1 /* 2 * Copyright (C) 2014-2016 Broadcom Corporation 3 * Copyright (c) 2017 Red Hat, Inc. 4 * Written by Prem Mallappa, Eric Auger 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "qemu/bitops.h" 21 #include "hw/irq.h" 22 #include "hw/sysbus.h" 23 #include "migration/vmstate.h" 24 #include "hw/qdev-properties.h" 25 #include "hw/qdev-core.h" 26 #include "hw/pci/pci.h" 27 #include "cpu.h" 28 #include "trace.h" 29 #include "qemu/log.h" 30 #include "qemu/error-report.h" 31 #include "qapi/error.h" 32 33 #include "hw/arm/smmuv3.h" 34 #include "smmuv3-internal.h" 35 #include "smmu-internal.h" 36 37 #define PTW_RECORD_FAULT(cfg) (((cfg)->stage == 1) ? (cfg)->record_faults : \ 38 (cfg)->s2cfg.record_faults) 39 40 /** 41 * smmuv3_trigger_irq - pulse @irq if enabled and update 42 * GERROR register in case of GERROR interrupt 43 * 44 * @irq: irq type 45 * @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR) 46 */ 47 static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq, 48 uint32_t gerror_mask) 49 { 50 51 bool pulse = false; 52 53 switch (irq) { 54 case SMMU_IRQ_EVTQ: 55 pulse = smmuv3_eventq_irq_enabled(s); 56 break; 57 case SMMU_IRQ_PRIQ: 58 qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n"); 59 break; 60 case SMMU_IRQ_CMD_SYNC: 61 pulse = true; 62 break; 63 case SMMU_IRQ_GERROR: 64 { 65 uint32_t pending = s->gerror ^ s->gerrorn; 66 uint32_t new_gerrors = ~pending & gerror_mask; 67 68 if (!new_gerrors) { 69 /* only toggle non pending errors */ 70 return; 71 } 72 s->gerror ^= new_gerrors; 73 trace_smmuv3_write_gerror(new_gerrors, s->gerror); 74 75 pulse = smmuv3_gerror_irq_enabled(s); 76 break; 77 } 78 } 79 if (pulse) { 80 trace_smmuv3_trigger_irq(irq); 81 qemu_irq_pulse(s->irq[irq]); 82 } 83 } 84 85 static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn) 86 { 87 uint32_t pending = s->gerror ^ s->gerrorn; 88 uint32_t toggled = s->gerrorn ^ new_gerrorn; 89 90 if (toggled & ~pending) { 91 qemu_log_mask(LOG_GUEST_ERROR, 92 "guest toggles non pending errors = 0x%x\n", 93 toggled & ~pending); 94 } 95 96 /* 97 * We do not raise any error in case guest toggles bits corresponding 98 * to not active IRQs (CONSTRAINED UNPREDICTABLE) 99 */ 100 s->gerrorn = new_gerrorn; 101 102 trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn); 103 } 104 105 static inline MemTxResult queue_read(SMMUQueue *q, Cmd *cmd) 106 { 107 dma_addr_t addr = Q_CONS_ENTRY(q); 108 MemTxResult ret; 109 int i; 110 111 ret = dma_memory_read(&address_space_memory, addr, cmd, sizeof(Cmd), 112 MEMTXATTRS_UNSPECIFIED); 113 if (ret != MEMTX_OK) { 114 return ret; 115 } 116 for (i = 0; i < ARRAY_SIZE(cmd->word); i++) { 117 le32_to_cpus(&cmd->word[i]); 118 } 119 return ret; 120 } 121 122 static MemTxResult queue_write(SMMUQueue *q, Evt *evt_in) 123 { 124 dma_addr_t addr = Q_PROD_ENTRY(q); 125 MemTxResult ret; 126 Evt evt = *evt_in; 127 int i; 128 129 for (i = 0; i < ARRAY_SIZE(evt.word); i++) { 130 cpu_to_le32s(&evt.word[i]); 131 } 132 ret = dma_memory_write(&address_space_memory, addr, &evt, sizeof(Evt), 133 MEMTXATTRS_UNSPECIFIED); 134 if (ret != MEMTX_OK) { 135 return ret; 136 } 137 138 queue_prod_incr(q); 139 return MEMTX_OK; 140 } 141 142 static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt) 143 { 144 SMMUQueue *q = &s->eventq; 145 MemTxResult r; 146 147 if (!smmuv3_eventq_enabled(s)) { 148 return MEMTX_ERROR; 149 } 150 151 if (smmuv3_q_full(q)) { 152 return MEMTX_ERROR; 153 } 154 155 r = queue_write(q, evt); 156 if (r != MEMTX_OK) { 157 return r; 158 } 159 160 if (!smmuv3_q_empty(q)) { 161 smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0); 162 } 163 return MEMTX_OK; 164 } 165 166 void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info) 167 { 168 Evt evt = {}; 169 MemTxResult r; 170 171 if (!smmuv3_eventq_enabled(s)) { 172 return; 173 } 174 175 EVT_SET_TYPE(&evt, info->type); 176 EVT_SET_SID(&evt, info->sid); 177 178 switch (info->type) { 179 case SMMU_EVT_NONE: 180 return; 181 case SMMU_EVT_F_UUT: 182 EVT_SET_SSID(&evt, info->u.f_uut.ssid); 183 EVT_SET_SSV(&evt, info->u.f_uut.ssv); 184 EVT_SET_ADDR(&evt, info->u.f_uut.addr); 185 EVT_SET_RNW(&evt, info->u.f_uut.rnw); 186 EVT_SET_PNU(&evt, info->u.f_uut.pnu); 187 EVT_SET_IND(&evt, info->u.f_uut.ind); 188 break; 189 case SMMU_EVT_C_BAD_STREAMID: 190 EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid); 191 EVT_SET_SSV(&evt, info->u.c_bad_streamid.ssv); 192 break; 193 case SMMU_EVT_F_STE_FETCH: 194 EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid); 195 EVT_SET_SSV(&evt, info->u.f_ste_fetch.ssv); 196 EVT_SET_ADDR2(&evt, info->u.f_ste_fetch.addr); 197 break; 198 case SMMU_EVT_C_BAD_STE: 199 EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid); 200 EVT_SET_SSV(&evt, info->u.c_bad_ste.ssv); 201 break; 202 case SMMU_EVT_F_STREAM_DISABLED: 203 break; 204 case SMMU_EVT_F_TRANS_FORBIDDEN: 205 EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr); 206 EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw); 207 break; 208 case SMMU_EVT_C_BAD_SUBSTREAMID: 209 EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid); 210 break; 211 case SMMU_EVT_F_CD_FETCH: 212 EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid); 213 EVT_SET_SSV(&evt, info->u.f_cd_fetch.ssv); 214 EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr); 215 break; 216 case SMMU_EVT_C_BAD_CD: 217 EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid); 218 EVT_SET_SSV(&evt, info->u.c_bad_cd.ssv); 219 break; 220 case SMMU_EVT_F_WALK_EABT: 221 case SMMU_EVT_F_TRANSLATION: 222 case SMMU_EVT_F_ADDR_SIZE: 223 case SMMU_EVT_F_ACCESS: 224 case SMMU_EVT_F_PERMISSION: 225 EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall); 226 EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag); 227 EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid); 228 EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv); 229 EVT_SET_S2(&evt, info->u.f_walk_eabt.s2); 230 EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr); 231 EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw); 232 EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu); 233 EVT_SET_IND(&evt, info->u.f_walk_eabt.ind); 234 EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class); 235 EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2); 236 break; 237 case SMMU_EVT_F_CFG_CONFLICT: 238 EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid); 239 EVT_SET_SSV(&evt, info->u.f_cfg_conflict.ssv); 240 break; 241 /* rest is not implemented */ 242 case SMMU_EVT_F_BAD_ATS_TREQ: 243 case SMMU_EVT_F_TLB_CONFLICT: 244 case SMMU_EVT_E_PAGE_REQ: 245 default: 246 g_assert_not_reached(); 247 } 248 249 trace_smmuv3_record_event(smmu_event_string(info->type), info->sid); 250 r = smmuv3_write_eventq(s, &evt); 251 if (r != MEMTX_OK) { 252 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK); 253 } 254 info->recorded = true; 255 } 256 257 static void smmuv3_init_regs(SMMUv3State *s) 258 { 259 /* Based on sys property, the stages supported in smmu will be advertised.*/ 260 if (s->stage && !strcmp("2", s->stage)) { 261 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S2P, 1); 262 } else { 263 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1); 264 } 265 266 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */ 267 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */ 268 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */ 269 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, VMID16, 1); /* 16-bit VMID */ 270 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */ 271 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */ 272 /* terminated transaction will always be aborted/error returned */ 273 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1); 274 /* 2-level stream table supported */ 275 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1); 276 277 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE); 278 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS); 279 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS, SMMU_CMDQS); 280 281 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, HAD, 1); 282 if (FIELD_EX32(s->idr[0], IDR0, S2P)) { 283 /* XNX is a stage-2-specific feature */ 284 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, XNX, 1); 285 } 286 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, RIL, 1); 287 s->idr[3] = FIELD_DP32(s->idr[3], IDR3, BBML, 2); 288 289 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */ 290 /* 4K, 16K and 64K granule support */ 291 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1); 292 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN16K, 1); 293 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1); 294 295 s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS); 296 s->cmdq.prod = 0; 297 s->cmdq.cons = 0; 298 s->cmdq.entry_size = sizeof(struct Cmd); 299 s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS); 300 s->eventq.prod = 0; 301 s->eventq.cons = 0; 302 s->eventq.entry_size = sizeof(struct Evt); 303 304 s->features = 0; 305 s->sid_split = 0; 306 s->aidr = 0x1; 307 s->cr[0] = 0; 308 s->cr0ack = 0; 309 s->irq_ctrl = 0; 310 s->gerror = 0; 311 s->gerrorn = 0; 312 s->statusr = 0; 313 s->gbpa = SMMU_GBPA_RESET_VAL; 314 } 315 316 static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf, 317 SMMUEventInfo *event) 318 { 319 int ret, i; 320 321 trace_smmuv3_get_ste(addr); 322 /* TODO: guarantee 64-bit single-copy atomicity */ 323 ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf), 324 MEMTXATTRS_UNSPECIFIED); 325 if (ret != MEMTX_OK) { 326 qemu_log_mask(LOG_GUEST_ERROR, 327 "Cannot fetch pte at address=0x%"PRIx64"\n", addr); 328 event->type = SMMU_EVT_F_STE_FETCH; 329 event->u.f_ste_fetch.addr = addr; 330 return -EINVAL; 331 } 332 for (i = 0; i < ARRAY_SIZE(buf->word); i++) { 333 le32_to_cpus(&buf->word[i]); 334 } 335 return 0; 336 337 } 338 339 /* @ssid > 0 not supported yet */ 340 static int smmu_get_cd(SMMUv3State *s, STE *ste, uint32_t ssid, 341 CD *buf, SMMUEventInfo *event) 342 { 343 dma_addr_t addr = STE_CTXPTR(ste); 344 int ret, i; 345 346 trace_smmuv3_get_cd(addr); 347 /* TODO: guarantee 64-bit single-copy atomicity */ 348 ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf), 349 MEMTXATTRS_UNSPECIFIED); 350 if (ret != MEMTX_OK) { 351 qemu_log_mask(LOG_GUEST_ERROR, 352 "Cannot fetch pte at address=0x%"PRIx64"\n", addr); 353 event->type = SMMU_EVT_F_CD_FETCH; 354 event->u.f_ste_fetch.addr = addr; 355 return -EINVAL; 356 } 357 for (i = 0; i < ARRAY_SIZE(buf->word); i++) { 358 le32_to_cpus(&buf->word[i]); 359 } 360 return 0; 361 } 362 363 /* 364 * Max valid value is 39 when SMMU_IDR3.STT == 0. 365 * In architectures after SMMUv3.0: 366 * - If STE.S2TG selects a 4KB or 16KB granule, the minimum valid value for this 367 * field is MAX(16, 64-IAS) 368 * - If STE.S2TG selects a 64KB granule, the minimum valid value for this field 369 * is (64-IAS). 370 * As we only support AA64, IAS = OAS. 371 */ 372 static bool s2t0sz_valid(SMMUTransCfg *cfg) 373 { 374 if (cfg->s2cfg.tsz > 39) { 375 return false; 376 } 377 378 if (cfg->s2cfg.granule_sz == 16) { 379 return (cfg->s2cfg.tsz >= 64 - oas2bits(SMMU_IDR5_OAS)); 380 } 381 382 return (cfg->s2cfg.tsz >= MAX(64 - oas2bits(SMMU_IDR5_OAS), 16)); 383 } 384 385 /* 386 * Return true if s2 page table config is valid. 387 * This checks with the configured start level, ias_bits and granularity we can 388 * have a valid page table as described in ARM ARM D8.2 Translation process. 389 * The idea here is to see for the highest possible number of IPA bits, how 390 * many concatenated tables we would need, if it is more than 16, then this is 391 * not possible. 392 */ 393 static bool s2_pgtable_config_valid(uint8_t sl0, uint8_t t0sz, uint8_t gran) 394 { 395 int level = get_start_level(sl0, gran); 396 uint64_t ipa_bits = 64 - t0sz; 397 uint64_t max_ipa = (1ULL << ipa_bits) - 1; 398 int nr_concat = pgd_concat_idx(level, gran, max_ipa) + 1; 399 400 return nr_concat <= VMSA_MAX_S2_CONCAT; 401 } 402 403 static int decode_ste_s2_cfg(SMMUTransCfg *cfg, STE *ste) 404 { 405 cfg->stage = 2; 406 407 if (STE_S2AA64(ste) == 0x0) { 408 qemu_log_mask(LOG_UNIMP, 409 "SMMUv3 AArch32 tables not supported\n"); 410 g_assert_not_reached(); 411 } 412 413 switch (STE_S2TG(ste)) { 414 case 0x0: /* 4KB */ 415 cfg->s2cfg.granule_sz = 12; 416 break; 417 case 0x1: /* 64KB */ 418 cfg->s2cfg.granule_sz = 16; 419 break; 420 case 0x2: /* 16KB */ 421 cfg->s2cfg.granule_sz = 14; 422 break; 423 default: 424 qemu_log_mask(LOG_GUEST_ERROR, 425 "SMMUv3 bad STE S2TG: %x\n", STE_S2TG(ste)); 426 goto bad_ste; 427 } 428 429 cfg->s2cfg.vttb = STE_S2TTB(ste); 430 431 cfg->s2cfg.sl0 = STE_S2SL0(ste); 432 /* FEAT_TTST not supported. */ 433 if (cfg->s2cfg.sl0 == 0x3) { 434 qemu_log_mask(LOG_UNIMP, "SMMUv3 S2SL0 = 0x3 has no meaning!\n"); 435 goto bad_ste; 436 } 437 438 /* For AA64, The effective S2PS size is capped to the OAS. */ 439 cfg->s2cfg.eff_ps = oas2bits(MIN(STE_S2PS(ste), SMMU_IDR5_OAS)); 440 /* 441 * It is ILLEGAL for the address in S2TTB to be outside the range 442 * described by the effective S2PS value. 443 */ 444 if (cfg->s2cfg.vttb & ~(MAKE_64BIT_MASK(0, cfg->s2cfg.eff_ps))) { 445 qemu_log_mask(LOG_GUEST_ERROR, 446 "SMMUv3 S2TTB too large 0x%" PRIx64 447 ", effective PS %d bits\n", 448 cfg->s2cfg.vttb, cfg->s2cfg.eff_ps); 449 goto bad_ste; 450 } 451 452 cfg->s2cfg.tsz = STE_S2T0SZ(ste); 453 454 if (!s2t0sz_valid(cfg)) { 455 qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 bad STE S2T0SZ = %d\n", 456 cfg->s2cfg.tsz); 457 goto bad_ste; 458 } 459 460 if (!s2_pgtable_config_valid(cfg->s2cfg.sl0, cfg->s2cfg.tsz, 461 cfg->s2cfg.granule_sz)) { 462 qemu_log_mask(LOG_GUEST_ERROR, 463 "SMMUv3 STE stage 2 config not valid!\n"); 464 goto bad_ste; 465 } 466 467 /* Only LE supported(IDR0.TTENDIAN). */ 468 if (STE_S2ENDI(ste)) { 469 qemu_log_mask(LOG_GUEST_ERROR, 470 "SMMUv3 STE_S2ENDI only supports LE!\n"); 471 goto bad_ste; 472 } 473 474 cfg->s2cfg.affd = STE_S2AFFD(ste); 475 476 cfg->s2cfg.record_faults = STE_S2R(ste); 477 /* As stall is not supported. */ 478 if (STE_S2S(ste)) { 479 qemu_log_mask(LOG_UNIMP, "SMMUv3 Stall not implemented!\n"); 480 goto bad_ste; 481 } 482 483 return 0; 484 485 bad_ste: 486 return -EINVAL; 487 } 488 489 /* Returns < 0 in case of invalid STE, 0 otherwise */ 490 static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg, 491 STE *ste, SMMUEventInfo *event) 492 { 493 uint32_t config; 494 int ret; 495 496 if (!STE_VALID(ste)) { 497 if (!event->inval_ste_allowed) { 498 qemu_log_mask(LOG_GUEST_ERROR, "invalid STE\n"); 499 } 500 goto bad_ste; 501 } 502 503 config = STE_CONFIG(ste); 504 505 if (STE_CFG_ABORT(config)) { 506 cfg->aborted = true; 507 return 0; 508 } 509 510 if (STE_CFG_BYPASS(config)) { 511 cfg->bypassed = true; 512 return 0; 513 } 514 515 /* 516 * If a stage is enabled in SW while not advertised, throw bad ste 517 * according to user manual(IHI0070E) "5.2 Stream Table Entry". 518 */ 519 if (!STAGE1_SUPPORTED(s) && STE_CFG_S1_ENABLED(config)) { 520 qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 S1 used but not supported.\n"); 521 goto bad_ste; 522 } 523 if (!STAGE2_SUPPORTED(s) && STE_CFG_S2_ENABLED(config)) { 524 qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 S2 used but not supported.\n"); 525 goto bad_ste; 526 } 527 528 if (STAGE2_SUPPORTED(s)) { 529 /* VMID is considered even if s2 is disabled. */ 530 cfg->s2cfg.vmid = STE_S2VMID(ste); 531 } else { 532 /* Default to -1 */ 533 cfg->s2cfg.vmid = -1; 534 } 535 536 if (STE_CFG_S2_ENABLED(config)) { 537 /* 538 * Stage-1 OAS defaults to OAS even if not enabled as it would be used 539 * in input address check for stage-2. 540 */ 541 cfg->oas = oas2bits(SMMU_IDR5_OAS); 542 ret = decode_ste_s2_cfg(cfg, ste); 543 if (ret) { 544 goto bad_ste; 545 } 546 } 547 548 if (STE_S1CDMAX(ste) != 0) { 549 qemu_log_mask(LOG_UNIMP, 550 "SMMUv3 does not support multiple context descriptors yet\n"); 551 goto bad_ste; 552 } 553 554 if (STE_S1STALLD(ste)) { 555 qemu_log_mask(LOG_UNIMP, 556 "SMMUv3 S1 stalling fault model not allowed yet\n"); 557 goto bad_ste; 558 } 559 return 0; 560 561 bad_ste: 562 event->type = SMMU_EVT_C_BAD_STE; 563 return -EINVAL; 564 } 565 566 /** 567 * smmu_find_ste - Return the stream table entry associated 568 * to the sid 569 * 570 * @s: smmuv3 handle 571 * @sid: stream ID 572 * @ste: returned stream table entry 573 * @event: handle to an event info 574 * 575 * Supports linear and 2-level stream table 576 * Return 0 on success, -EINVAL otherwise 577 */ 578 static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste, 579 SMMUEventInfo *event) 580 { 581 dma_addr_t addr, strtab_base; 582 uint32_t log2size; 583 int strtab_size_shift; 584 int ret; 585 586 trace_smmuv3_find_ste(sid, s->features, s->sid_split); 587 log2size = FIELD_EX32(s->strtab_base_cfg, STRTAB_BASE_CFG, LOG2SIZE); 588 /* 589 * Check SID range against both guest-configured and implementation limits 590 */ 591 if (sid >= (1 << MIN(log2size, SMMU_IDR1_SIDSIZE))) { 592 event->type = SMMU_EVT_C_BAD_STREAMID; 593 return -EINVAL; 594 } 595 if (s->features & SMMU_FEATURE_2LVL_STE) { 596 int l1_ste_offset, l2_ste_offset, max_l2_ste, span, i; 597 dma_addr_t l1ptr, l2ptr; 598 STEDesc l1std; 599 600 /* 601 * Align strtab base address to table size. For this purpose, assume it 602 * is not bounded by SMMU_IDR1_SIDSIZE. 603 */ 604 strtab_size_shift = MAX(5, (int)log2size - s->sid_split - 1 + 3); 605 strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK & 606 ~MAKE_64BIT_MASK(0, strtab_size_shift); 607 l1_ste_offset = sid >> s->sid_split; 608 l2_ste_offset = sid & ((1 << s->sid_split) - 1); 609 l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std)); 610 /* TODO: guarantee 64-bit single-copy atomicity */ 611 ret = dma_memory_read(&address_space_memory, l1ptr, &l1std, 612 sizeof(l1std), MEMTXATTRS_UNSPECIFIED); 613 if (ret != MEMTX_OK) { 614 qemu_log_mask(LOG_GUEST_ERROR, 615 "Could not read L1PTR at 0X%"PRIx64"\n", l1ptr); 616 event->type = SMMU_EVT_F_STE_FETCH; 617 event->u.f_ste_fetch.addr = l1ptr; 618 return -EINVAL; 619 } 620 for (i = 0; i < ARRAY_SIZE(l1std.word); i++) { 621 le32_to_cpus(&l1std.word[i]); 622 } 623 624 span = L1STD_SPAN(&l1std); 625 626 if (!span) { 627 /* l2ptr is not valid */ 628 if (!event->inval_ste_allowed) { 629 qemu_log_mask(LOG_GUEST_ERROR, 630 "invalid sid=%d (L1STD span=0)\n", sid); 631 } 632 event->type = SMMU_EVT_C_BAD_STREAMID; 633 return -EINVAL; 634 } 635 max_l2_ste = (1 << span) - 1; 636 l2ptr = l1std_l2ptr(&l1std); 637 trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset, 638 l2ptr, l2_ste_offset, max_l2_ste); 639 if (l2_ste_offset > max_l2_ste) { 640 qemu_log_mask(LOG_GUEST_ERROR, 641 "l2_ste_offset=%d > max_l2_ste=%d\n", 642 l2_ste_offset, max_l2_ste); 643 event->type = SMMU_EVT_C_BAD_STE; 644 return -EINVAL; 645 } 646 addr = l2ptr + l2_ste_offset * sizeof(*ste); 647 } else { 648 strtab_size_shift = log2size + 5; 649 strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK & 650 ~MAKE_64BIT_MASK(0, strtab_size_shift); 651 addr = strtab_base + sid * sizeof(*ste); 652 } 653 654 if (smmu_get_ste(s, addr, ste, event)) { 655 return -EINVAL; 656 } 657 658 return 0; 659 } 660 661 static int decode_cd(SMMUTransCfg *cfg, CD *cd, SMMUEventInfo *event) 662 { 663 int ret = -EINVAL; 664 int i; 665 666 if (!CD_VALID(cd) || !CD_AARCH64(cd)) { 667 goto bad_cd; 668 } 669 if (!CD_A(cd)) { 670 goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */ 671 } 672 if (CD_S(cd)) { 673 goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */ 674 } 675 if (CD_HA(cd) || CD_HD(cd)) { 676 goto bad_cd; /* HTTU = 0 */ 677 } 678 679 /* we support only those at the moment */ 680 cfg->aa64 = true; 681 cfg->stage = 1; 682 683 cfg->oas = oas2bits(CD_IPS(cd)); 684 cfg->oas = MIN(oas2bits(SMMU_IDR5_OAS), cfg->oas); 685 cfg->tbi = CD_TBI(cd); 686 cfg->asid = CD_ASID(cd); 687 688 trace_smmuv3_decode_cd(cfg->oas); 689 690 /* decode data dependent on TT */ 691 for (i = 0; i <= 1; i++) { 692 int tg, tsz; 693 SMMUTransTableInfo *tt = &cfg->tt[i]; 694 695 cfg->tt[i].disabled = CD_EPD(cd, i); 696 if (cfg->tt[i].disabled) { 697 continue; 698 } 699 700 tsz = CD_TSZ(cd, i); 701 if (tsz < 16 || tsz > 39) { 702 goto bad_cd; 703 } 704 705 tg = CD_TG(cd, i); 706 tt->granule_sz = tg2granule(tg, i); 707 if ((tt->granule_sz != 12 && tt->granule_sz != 14 && 708 tt->granule_sz != 16) || CD_ENDI(cd)) { 709 goto bad_cd; 710 } 711 712 tt->tsz = tsz; 713 tt->ttb = CD_TTB(cd, i); 714 if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) { 715 goto bad_cd; 716 } 717 tt->had = CD_HAD(cd, i); 718 trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz, tt->had); 719 } 720 721 cfg->record_faults = CD_R(cd); 722 723 return 0; 724 725 bad_cd: 726 event->type = SMMU_EVT_C_BAD_CD; 727 return ret; 728 } 729 730 /** 731 * smmuv3_decode_config - Prepare the translation configuration 732 * for the @mr iommu region 733 * @mr: iommu memory region the translation config must be prepared for 734 * @cfg: output translation configuration which is populated through 735 * the different configuration decoding steps 736 * @event: must be zero'ed by the caller 737 * 738 * return < 0 in case of config decoding error (@event is filled 739 * accordingly). Return 0 otherwise. 740 */ 741 static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg, 742 SMMUEventInfo *event) 743 { 744 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu); 745 uint32_t sid = smmu_get_sid(sdev); 746 SMMUv3State *s = sdev->smmu; 747 int ret; 748 STE ste; 749 CD cd; 750 751 /* ASID defaults to -1 (if s1 is not supported). */ 752 cfg->asid = -1; 753 754 ret = smmu_find_ste(s, sid, &ste, event); 755 if (ret) { 756 return ret; 757 } 758 759 ret = decode_ste(s, cfg, &ste, event); 760 if (ret) { 761 return ret; 762 } 763 764 if (cfg->aborted || cfg->bypassed || (cfg->stage == 2)) { 765 return 0; 766 } 767 768 ret = smmu_get_cd(s, &ste, 0 /* ssid */, &cd, event); 769 if (ret) { 770 return ret; 771 } 772 773 return decode_cd(cfg, &cd, event); 774 } 775 776 /** 777 * smmuv3_get_config - Look up for a cached copy of configuration data for 778 * @sdev and on cache miss performs a configuration structure decoding from 779 * guest RAM. 780 * 781 * @sdev: SMMUDevice handle 782 * @event: output event info 783 * 784 * The configuration cache contains data resulting from both STE and CD 785 * decoding under the form of an SMMUTransCfg struct. The hash table is indexed 786 * by the SMMUDevice handle. 787 */ 788 static SMMUTransCfg *smmuv3_get_config(SMMUDevice *sdev, SMMUEventInfo *event) 789 { 790 SMMUv3State *s = sdev->smmu; 791 SMMUState *bc = &s->smmu_state; 792 SMMUTransCfg *cfg; 793 794 cfg = g_hash_table_lookup(bc->configs, sdev); 795 if (cfg) { 796 sdev->cfg_cache_hits++; 797 trace_smmuv3_config_cache_hit(smmu_get_sid(sdev), 798 sdev->cfg_cache_hits, sdev->cfg_cache_misses, 799 100 * sdev->cfg_cache_hits / 800 (sdev->cfg_cache_hits + sdev->cfg_cache_misses)); 801 } else { 802 sdev->cfg_cache_misses++; 803 trace_smmuv3_config_cache_miss(smmu_get_sid(sdev), 804 sdev->cfg_cache_hits, sdev->cfg_cache_misses, 805 100 * sdev->cfg_cache_hits / 806 (sdev->cfg_cache_hits + sdev->cfg_cache_misses)); 807 cfg = g_new0(SMMUTransCfg, 1); 808 809 if (!smmuv3_decode_config(&sdev->iommu, cfg, event)) { 810 g_hash_table_insert(bc->configs, sdev, cfg); 811 } else { 812 g_free(cfg); 813 cfg = NULL; 814 } 815 } 816 return cfg; 817 } 818 819 static void smmuv3_flush_config(SMMUDevice *sdev) 820 { 821 SMMUv3State *s = sdev->smmu; 822 SMMUState *bc = &s->smmu_state; 823 824 trace_smmuv3_config_cache_inv(smmu_get_sid(sdev)); 825 g_hash_table_remove(bc->configs, sdev); 826 } 827 828 static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr, 829 IOMMUAccessFlags flag, int iommu_idx) 830 { 831 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu); 832 SMMUv3State *s = sdev->smmu; 833 uint32_t sid = smmu_get_sid(sdev); 834 SMMUEventInfo event = {.type = SMMU_EVT_NONE, 835 .sid = sid, 836 .inval_ste_allowed = false}; 837 SMMUPTWEventInfo ptw_info = {}; 838 SMMUTranslationStatus status; 839 SMMUState *bs = ARM_SMMU(s); 840 uint64_t page_mask, aligned_addr; 841 SMMUTLBEntry *cached_entry = NULL; 842 SMMUTransTableInfo *tt; 843 SMMUTransCfg *cfg = NULL; 844 IOMMUTLBEntry entry = { 845 .target_as = &address_space_memory, 846 .iova = addr, 847 .translated_addr = addr, 848 .addr_mask = ~(hwaddr)0, 849 .perm = IOMMU_NONE, 850 }; 851 /* 852 * Combined attributes used for TLB lookup, as only one stage is supported, 853 * it will hold attributes based on the enabled stage. 854 */ 855 SMMUTransTableInfo tt_combined; 856 857 qemu_mutex_lock(&s->mutex); 858 859 if (!smmu_enabled(s)) { 860 if (FIELD_EX32(s->gbpa, GBPA, ABORT)) { 861 status = SMMU_TRANS_ABORT; 862 } else { 863 status = SMMU_TRANS_DISABLE; 864 } 865 goto epilogue; 866 } 867 868 cfg = smmuv3_get_config(sdev, &event); 869 if (!cfg) { 870 status = SMMU_TRANS_ERROR; 871 goto epilogue; 872 } 873 874 if (cfg->aborted) { 875 status = SMMU_TRANS_ABORT; 876 goto epilogue; 877 } 878 879 if (cfg->bypassed) { 880 status = SMMU_TRANS_BYPASS; 881 goto epilogue; 882 } 883 884 if (cfg->stage == 1) { 885 /* Select stage1 translation table. */ 886 tt = select_tt(cfg, addr); 887 if (!tt) { 888 if (cfg->record_faults) { 889 event.type = SMMU_EVT_F_TRANSLATION; 890 event.u.f_translation.addr = addr; 891 event.u.f_translation.rnw = flag & 0x1; 892 } 893 status = SMMU_TRANS_ERROR; 894 goto epilogue; 895 } 896 tt_combined.granule_sz = tt->granule_sz; 897 tt_combined.tsz = tt->tsz; 898 899 } else { 900 /* Stage2. */ 901 tt_combined.granule_sz = cfg->s2cfg.granule_sz; 902 tt_combined.tsz = cfg->s2cfg.tsz; 903 } 904 /* 905 * TLB lookup looks for granule and input size for a translation stage, 906 * as only one stage is supported right now, choose the right values 907 * from the configuration. 908 */ 909 page_mask = (1ULL << tt_combined.granule_sz) - 1; 910 aligned_addr = addr & ~page_mask; 911 912 cached_entry = smmu_iotlb_lookup(bs, cfg, &tt_combined, aligned_addr); 913 if (cached_entry) { 914 if ((flag & IOMMU_WO) && !(cached_entry->entry.perm & IOMMU_WO)) { 915 status = SMMU_TRANS_ERROR; 916 /* 917 * We know that the TLB only contains either stage-1 or stage-2 as 918 * nesting is not supported. So it is sufficient to check the 919 * translation stage to know the TLB stage for now. 920 */ 921 event.u.f_walk_eabt.s2 = (cfg->stage == 2); 922 if (PTW_RECORD_FAULT(cfg)) { 923 event.type = SMMU_EVT_F_PERMISSION; 924 event.u.f_permission.addr = addr; 925 event.u.f_permission.rnw = flag & 0x1; 926 } 927 } else { 928 status = SMMU_TRANS_SUCCESS; 929 } 930 goto epilogue; 931 } 932 933 cached_entry = g_new0(SMMUTLBEntry, 1); 934 935 if (smmu_ptw(cfg, aligned_addr, flag, cached_entry, &ptw_info)) { 936 /* All faults from PTW has S2 field. */ 937 event.u.f_walk_eabt.s2 = (ptw_info.stage == 2); 938 g_free(cached_entry); 939 switch (ptw_info.type) { 940 case SMMU_PTW_ERR_WALK_EABT: 941 event.type = SMMU_EVT_F_WALK_EABT; 942 event.u.f_walk_eabt.addr = addr; 943 event.u.f_walk_eabt.rnw = flag & 0x1; 944 event.u.f_walk_eabt.class = 0x1; 945 event.u.f_walk_eabt.addr2 = ptw_info.addr; 946 break; 947 case SMMU_PTW_ERR_TRANSLATION: 948 if (PTW_RECORD_FAULT(cfg)) { 949 event.type = SMMU_EVT_F_TRANSLATION; 950 event.u.f_translation.addr = addr; 951 event.u.f_translation.rnw = flag & 0x1; 952 } 953 break; 954 case SMMU_PTW_ERR_ADDR_SIZE: 955 if (PTW_RECORD_FAULT(cfg)) { 956 event.type = SMMU_EVT_F_ADDR_SIZE; 957 event.u.f_addr_size.addr = addr; 958 event.u.f_addr_size.rnw = flag & 0x1; 959 } 960 break; 961 case SMMU_PTW_ERR_ACCESS: 962 if (PTW_RECORD_FAULT(cfg)) { 963 event.type = SMMU_EVT_F_ACCESS; 964 event.u.f_access.addr = addr; 965 event.u.f_access.rnw = flag & 0x1; 966 } 967 break; 968 case SMMU_PTW_ERR_PERMISSION: 969 if (PTW_RECORD_FAULT(cfg)) { 970 event.type = SMMU_EVT_F_PERMISSION; 971 event.u.f_permission.addr = addr; 972 event.u.f_permission.rnw = flag & 0x1; 973 } 974 break; 975 default: 976 g_assert_not_reached(); 977 } 978 status = SMMU_TRANS_ERROR; 979 } else { 980 smmu_iotlb_insert(bs, cfg, cached_entry); 981 status = SMMU_TRANS_SUCCESS; 982 } 983 984 epilogue: 985 qemu_mutex_unlock(&s->mutex); 986 switch (status) { 987 case SMMU_TRANS_SUCCESS: 988 entry.perm = cached_entry->entry.perm; 989 entry.translated_addr = cached_entry->entry.translated_addr + 990 (addr & cached_entry->entry.addr_mask); 991 entry.addr_mask = cached_entry->entry.addr_mask; 992 trace_smmuv3_translate_success(mr->parent_obj.name, sid, addr, 993 entry.translated_addr, entry.perm); 994 break; 995 case SMMU_TRANS_DISABLE: 996 entry.perm = flag; 997 entry.addr_mask = ~TARGET_PAGE_MASK; 998 trace_smmuv3_translate_disable(mr->parent_obj.name, sid, addr, 999 entry.perm); 1000 break; 1001 case SMMU_TRANS_BYPASS: 1002 entry.perm = flag; 1003 entry.addr_mask = ~TARGET_PAGE_MASK; 1004 trace_smmuv3_translate_bypass(mr->parent_obj.name, sid, addr, 1005 entry.perm); 1006 break; 1007 case SMMU_TRANS_ABORT: 1008 /* no event is recorded on abort */ 1009 trace_smmuv3_translate_abort(mr->parent_obj.name, sid, addr, 1010 entry.perm); 1011 break; 1012 case SMMU_TRANS_ERROR: 1013 qemu_log_mask(LOG_GUEST_ERROR, 1014 "%s translation failed for iova=0x%"PRIx64" (%s)\n", 1015 mr->parent_obj.name, addr, smmu_event_string(event.type)); 1016 smmuv3_record_event(s, &event); 1017 break; 1018 } 1019 1020 return entry; 1021 } 1022 1023 /** 1024 * smmuv3_notify_iova - call the notifier @n for a given 1025 * @asid and @iova tuple. 1026 * 1027 * @mr: IOMMU mr region handle 1028 * @n: notifier to be called 1029 * @asid: address space ID or negative value if we don't care 1030 * @vmid: virtual machine ID or negative value if we don't care 1031 * @iova: iova 1032 * @tg: translation granule (if communicated through range invalidation) 1033 * @num_pages: number of @granule sized pages (if tg != 0), otherwise 1 1034 */ 1035 static void smmuv3_notify_iova(IOMMUMemoryRegion *mr, 1036 IOMMUNotifier *n, 1037 int asid, int vmid, 1038 dma_addr_t iova, uint8_t tg, 1039 uint64_t num_pages) 1040 { 1041 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu); 1042 IOMMUTLBEvent event; 1043 uint8_t granule; 1044 SMMUv3State *s = sdev->smmu; 1045 1046 if (!tg) { 1047 SMMUEventInfo eventinfo = {.inval_ste_allowed = true}; 1048 SMMUTransCfg *cfg = smmuv3_get_config(sdev, &eventinfo); 1049 SMMUTransTableInfo *tt; 1050 1051 if (!cfg) { 1052 return; 1053 } 1054 1055 if (asid >= 0 && cfg->asid != asid) { 1056 return; 1057 } 1058 1059 if (vmid >= 0 && cfg->s2cfg.vmid != vmid) { 1060 return; 1061 } 1062 1063 if (STAGE1_SUPPORTED(s)) { 1064 tt = select_tt(cfg, iova); 1065 if (!tt) { 1066 return; 1067 } 1068 granule = tt->granule_sz; 1069 } else { 1070 granule = cfg->s2cfg.granule_sz; 1071 } 1072 1073 } else { 1074 granule = tg * 2 + 10; 1075 } 1076 1077 event.type = IOMMU_NOTIFIER_UNMAP; 1078 event.entry.target_as = &address_space_memory; 1079 event.entry.iova = iova; 1080 event.entry.addr_mask = num_pages * (1 << granule) - 1; 1081 event.entry.perm = IOMMU_NONE; 1082 1083 memory_region_notify_iommu_one(n, &event); 1084 } 1085 1086 /* invalidate an asid/vmid/iova range tuple in all mr's */ 1087 static void smmuv3_inv_notifiers_iova(SMMUState *s, int asid, int vmid, 1088 dma_addr_t iova, uint8_t tg, 1089 uint64_t num_pages) 1090 { 1091 SMMUDevice *sdev; 1092 1093 QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) { 1094 IOMMUMemoryRegion *mr = &sdev->iommu; 1095 IOMMUNotifier *n; 1096 1097 trace_smmuv3_inv_notifiers_iova(mr->parent_obj.name, asid, vmid, 1098 iova, tg, num_pages); 1099 1100 IOMMU_NOTIFIER_FOREACH(n, mr) { 1101 smmuv3_notify_iova(mr, n, asid, vmid, iova, tg, num_pages); 1102 } 1103 } 1104 } 1105 1106 static void smmuv3_range_inval(SMMUState *s, Cmd *cmd) 1107 { 1108 dma_addr_t end, addr = CMD_ADDR(cmd); 1109 uint8_t type = CMD_TYPE(cmd); 1110 int vmid = -1; 1111 uint8_t scale = CMD_SCALE(cmd); 1112 uint8_t num = CMD_NUM(cmd); 1113 uint8_t ttl = CMD_TTL(cmd); 1114 bool leaf = CMD_LEAF(cmd); 1115 uint8_t tg = CMD_TG(cmd); 1116 uint64_t num_pages; 1117 uint8_t granule; 1118 int asid = -1; 1119 SMMUv3State *smmuv3 = ARM_SMMUV3(s); 1120 1121 /* Only consider VMID if stage-2 is supported. */ 1122 if (STAGE2_SUPPORTED(smmuv3)) { 1123 vmid = CMD_VMID(cmd); 1124 } 1125 1126 if (type == SMMU_CMD_TLBI_NH_VA) { 1127 asid = CMD_ASID(cmd); 1128 } 1129 1130 if (!tg) { 1131 trace_smmuv3_range_inval(vmid, asid, addr, tg, 1, ttl, leaf); 1132 smmuv3_inv_notifiers_iova(s, asid, vmid, addr, tg, 1); 1133 smmu_iotlb_inv_iova(s, asid, vmid, addr, tg, 1, ttl); 1134 return; 1135 } 1136 1137 /* RIL in use */ 1138 1139 num_pages = (num + 1) * BIT_ULL(scale); 1140 granule = tg * 2 + 10; 1141 1142 /* Split invalidations into ^2 range invalidations */ 1143 end = addr + (num_pages << granule) - 1; 1144 1145 while (addr != end + 1) { 1146 uint64_t mask = dma_aligned_pow2_mask(addr, end, 64); 1147 1148 num_pages = (mask + 1) >> granule; 1149 trace_smmuv3_range_inval(vmid, asid, addr, tg, num_pages, ttl, leaf); 1150 smmuv3_inv_notifiers_iova(s, asid, vmid, addr, tg, num_pages); 1151 smmu_iotlb_inv_iova(s, asid, vmid, addr, tg, num_pages, ttl); 1152 addr += mask + 1; 1153 } 1154 } 1155 1156 static gboolean 1157 smmuv3_invalidate_ste(gpointer key, gpointer value, gpointer user_data) 1158 { 1159 SMMUDevice *sdev = (SMMUDevice *)key; 1160 uint32_t sid = smmu_get_sid(sdev); 1161 SMMUSIDRange *sid_range = (SMMUSIDRange *)user_data; 1162 1163 if (sid < sid_range->start || sid > sid_range->end) { 1164 return false; 1165 } 1166 trace_smmuv3_config_cache_inv(sid); 1167 return true; 1168 } 1169 1170 static int smmuv3_cmdq_consume(SMMUv3State *s) 1171 { 1172 SMMUState *bs = ARM_SMMU(s); 1173 SMMUCmdError cmd_error = SMMU_CERROR_NONE; 1174 SMMUQueue *q = &s->cmdq; 1175 SMMUCommandType type = 0; 1176 1177 if (!smmuv3_cmdq_enabled(s)) { 1178 return 0; 1179 } 1180 /* 1181 * some commands depend on register values, typically CR0. In case those 1182 * register values change while handling the command, spec says it 1183 * is UNPREDICTABLE whether the command is interpreted under the new 1184 * or old value. 1185 */ 1186 1187 while (!smmuv3_q_empty(q)) { 1188 uint32_t pending = s->gerror ^ s->gerrorn; 1189 Cmd cmd; 1190 1191 trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q), 1192 Q_PROD_WRAP(q), Q_CONS_WRAP(q)); 1193 1194 if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) { 1195 break; 1196 } 1197 1198 if (queue_read(q, &cmd) != MEMTX_OK) { 1199 cmd_error = SMMU_CERROR_ABT; 1200 break; 1201 } 1202 1203 type = CMD_TYPE(&cmd); 1204 1205 trace_smmuv3_cmdq_opcode(smmu_cmd_string(type)); 1206 1207 qemu_mutex_lock(&s->mutex); 1208 switch (type) { 1209 case SMMU_CMD_SYNC: 1210 if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) { 1211 smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0); 1212 } 1213 break; 1214 case SMMU_CMD_PREFETCH_CONFIG: 1215 case SMMU_CMD_PREFETCH_ADDR: 1216 break; 1217 case SMMU_CMD_CFGI_STE: 1218 { 1219 uint32_t sid = CMD_SID(&cmd); 1220 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid); 1221 SMMUDevice *sdev; 1222 1223 if (CMD_SSEC(&cmd)) { 1224 cmd_error = SMMU_CERROR_ILL; 1225 break; 1226 } 1227 1228 if (!mr) { 1229 break; 1230 } 1231 1232 trace_smmuv3_cmdq_cfgi_ste(sid); 1233 sdev = container_of(mr, SMMUDevice, iommu); 1234 smmuv3_flush_config(sdev); 1235 1236 break; 1237 } 1238 case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */ 1239 { 1240 uint32_t sid = CMD_SID(&cmd), mask; 1241 uint8_t range = CMD_STE_RANGE(&cmd); 1242 SMMUSIDRange sid_range; 1243 1244 if (CMD_SSEC(&cmd)) { 1245 cmd_error = SMMU_CERROR_ILL; 1246 break; 1247 } 1248 1249 mask = (1ULL << (range + 1)) - 1; 1250 sid_range.start = sid & ~mask; 1251 sid_range.end = sid_range.start + mask; 1252 1253 trace_smmuv3_cmdq_cfgi_ste_range(sid_range.start, sid_range.end); 1254 g_hash_table_foreach_remove(bs->configs, smmuv3_invalidate_ste, 1255 &sid_range); 1256 break; 1257 } 1258 case SMMU_CMD_CFGI_CD: 1259 case SMMU_CMD_CFGI_CD_ALL: 1260 { 1261 uint32_t sid = CMD_SID(&cmd); 1262 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid); 1263 SMMUDevice *sdev; 1264 1265 if (CMD_SSEC(&cmd)) { 1266 cmd_error = SMMU_CERROR_ILL; 1267 break; 1268 } 1269 1270 if (!mr) { 1271 break; 1272 } 1273 1274 trace_smmuv3_cmdq_cfgi_cd(sid); 1275 sdev = container_of(mr, SMMUDevice, iommu); 1276 smmuv3_flush_config(sdev); 1277 break; 1278 } 1279 case SMMU_CMD_TLBI_NH_ASID: 1280 { 1281 uint16_t asid = CMD_ASID(&cmd); 1282 1283 if (!STAGE1_SUPPORTED(s)) { 1284 cmd_error = SMMU_CERROR_ILL; 1285 break; 1286 } 1287 1288 trace_smmuv3_cmdq_tlbi_nh_asid(asid); 1289 smmu_inv_notifiers_all(&s->smmu_state); 1290 smmu_iotlb_inv_asid(bs, asid); 1291 break; 1292 } 1293 case SMMU_CMD_TLBI_NH_ALL: 1294 if (!STAGE1_SUPPORTED(s)) { 1295 cmd_error = SMMU_CERROR_ILL; 1296 break; 1297 } 1298 QEMU_FALLTHROUGH; 1299 case SMMU_CMD_TLBI_NSNH_ALL: 1300 trace_smmuv3_cmdq_tlbi_nh(); 1301 smmu_inv_notifiers_all(&s->smmu_state); 1302 smmu_iotlb_inv_all(bs); 1303 break; 1304 case SMMU_CMD_TLBI_NH_VAA: 1305 case SMMU_CMD_TLBI_NH_VA: 1306 if (!STAGE1_SUPPORTED(s)) { 1307 cmd_error = SMMU_CERROR_ILL; 1308 break; 1309 } 1310 smmuv3_range_inval(bs, &cmd); 1311 break; 1312 case SMMU_CMD_TLBI_S12_VMALL: 1313 { 1314 uint16_t vmid = CMD_VMID(&cmd); 1315 1316 if (!STAGE2_SUPPORTED(s)) { 1317 cmd_error = SMMU_CERROR_ILL; 1318 break; 1319 } 1320 1321 trace_smmuv3_cmdq_tlbi_s12_vmid(vmid); 1322 smmu_inv_notifiers_all(&s->smmu_state); 1323 smmu_iotlb_inv_vmid(bs, vmid); 1324 break; 1325 } 1326 case SMMU_CMD_TLBI_S2_IPA: 1327 if (!STAGE2_SUPPORTED(s)) { 1328 cmd_error = SMMU_CERROR_ILL; 1329 break; 1330 } 1331 /* 1332 * As currently only either s1 or s2 are supported 1333 * we can reuse same function for s2. 1334 */ 1335 smmuv3_range_inval(bs, &cmd); 1336 break; 1337 case SMMU_CMD_TLBI_EL3_ALL: 1338 case SMMU_CMD_TLBI_EL3_VA: 1339 case SMMU_CMD_TLBI_EL2_ALL: 1340 case SMMU_CMD_TLBI_EL2_ASID: 1341 case SMMU_CMD_TLBI_EL2_VA: 1342 case SMMU_CMD_TLBI_EL2_VAA: 1343 case SMMU_CMD_ATC_INV: 1344 case SMMU_CMD_PRI_RESP: 1345 case SMMU_CMD_RESUME: 1346 case SMMU_CMD_STALL_TERM: 1347 trace_smmuv3_unhandled_cmd(type); 1348 break; 1349 default: 1350 cmd_error = SMMU_CERROR_ILL; 1351 break; 1352 } 1353 qemu_mutex_unlock(&s->mutex); 1354 if (cmd_error) { 1355 if (cmd_error == SMMU_CERROR_ILL) { 1356 qemu_log_mask(LOG_GUEST_ERROR, 1357 "Illegal command type: %d\n", CMD_TYPE(&cmd)); 1358 } 1359 break; 1360 } 1361 /* 1362 * We only increment the cons index after the completion of 1363 * the command. We do that because the SYNC returns immediately 1364 * and does not check the completion of previous commands 1365 */ 1366 queue_cons_incr(q); 1367 } 1368 1369 if (cmd_error) { 1370 trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error); 1371 smmu_write_cmdq_err(s, cmd_error); 1372 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK); 1373 } 1374 1375 trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q), 1376 Q_PROD_WRAP(q), Q_CONS_WRAP(q)); 1377 1378 return 0; 1379 } 1380 1381 static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset, 1382 uint64_t data, MemTxAttrs attrs) 1383 { 1384 switch (offset) { 1385 case A_GERROR_IRQ_CFG0: 1386 s->gerror_irq_cfg0 = data; 1387 return MEMTX_OK; 1388 case A_STRTAB_BASE: 1389 s->strtab_base = data; 1390 return MEMTX_OK; 1391 case A_CMDQ_BASE: 1392 s->cmdq.base = data; 1393 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5); 1394 if (s->cmdq.log2size > SMMU_CMDQS) { 1395 s->cmdq.log2size = SMMU_CMDQS; 1396 } 1397 return MEMTX_OK; 1398 case A_EVENTQ_BASE: 1399 s->eventq.base = data; 1400 s->eventq.log2size = extract64(s->eventq.base, 0, 5); 1401 if (s->eventq.log2size > SMMU_EVENTQS) { 1402 s->eventq.log2size = SMMU_EVENTQS; 1403 } 1404 return MEMTX_OK; 1405 case A_EVENTQ_IRQ_CFG0: 1406 s->eventq_irq_cfg0 = data; 1407 return MEMTX_OK; 1408 default: 1409 qemu_log_mask(LOG_UNIMP, 1410 "%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n", 1411 __func__, offset); 1412 return MEMTX_OK; 1413 } 1414 } 1415 1416 static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset, 1417 uint64_t data, MemTxAttrs attrs) 1418 { 1419 switch (offset) { 1420 case A_CR0: 1421 s->cr[0] = data; 1422 s->cr0ack = data & ~SMMU_CR0_RESERVED; 1423 /* in case the command queue has been enabled */ 1424 smmuv3_cmdq_consume(s); 1425 return MEMTX_OK; 1426 case A_CR1: 1427 s->cr[1] = data; 1428 return MEMTX_OK; 1429 case A_CR2: 1430 s->cr[2] = data; 1431 return MEMTX_OK; 1432 case A_IRQ_CTRL: 1433 s->irq_ctrl = data; 1434 return MEMTX_OK; 1435 case A_GERRORN: 1436 smmuv3_write_gerrorn(s, data); 1437 /* 1438 * By acknowledging the CMDQ_ERR, SW may notify cmds can 1439 * be processed again 1440 */ 1441 smmuv3_cmdq_consume(s); 1442 return MEMTX_OK; 1443 case A_GERROR_IRQ_CFG0: /* 64b */ 1444 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data); 1445 return MEMTX_OK; 1446 case A_GERROR_IRQ_CFG0 + 4: 1447 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data); 1448 return MEMTX_OK; 1449 case A_GERROR_IRQ_CFG1: 1450 s->gerror_irq_cfg1 = data; 1451 return MEMTX_OK; 1452 case A_GERROR_IRQ_CFG2: 1453 s->gerror_irq_cfg2 = data; 1454 return MEMTX_OK; 1455 case A_GBPA: 1456 /* 1457 * If UPDATE is not set, the write is ignored. This is the only 1458 * permitted behavior in SMMUv3.2 and later. 1459 */ 1460 if (data & R_GBPA_UPDATE_MASK) { 1461 /* Ignore update bit as write is synchronous. */ 1462 s->gbpa = data & ~R_GBPA_UPDATE_MASK; 1463 } 1464 return MEMTX_OK; 1465 case A_STRTAB_BASE: /* 64b */ 1466 s->strtab_base = deposit64(s->strtab_base, 0, 32, data); 1467 return MEMTX_OK; 1468 case A_STRTAB_BASE + 4: 1469 s->strtab_base = deposit64(s->strtab_base, 32, 32, data); 1470 return MEMTX_OK; 1471 case A_STRTAB_BASE_CFG: 1472 s->strtab_base_cfg = data; 1473 if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) { 1474 s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT); 1475 s->features |= SMMU_FEATURE_2LVL_STE; 1476 } 1477 return MEMTX_OK; 1478 case A_CMDQ_BASE: /* 64b */ 1479 s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data); 1480 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5); 1481 if (s->cmdq.log2size > SMMU_CMDQS) { 1482 s->cmdq.log2size = SMMU_CMDQS; 1483 } 1484 return MEMTX_OK; 1485 case A_CMDQ_BASE + 4: /* 64b */ 1486 s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data); 1487 return MEMTX_OK; 1488 case A_CMDQ_PROD: 1489 s->cmdq.prod = data; 1490 smmuv3_cmdq_consume(s); 1491 return MEMTX_OK; 1492 case A_CMDQ_CONS: 1493 s->cmdq.cons = data; 1494 return MEMTX_OK; 1495 case A_EVENTQ_BASE: /* 64b */ 1496 s->eventq.base = deposit64(s->eventq.base, 0, 32, data); 1497 s->eventq.log2size = extract64(s->eventq.base, 0, 5); 1498 if (s->eventq.log2size > SMMU_EVENTQS) { 1499 s->eventq.log2size = SMMU_EVENTQS; 1500 } 1501 return MEMTX_OK; 1502 case A_EVENTQ_BASE + 4: 1503 s->eventq.base = deposit64(s->eventq.base, 32, 32, data); 1504 return MEMTX_OK; 1505 case A_EVENTQ_PROD: 1506 s->eventq.prod = data; 1507 return MEMTX_OK; 1508 case A_EVENTQ_CONS: 1509 s->eventq.cons = data; 1510 return MEMTX_OK; 1511 case A_EVENTQ_IRQ_CFG0: /* 64b */ 1512 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data); 1513 return MEMTX_OK; 1514 case A_EVENTQ_IRQ_CFG0 + 4: 1515 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data); 1516 return MEMTX_OK; 1517 case A_EVENTQ_IRQ_CFG1: 1518 s->eventq_irq_cfg1 = data; 1519 return MEMTX_OK; 1520 case A_EVENTQ_IRQ_CFG2: 1521 s->eventq_irq_cfg2 = data; 1522 return MEMTX_OK; 1523 default: 1524 qemu_log_mask(LOG_UNIMP, 1525 "%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n", 1526 __func__, offset); 1527 return MEMTX_OK; 1528 } 1529 } 1530 1531 static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data, 1532 unsigned size, MemTxAttrs attrs) 1533 { 1534 SMMUState *sys = opaque; 1535 SMMUv3State *s = ARM_SMMUV3(sys); 1536 MemTxResult r; 1537 1538 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */ 1539 offset &= ~0x10000; 1540 1541 switch (size) { 1542 case 8: 1543 r = smmu_writell(s, offset, data, attrs); 1544 break; 1545 case 4: 1546 r = smmu_writel(s, offset, data, attrs); 1547 break; 1548 default: 1549 r = MEMTX_ERROR; 1550 break; 1551 } 1552 1553 trace_smmuv3_write_mmio(offset, data, size, r); 1554 return r; 1555 } 1556 1557 static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset, 1558 uint64_t *data, MemTxAttrs attrs) 1559 { 1560 switch (offset) { 1561 case A_GERROR_IRQ_CFG0: 1562 *data = s->gerror_irq_cfg0; 1563 return MEMTX_OK; 1564 case A_STRTAB_BASE: 1565 *data = s->strtab_base; 1566 return MEMTX_OK; 1567 case A_CMDQ_BASE: 1568 *data = s->cmdq.base; 1569 return MEMTX_OK; 1570 case A_EVENTQ_BASE: 1571 *data = s->eventq.base; 1572 return MEMTX_OK; 1573 default: 1574 *data = 0; 1575 qemu_log_mask(LOG_UNIMP, 1576 "%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n", 1577 __func__, offset); 1578 return MEMTX_OK; 1579 } 1580 } 1581 1582 static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset, 1583 uint64_t *data, MemTxAttrs attrs) 1584 { 1585 switch (offset) { 1586 case A_IDREGS ... A_IDREGS + 0x2f: 1587 *data = smmuv3_idreg(offset - A_IDREGS); 1588 return MEMTX_OK; 1589 case A_IDR0 ... A_IDR5: 1590 *data = s->idr[(offset - A_IDR0) / 4]; 1591 return MEMTX_OK; 1592 case A_IIDR: 1593 *data = s->iidr; 1594 return MEMTX_OK; 1595 case A_AIDR: 1596 *data = s->aidr; 1597 return MEMTX_OK; 1598 case A_CR0: 1599 *data = s->cr[0]; 1600 return MEMTX_OK; 1601 case A_CR0ACK: 1602 *data = s->cr0ack; 1603 return MEMTX_OK; 1604 case A_CR1: 1605 *data = s->cr[1]; 1606 return MEMTX_OK; 1607 case A_CR2: 1608 *data = s->cr[2]; 1609 return MEMTX_OK; 1610 case A_STATUSR: 1611 *data = s->statusr; 1612 return MEMTX_OK; 1613 case A_GBPA: 1614 *data = s->gbpa; 1615 return MEMTX_OK; 1616 case A_IRQ_CTRL: 1617 case A_IRQ_CTRL_ACK: 1618 *data = s->irq_ctrl; 1619 return MEMTX_OK; 1620 case A_GERROR: 1621 *data = s->gerror; 1622 return MEMTX_OK; 1623 case A_GERRORN: 1624 *data = s->gerrorn; 1625 return MEMTX_OK; 1626 case A_GERROR_IRQ_CFG0: /* 64b */ 1627 *data = extract64(s->gerror_irq_cfg0, 0, 32); 1628 return MEMTX_OK; 1629 case A_GERROR_IRQ_CFG0 + 4: 1630 *data = extract64(s->gerror_irq_cfg0, 32, 32); 1631 return MEMTX_OK; 1632 case A_GERROR_IRQ_CFG1: 1633 *data = s->gerror_irq_cfg1; 1634 return MEMTX_OK; 1635 case A_GERROR_IRQ_CFG2: 1636 *data = s->gerror_irq_cfg2; 1637 return MEMTX_OK; 1638 case A_STRTAB_BASE: /* 64b */ 1639 *data = extract64(s->strtab_base, 0, 32); 1640 return MEMTX_OK; 1641 case A_STRTAB_BASE + 4: /* 64b */ 1642 *data = extract64(s->strtab_base, 32, 32); 1643 return MEMTX_OK; 1644 case A_STRTAB_BASE_CFG: 1645 *data = s->strtab_base_cfg; 1646 return MEMTX_OK; 1647 case A_CMDQ_BASE: /* 64b */ 1648 *data = extract64(s->cmdq.base, 0, 32); 1649 return MEMTX_OK; 1650 case A_CMDQ_BASE + 4: 1651 *data = extract64(s->cmdq.base, 32, 32); 1652 return MEMTX_OK; 1653 case A_CMDQ_PROD: 1654 *data = s->cmdq.prod; 1655 return MEMTX_OK; 1656 case A_CMDQ_CONS: 1657 *data = s->cmdq.cons; 1658 return MEMTX_OK; 1659 case A_EVENTQ_BASE: /* 64b */ 1660 *data = extract64(s->eventq.base, 0, 32); 1661 return MEMTX_OK; 1662 case A_EVENTQ_BASE + 4: /* 64b */ 1663 *data = extract64(s->eventq.base, 32, 32); 1664 return MEMTX_OK; 1665 case A_EVENTQ_PROD: 1666 *data = s->eventq.prod; 1667 return MEMTX_OK; 1668 case A_EVENTQ_CONS: 1669 *data = s->eventq.cons; 1670 return MEMTX_OK; 1671 default: 1672 *data = 0; 1673 qemu_log_mask(LOG_UNIMP, 1674 "%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n", 1675 __func__, offset); 1676 return MEMTX_OK; 1677 } 1678 } 1679 1680 static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data, 1681 unsigned size, MemTxAttrs attrs) 1682 { 1683 SMMUState *sys = opaque; 1684 SMMUv3State *s = ARM_SMMUV3(sys); 1685 MemTxResult r; 1686 1687 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */ 1688 offset &= ~0x10000; 1689 1690 switch (size) { 1691 case 8: 1692 r = smmu_readll(s, offset, data, attrs); 1693 break; 1694 case 4: 1695 r = smmu_readl(s, offset, data, attrs); 1696 break; 1697 default: 1698 r = MEMTX_ERROR; 1699 break; 1700 } 1701 1702 trace_smmuv3_read_mmio(offset, *data, size, r); 1703 return r; 1704 } 1705 1706 static const MemoryRegionOps smmu_mem_ops = { 1707 .read_with_attrs = smmu_read_mmio, 1708 .write_with_attrs = smmu_write_mmio, 1709 .endianness = DEVICE_LITTLE_ENDIAN, 1710 .valid = { 1711 .min_access_size = 4, 1712 .max_access_size = 8, 1713 }, 1714 .impl = { 1715 .min_access_size = 4, 1716 .max_access_size = 8, 1717 }, 1718 }; 1719 1720 static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev) 1721 { 1722 int i; 1723 1724 for (i = 0; i < ARRAY_SIZE(s->irq); i++) { 1725 sysbus_init_irq(dev, &s->irq[i]); 1726 } 1727 } 1728 1729 static void smmu_reset_hold(Object *obj) 1730 { 1731 SMMUv3State *s = ARM_SMMUV3(obj); 1732 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s); 1733 1734 if (c->parent_phases.hold) { 1735 c->parent_phases.hold(obj); 1736 } 1737 1738 smmuv3_init_regs(s); 1739 } 1740 1741 static void smmu_realize(DeviceState *d, Error **errp) 1742 { 1743 SMMUState *sys = ARM_SMMU(d); 1744 SMMUv3State *s = ARM_SMMUV3(sys); 1745 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s); 1746 SysBusDevice *dev = SYS_BUS_DEVICE(d); 1747 Error *local_err = NULL; 1748 1749 c->parent_realize(d, &local_err); 1750 if (local_err) { 1751 error_propagate(errp, local_err); 1752 return; 1753 } 1754 1755 qemu_mutex_init(&s->mutex); 1756 1757 memory_region_init_io(&sys->iomem, OBJECT(s), 1758 &smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000); 1759 1760 sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION; 1761 1762 sysbus_init_mmio(dev, &sys->iomem); 1763 1764 smmu_init_irq(s, dev); 1765 } 1766 1767 static const VMStateDescription vmstate_smmuv3_queue = { 1768 .name = "smmuv3_queue", 1769 .version_id = 1, 1770 .minimum_version_id = 1, 1771 .fields = (const VMStateField[]) { 1772 VMSTATE_UINT64(base, SMMUQueue), 1773 VMSTATE_UINT32(prod, SMMUQueue), 1774 VMSTATE_UINT32(cons, SMMUQueue), 1775 VMSTATE_UINT8(log2size, SMMUQueue), 1776 VMSTATE_END_OF_LIST(), 1777 }, 1778 }; 1779 1780 static bool smmuv3_gbpa_needed(void *opaque) 1781 { 1782 SMMUv3State *s = opaque; 1783 1784 /* Only migrate GBPA if it has different reset value. */ 1785 return s->gbpa != SMMU_GBPA_RESET_VAL; 1786 } 1787 1788 static const VMStateDescription vmstate_gbpa = { 1789 .name = "smmuv3/gbpa", 1790 .version_id = 1, 1791 .minimum_version_id = 1, 1792 .needed = smmuv3_gbpa_needed, 1793 .fields = (const VMStateField[]) { 1794 VMSTATE_UINT32(gbpa, SMMUv3State), 1795 VMSTATE_END_OF_LIST() 1796 } 1797 }; 1798 1799 static const VMStateDescription vmstate_smmuv3 = { 1800 .name = "smmuv3", 1801 .version_id = 1, 1802 .minimum_version_id = 1, 1803 .priority = MIG_PRI_IOMMU, 1804 .fields = (const VMStateField[]) { 1805 VMSTATE_UINT32(features, SMMUv3State), 1806 VMSTATE_UINT8(sid_size, SMMUv3State), 1807 VMSTATE_UINT8(sid_split, SMMUv3State), 1808 1809 VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3), 1810 VMSTATE_UINT32(cr0ack, SMMUv3State), 1811 VMSTATE_UINT32(statusr, SMMUv3State), 1812 VMSTATE_UINT32(irq_ctrl, SMMUv3State), 1813 VMSTATE_UINT32(gerror, SMMUv3State), 1814 VMSTATE_UINT32(gerrorn, SMMUv3State), 1815 VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State), 1816 VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State), 1817 VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State), 1818 VMSTATE_UINT64(strtab_base, SMMUv3State), 1819 VMSTATE_UINT32(strtab_base_cfg, SMMUv3State), 1820 VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State), 1821 VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State), 1822 VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State), 1823 1824 VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue), 1825 VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue), 1826 1827 VMSTATE_END_OF_LIST(), 1828 }, 1829 .subsections = (const VMStateDescription * const []) { 1830 &vmstate_gbpa, 1831 NULL 1832 } 1833 }; 1834 1835 static Property smmuv3_properties[] = { 1836 /* 1837 * Stages of translation advertised. 1838 * "1": Stage 1 1839 * "2": Stage 2 1840 * Defaults to stage 1 1841 */ 1842 DEFINE_PROP_STRING("stage", SMMUv3State, stage), 1843 DEFINE_PROP_END_OF_LIST() 1844 }; 1845 1846 static void smmuv3_instance_init(Object *obj) 1847 { 1848 /* Nothing much to do here as of now */ 1849 } 1850 1851 static void smmuv3_class_init(ObjectClass *klass, void *data) 1852 { 1853 DeviceClass *dc = DEVICE_CLASS(klass); 1854 ResettableClass *rc = RESETTABLE_CLASS(klass); 1855 SMMUv3Class *c = ARM_SMMUV3_CLASS(klass); 1856 1857 dc->vmsd = &vmstate_smmuv3; 1858 resettable_class_set_parent_phases(rc, NULL, smmu_reset_hold, NULL, 1859 &c->parent_phases); 1860 c->parent_realize = dc->realize; 1861 dc->realize = smmu_realize; 1862 device_class_set_props(dc, smmuv3_properties); 1863 } 1864 1865 static int smmuv3_notify_flag_changed(IOMMUMemoryRegion *iommu, 1866 IOMMUNotifierFlag old, 1867 IOMMUNotifierFlag new, 1868 Error **errp) 1869 { 1870 SMMUDevice *sdev = container_of(iommu, SMMUDevice, iommu); 1871 SMMUv3State *s3 = sdev->smmu; 1872 SMMUState *s = &(s3->smmu_state); 1873 1874 if (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) { 1875 error_setg(errp, "SMMUv3 does not support dev-iotlb yet"); 1876 return -EINVAL; 1877 } 1878 1879 if (new & IOMMU_NOTIFIER_MAP) { 1880 error_setg(errp, 1881 "device %02x.%02x.%x requires iommu MAP notifier which is " 1882 "not currently supported", pci_bus_num(sdev->bus), 1883 PCI_SLOT(sdev->devfn), PCI_FUNC(sdev->devfn)); 1884 return -EINVAL; 1885 } 1886 1887 if (old == IOMMU_NOTIFIER_NONE) { 1888 trace_smmuv3_notify_flag_add(iommu->parent_obj.name); 1889 QLIST_INSERT_HEAD(&s->devices_with_notifiers, sdev, next); 1890 } else if (new == IOMMU_NOTIFIER_NONE) { 1891 trace_smmuv3_notify_flag_del(iommu->parent_obj.name); 1892 QLIST_REMOVE(sdev, next); 1893 } 1894 return 0; 1895 } 1896 1897 static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass, 1898 void *data) 1899 { 1900 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); 1901 1902 imrc->translate = smmuv3_translate; 1903 imrc->notify_flag_changed = smmuv3_notify_flag_changed; 1904 } 1905 1906 static const TypeInfo smmuv3_type_info = { 1907 .name = TYPE_ARM_SMMUV3, 1908 .parent = TYPE_ARM_SMMU, 1909 .instance_size = sizeof(SMMUv3State), 1910 .instance_init = smmuv3_instance_init, 1911 .class_size = sizeof(SMMUv3Class), 1912 .class_init = smmuv3_class_init, 1913 }; 1914 1915 static const TypeInfo smmuv3_iommu_memory_region_info = { 1916 .parent = TYPE_IOMMU_MEMORY_REGION, 1917 .name = TYPE_SMMUV3_IOMMU_MEMORY_REGION, 1918 .class_init = smmuv3_iommu_memory_region_class_init, 1919 }; 1920 1921 static void smmuv3_register_types(void) 1922 { 1923 type_register(&smmuv3_type_info); 1924 type_register(&smmuv3_iommu_memory_region_info); 1925 } 1926 1927 type_init(smmuv3_register_types) 1928 1929