 sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000); 1433 sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42)); 1434 } 1435 if (board->peripherals & BP_GAMEPAD) { 1436 qemu_irq gpad_irq[5]; 1437 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d }; 1438 1439 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */ 1440 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */ 1441 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */ 1442 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */ 1443 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */ 1444 1445 stellaris_gamepad_init(5, gpad_irq, gpad_keycode); 1446 } 1447 for (i = 0; i < 7; i++) { 1448 if (board->dc4 & (1 << i)) { 1449 for (j = 0; j < 8; j++) { 1450 if (gpio_out[i][j]) { 1451 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]); 1452 } 1453 } 1454 } 1455 } 1456 1457 /* Add dummy regions for the devices we don't implement yet, 1458 * so guest accesses don't cause unlogged crashes. 1459 */ 1460 create_unimplemented_device("i2c-0", 0x40002000, 0x1000); 1461 create_unimplemented_device("i2c-2", 0x40021000, 0x1000); 1462 create_unimplemented_device("PWM", 0x40028000, 0x1000); 1463 create_unimplemented_device("QEI-0", 0x4002c000, 0x1000); 1464 create_unimplemented_device("QEI-1", 0x4002d000, 0x1000); 1465 create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000); 1466 create_unimplemented_device("hibernation", 0x400fc000, 0x1000); 1467 create_unimplemented_device("flash-control", 0x400fd000, 0x1000); 1468 1469 armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size); 1470 } 1471 1472 /* FIXME: Figure out how to generate these from stellaris_boards. */ 1473 static void lm3s811evb_init(MachineState *machine) 1474 { 1475 stellaris_init(machine, &stellaris_boards[0]); 1476 } 1477 1478 static void lm3s6965evb_init(MachineState *machine) 1479 { 1480 stellaris_init(machine, &stellaris_boards[1]); 1481 } 1482 1483 static void lm3s811evb_class_init(ObjectClass *oc, void *data) 1484 { 1485 MachineClass *mc = MACHINE_CLASS(oc); 1486 1487 mc->desc = "Stellaris LM3S811EVB"; 1488 mc->init = lm3s811evb_init; 1489 mc->ignore_memory_transaction_failures = true; 1490 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3"); 1491 } 1492 1493 static const TypeInfo lm3s811evb_type = { 1494 .name = MACHINE_TYPE_NAME("lm3s811evb"), 1495 .parent = TYPE_MACHINE, 1496 .class_init = lm3s811evb_class_init, 1497 }; 1498 1499 static void lm3s6965evb_class_init(ObjectClass *oc, void *data) 1500 { 1501 MachineClass *mc = MACHINE_CLASS(oc); 1502 1503 mc->desc = "Stellaris LM3S6965EVB"; 1504 mc->init = lm3s6965evb_init; 1505 mc->ignore_memory_transaction_failures = true; 1506 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3"); 1507 } 1508 1509 static const TypeInfo lm3s6965evb_type = { 1510 .name = MACHINE_TYPE_NAME("lm3s6965evb"), 1511 .parent = TYPE_MACHINE, 1512 .class_init = lm3s6965evb_class_init, 1513 }; 1514 1515 static void stellaris_machine_init(void) 1516 { 1517 type_register_static(&lm3s811evb_type); 1518 type_register_static(&lm3s6965evb_type); 1519 } 1520 1521 type_init(stellaris_machine_init) 1522 1523 static void stellaris_i2c_class_init(ObjectClass *klass, void *data) 1524 { 1525 DeviceClass *dc = DEVICE_CLASS(klass); 1526 1527 dc->vmsd = &vmstate_stellaris_i2c; 1528 } 1529 1530 static const TypeInfo stellaris_i2c_info = { 1531 .name = TYPE_STELLARIS_I2C, 1532 .parent = TYPE_SYS_BUS_DEVICE, 1533 .instance_size = sizeof(stellaris_i2c_state), 1534 .instance_init = stellaris_i2c_init, 1535 .class_init = stellaris_i2c_class_init, 1536 }; 1537 1538 static void stellaris_gptm_class_init(ObjectClass *klass, void *data) 1539 { 1540 DeviceClass *dc = DEVICE_CLASS(klass); 1541 1542 dc->vmsd = &vmstate_stellaris_gptm; 1543 dc->realize = stellaris_gptm_realize; 1544 } 1545 1546 static const TypeInfo stellaris_gptm_info = { 1547 .name = TYPE_STELLARIS_GPTM, 1548 .parent = TYPE_SYS_BUS_DEVICE, 1549 .instance_size = sizeof(gptm_state), 1550 .instance_init = stellaris_gptm_init, 1551 .class_init = stellaris_gptm_class_init, 1552 }; 1553 1554 static void stellaris_adc_class_init(ObjectClass *klass, void *data) 1555 { 1556 DeviceClass *dc = DEVICE_CLASS(klass); 1557 1558 dc->vmsd = &vmstate_stellaris_adc; 1559 } 1560 1561 static const TypeInfo stellaris_adc_info = { 1562 .name = TYPE_STELLARIS_ADC, 1563 .parent = TYPE_SYS_BUS_DEVICE, 1564 .instance_size = sizeof(stellaris_adc_state), 1565 .instance_init = stellaris_adc_init, 1566 .class_init = stellaris_adc_class_init, 1567 }; 1568 1569 static void stellaris_register_types(void) 1570 { 1571 type_register_static(&stellaris_i2c_info); 1572 type_register_static(&stellaris_gptm_info); 1573 type_register_static(&stellaris_adc_info); 1574 } 1575 1576 type_init(stellaris_register_types) 1577