xref: /openbmc/qemu/hw/arm/smmuv3.c (revision b3e02049)
1 /*
2  * Copyright (C) 2014-2016 Broadcom Corporation
3  * Copyright (c) 2017 Red Hat, Inc.
4  * Written by Prem Mallappa, Eric Auger
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "hw/irq.h"
22 #include "hw/sysbus.h"
23 #include "migration/vmstate.h"
24 #include "hw/qdev-core.h"
25 #include "hw/pci/pci.h"
26 #include "cpu.h"
27 #include "trace.h"
28 #include "qemu/log.h"
29 #include "qemu/error-report.h"
30 #include "qapi/error.h"
31 
32 #include "hw/arm/smmuv3.h"
33 #include "smmuv3-internal.h"
34 #include "smmu-internal.h"
35 
36 /**
37  * smmuv3_trigger_irq - pulse @irq if enabled and update
38  * GERROR register in case of GERROR interrupt
39  *
40  * @irq: irq type
41  * @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR)
42  */
43 static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq,
44                                uint32_t gerror_mask)
45 {
46 
47     bool pulse = false;
48 
49     switch (irq) {
50     case SMMU_IRQ_EVTQ:
51         pulse = smmuv3_eventq_irq_enabled(s);
52         break;
53     case SMMU_IRQ_PRIQ:
54         qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n");
55         break;
56     case SMMU_IRQ_CMD_SYNC:
57         pulse = true;
58         break;
59     case SMMU_IRQ_GERROR:
60     {
61         uint32_t pending = s->gerror ^ s->gerrorn;
62         uint32_t new_gerrors = ~pending & gerror_mask;
63 
64         if (!new_gerrors) {
65             /* only toggle non pending errors */
66             return;
67         }
68         s->gerror ^= new_gerrors;
69         trace_smmuv3_write_gerror(new_gerrors, s->gerror);
70 
71         pulse = smmuv3_gerror_irq_enabled(s);
72         break;
73     }
74     }
75     if (pulse) {
76             trace_smmuv3_trigger_irq(irq);
77             qemu_irq_pulse(s->irq[irq]);
78     }
79 }
80 
81 static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn)
82 {
83     uint32_t pending = s->gerror ^ s->gerrorn;
84     uint32_t toggled = s->gerrorn ^ new_gerrorn;
85 
86     if (toggled & ~pending) {
87         qemu_log_mask(LOG_GUEST_ERROR,
88                       "guest toggles non pending errors = 0x%x\n",
89                       toggled & ~pending);
90     }
91 
92     /*
93      * We do not raise any error in case guest toggles bits corresponding
94      * to not active IRQs (CONSTRAINED UNPREDICTABLE)
95      */
96     s->gerrorn = new_gerrorn;
97 
98     trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn);
99 }
100 
101 static inline MemTxResult queue_read(SMMUQueue *q, void *data)
102 {
103     dma_addr_t addr = Q_CONS_ENTRY(q);
104 
105     return dma_memory_read(&address_space_memory, addr, data, q->entry_size,
106                            MEMTXATTRS_UNSPECIFIED);
107 }
108 
109 static MemTxResult queue_write(SMMUQueue *q, void *data)
110 {
111     dma_addr_t addr = Q_PROD_ENTRY(q);
112     MemTxResult ret;
113 
114     ret = dma_memory_write(&address_space_memory, addr, data, q->entry_size,
115                            MEMTXATTRS_UNSPECIFIED);
116     if (ret != MEMTX_OK) {
117         return ret;
118     }
119 
120     queue_prod_incr(q);
121     return MEMTX_OK;
122 }
123 
124 static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt)
125 {
126     SMMUQueue *q = &s->eventq;
127     MemTxResult r;
128 
129     if (!smmuv3_eventq_enabled(s)) {
130         return MEMTX_ERROR;
131     }
132 
133     if (smmuv3_q_full(q)) {
134         return MEMTX_ERROR;
135     }
136 
137     r = queue_write(q, evt);
138     if (r != MEMTX_OK) {
139         return r;
140     }
141 
142     if (!smmuv3_q_empty(q)) {
143         smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0);
144     }
145     return MEMTX_OK;
146 }
147 
148 void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
149 {
150     Evt evt = {};
151     MemTxResult r;
152 
153     if (!smmuv3_eventq_enabled(s)) {
154         return;
155     }
156 
157     EVT_SET_TYPE(&evt, info->type);
158     EVT_SET_SID(&evt, info->sid);
159 
160     switch (info->type) {
161     case SMMU_EVT_NONE:
162         return;
163     case SMMU_EVT_F_UUT:
164         EVT_SET_SSID(&evt, info->u.f_uut.ssid);
165         EVT_SET_SSV(&evt,  info->u.f_uut.ssv);
166         EVT_SET_ADDR(&evt, info->u.f_uut.addr);
167         EVT_SET_RNW(&evt,  info->u.f_uut.rnw);
168         EVT_SET_PNU(&evt,  info->u.f_uut.pnu);
169         EVT_SET_IND(&evt,  info->u.f_uut.ind);
170         break;
171     case SMMU_EVT_C_BAD_STREAMID:
172         EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid);
173         EVT_SET_SSV(&evt,  info->u.c_bad_streamid.ssv);
174         break;
175     case SMMU_EVT_F_STE_FETCH:
176         EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
177         EVT_SET_SSV(&evt,  info->u.f_ste_fetch.ssv);
178         EVT_SET_ADDR2(&evt, info->u.f_ste_fetch.addr);
179         break;
180     case SMMU_EVT_C_BAD_STE:
181         EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
182         EVT_SET_SSV(&evt,  info->u.c_bad_ste.ssv);
183         break;
184     case SMMU_EVT_F_STREAM_DISABLED:
185         break;
186     case SMMU_EVT_F_TRANS_FORBIDDEN:
187         EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr);
188         EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw);
189         break;
190     case SMMU_EVT_C_BAD_SUBSTREAMID:
191         EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid);
192         break;
193     case SMMU_EVT_F_CD_FETCH:
194         EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid);
195         EVT_SET_SSV(&evt,  info->u.f_cd_fetch.ssv);
196         EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr);
197         break;
198     case SMMU_EVT_C_BAD_CD:
199         EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid);
200         EVT_SET_SSV(&evt,  info->u.c_bad_cd.ssv);
201         break;
202     case SMMU_EVT_F_WALK_EABT:
203     case SMMU_EVT_F_TRANSLATION:
204     case SMMU_EVT_F_ADDR_SIZE:
205     case SMMU_EVT_F_ACCESS:
206     case SMMU_EVT_F_PERMISSION:
207         EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall);
208         EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag);
209         EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid);
210         EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv);
211         EVT_SET_S2(&evt, info->u.f_walk_eabt.s2);
212         EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr);
213         EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw);
214         EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu);
215         EVT_SET_IND(&evt, info->u.f_walk_eabt.ind);
216         EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class);
217         EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2);
218         break;
219     case SMMU_EVT_F_CFG_CONFLICT:
220         EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid);
221         EVT_SET_SSV(&evt,  info->u.f_cfg_conflict.ssv);
222         break;
223     /* rest is not implemented */
224     case SMMU_EVT_F_BAD_ATS_TREQ:
225     case SMMU_EVT_F_TLB_CONFLICT:
226     case SMMU_EVT_E_PAGE_REQ:
227     default:
228         g_assert_not_reached();
229     }
230 
231     trace_smmuv3_record_event(smmu_event_string(info->type), info->sid);
232     r = smmuv3_write_eventq(s, &evt);
233     if (r != MEMTX_OK) {
234         smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK);
235     }
236     info->recorded = true;
237 }
238 
239 static void smmuv3_init_regs(SMMUv3State *s)
240 {
241     /**
242      * IDR0: stage1 only, AArch64 only, coherent access, 16b ASID,
243      *       multi-level stream table
244      */
245     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1); /* stage 1 supported */
246     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */
247     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */
248     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */
249     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */
250     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */
251     /* terminated transaction will always be aborted/error returned */
252     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1);
253     /* 2-level stream table supported */
254     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1);
255 
256     s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE);
257     s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS);
258     s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS,   SMMU_CMDQS);
259 
260     s->idr[3] = FIELD_DP32(s->idr[3], IDR3, RIL, 1);
261     s->idr[3] = FIELD_DP32(s->idr[3], IDR3, HAD, 1);
262 
263     /* 4K, 16K and 64K granule support */
264     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1);
265     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN16K, 1);
266     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1);
267     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */
268 
269     s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS);
270     s->cmdq.prod = 0;
271     s->cmdq.cons = 0;
272     s->cmdq.entry_size = sizeof(struct Cmd);
273     s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS);
274     s->eventq.prod = 0;
275     s->eventq.cons = 0;
276     s->eventq.entry_size = sizeof(struct Evt);
277 
278     s->features = 0;
279     s->sid_split = 0;
280     s->aidr = 0x1;
281 }
282 
283 static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf,
284                         SMMUEventInfo *event)
285 {
286     int ret;
287 
288     trace_smmuv3_get_ste(addr);
289     /* TODO: guarantee 64-bit single-copy atomicity */
290     ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf),
291                           MEMTXATTRS_UNSPECIFIED);
292     if (ret != MEMTX_OK) {
293         qemu_log_mask(LOG_GUEST_ERROR,
294                       "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
295         event->type = SMMU_EVT_F_STE_FETCH;
296         event->u.f_ste_fetch.addr = addr;
297         return -EINVAL;
298     }
299     return 0;
300 
301 }
302 
303 /* @ssid > 0 not supported yet */
304 static int smmu_get_cd(SMMUv3State *s, STE *ste, uint32_t ssid,
305                        CD *buf, SMMUEventInfo *event)
306 {
307     dma_addr_t addr = STE_CTXPTR(ste);
308     int ret;
309 
310     trace_smmuv3_get_cd(addr);
311     /* TODO: guarantee 64-bit single-copy atomicity */
312     ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf),
313                           MEMTXATTRS_UNSPECIFIED);
314     if (ret != MEMTX_OK) {
315         qemu_log_mask(LOG_GUEST_ERROR,
316                       "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
317         event->type = SMMU_EVT_F_CD_FETCH;
318         event->u.f_ste_fetch.addr = addr;
319         return -EINVAL;
320     }
321     return 0;
322 }
323 
324 /* Returns < 0 in case of invalid STE, 0 otherwise */
325 static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg,
326                       STE *ste, SMMUEventInfo *event)
327 {
328     uint32_t config;
329 
330     if (!STE_VALID(ste)) {
331         if (!event->inval_ste_allowed) {
332             qemu_log_mask(LOG_GUEST_ERROR, "invalid STE\n");
333         }
334         goto bad_ste;
335     }
336 
337     config = STE_CONFIG(ste);
338 
339     if (STE_CFG_ABORT(config)) {
340         cfg->aborted = true;
341         return 0;
342     }
343 
344     if (STE_CFG_BYPASS(config)) {
345         cfg->bypassed = true;
346         return 0;
347     }
348 
349     if (STE_CFG_S2_ENABLED(config)) {
350         qemu_log_mask(LOG_UNIMP, "SMMUv3 does not support stage 2 yet\n");
351         goto bad_ste;
352     }
353 
354     if (STE_S1CDMAX(ste) != 0) {
355         qemu_log_mask(LOG_UNIMP,
356                       "SMMUv3 does not support multiple context descriptors yet\n");
357         goto bad_ste;
358     }
359 
360     if (STE_S1STALLD(ste)) {
361         qemu_log_mask(LOG_UNIMP,
362                       "SMMUv3 S1 stalling fault model not allowed yet\n");
363         goto bad_ste;
364     }
365     return 0;
366 
367 bad_ste:
368     event->type = SMMU_EVT_C_BAD_STE;
369     return -EINVAL;
370 }
371 
372 /**
373  * smmu_find_ste - Return the stream table entry associated
374  * to the sid
375  *
376  * @s: smmuv3 handle
377  * @sid: stream ID
378  * @ste: returned stream table entry
379  * @event: handle to an event info
380  *
381  * Supports linear and 2-level stream table
382  * Return 0 on success, -EINVAL otherwise
383  */
384 static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
385                          SMMUEventInfo *event)
386 {
387     dma_addr_t addr, strtab_base;
388     uint32_t log2size;
389     int strtab_size_shift;
390     int ret;
391 
392     trace_smmuv3_find_ste(sid, s->features, s->sid_split);
393     log2size = FIELD_EX32(s->strtab_base_cfg, STRTAB_BASE_CFG, LOG2SIZE);
394     /*
395      * Check SID range against both guest-configured and implementation limits
396      */
397     if (sid >= (1 << MIN(log2size, SMMU_IDR1_SIDSIZE))) {
398         event->type = SMMU_EVT_C_BAD_STREAMID;
399         return -EINVAL;
400     }
401     if (s->features & SMMU_FEATURE_2LVL_STE) {
402         int l1_ste_offset, l2_ste_offset, max_l2_ste, span;
403         dma_addr_t l1ptr, l2ptr;
404         STEDesc l1std;
405 
406         /*
407          * Align strtab base address to table size. For this purpose, assume it
408          * is not bounded by SMMU_IDR1_SIDSIZE.
409          */
410         strtab_size_shift = MAX(5, (int)log2size - s->sid_split - 1 + 3);
411         strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
412                       ~MAKE_64BIT_MASK(0, strtab_size_shift);
413         l1_ste_offset = sid >> s->sid_split;
414         l2_ste_offset = sid & ((1 << s->sid_split) - 1);
415         l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
416         /* TODO: guarantee 64-bit single-copy atomicity */
417         ret = dma_memory_read(&address_space_memory, l1ptr, &l1std,
418                               sizeof(l1std), MEMTXATTRS_UNSPECIFIED);
419         if (ret != MEMTX_OK) {
420             qemu_log_mask(LOG_GUEST_ERROR,
421                           "Could not read L1PTR at 0X%"PRIx64"\n", l1ptr);
422             event->type = SMMU_EVT_F_STE_FETCH;
423             event->u.f_ste_fetch.addr = l1ptr;
424             return -EINVAL;
425         }
426 
427         span = L1STD_SPAN(&l1std);
428 
429         if (!span) {
430             /* l2ptr is not valid */
431             if (!event->inval_ste_allowed) {
432                 qemu_log_mask(LOG_GUEST_ERROR,
433                               "invalid sid=%d (L1STD span=0)\n", sid);
434             }
435             event->type = SMMU_EVT_C_BAD_STREAMID;
436             return -EINVAL;
437         }
438         max_l2_ste = (1 << span) - 1;
439         l2ptr = l1std_l2ptr(&l1std);
440         trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset,
441                                    l2ptr, l2_ste_offset, max_l2_ste);
442         if (l2_ste_offset > max_l2_ste) {
443             qemu_log_mask(LOG_GUEST_ERROR,
444                           "l2_ste_offset=%d > max_l2_ste=%d\n",
445                           l2_ste_offset, max_l2_ste);
446             event->type = SMMU_EVT_C_BAD_STE;
447             return -EINVAL;
448         }
449         addr = l2ptr + l2_ste_offset * sizeof(*ste);
450     } else {
451         strtab_size_shift = log2size + 5;
452         strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
453                       ~MAKE_64BIT_MASK(0, strtab_size_shift);
454         addr = strtab_base + sid * sizeof(*ste);
455     }
456 
457     if (smmu_get_ste(s, addr, ste, event)) {
458         return -EINVAL;
459     }
460 
461     return 0;
462 }
463 
464 static int decode_cd(SMMUTransCfg *cfg, CD *cd, SMMUEventInfo *event)
465 {
466     int ret = -EINVAL;
467     int i;
468 
469     if (!CD_VALID(cd) || !CD_AARCH64(cd)) {
470         goto bad_cd;
471     }
472     if (!CD_A(cd)) {
473         goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */
474     }
475     if (CD_S(cd)) {
476         goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */
477     }
478     if (CD_HA(cd) || CD_HD(cd)) {
479         goto bad_cd; /* HTTU = 0 */
480     }
481 
482     /* we support only those at the moment */
483     cfg->aa64 = true;
484     cfg->stage = 1;
485 
486     cfg->oas = oas2bits(CD_IPS(cd));
487     cfg->oas = MIN(oas2bits(SMMU_IDR5_OAS), cfg->oas);
488     cfg->tbi = CD_TBI(cd);
489     cfg->asid = CD_ASID(cd);
490 
491     trace_smmuv3_decode_cd(cfg->oas);
492 
493     /* decode data dependent on TT */
494     for (i = 0; i <= 1; i++) {
495         int tg, tsz;
496         SMMUTransTableInfo *tt = &cfg->tt[i];
497 
498         cfg->tt[i].disabled = CD_EPD(cd, i);
499         if (cfg->tt[i].disabled) {
500             continue;
501         }
502 
503         tsz = CD_TSZ(cd, i);
504         if (tsz < 16 || tsz > 39) {
505             goto bad_cd;
506         }
507 
508         tg = CD_TG(cd, i);
509         tt->granule_sz = tg2granule(tg, i);
510         if ((tt->granule_sz != 12 && tt->granule_sz != 14 &&
511              tt->granule_sz != 16) || CD_ENDI(cd)) {
512             goto bad_cd;
513         }
514 
515         tt->tsz = tsz;
516         tt->ttb = CD_TTB(cd, i);
517         if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) {
518             goto bad_cd;
519         }
520         tt->had = CD_HAD(cd, i);
521         trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz, tt->had);
522     }
523 
524     event->record_trans_faults = CD_R(cd);
525 
526     return 0;
527 
528 bad_cd:
529     event->type = SMMU_EVT_C_BAD_CD;
530     return ret;
531 }
532 
533 /**
534  * smmuv3_decode_config - Prepare the translation configuration
535  * for the @mr iommu region
536  * @mr: iommu memory region the translation config must be prepared for
537  * @cfg: output translation configuration which is populated through
538  *       the different configuration decoding steps
539  * @event: must be zero'ed by the caller
540  *
541  * return < 0 in case of config decoding error (@event is filled
542  * accordingly). Return 0 otherwise.
543  */
544 static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg,
545                                 SMMUEventInfo *event)
546 {
547     SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
548     uint32_t sid = smmu_get_sid(sdev);
549     SMMUv3State *s = sdev->smmu;
550     int ret;
551     STE ste;
552     CD cd;
553 
554     ret = smmu_find_ste(s, sid, &ste, event);
555     if (ret) {
556         return ret;
557     }
558 
559     ret = decode_ste(s, cfg, &ste, event);
560     if (ret) {
561         return ret;
562     }
563 
564     if (cfg->aborted || cfg->bypassed) {
565         return 0;
566     }
567 
568     ret = smmu_get_cd(s, &ste, 0 /* ssid */, &cd, event);
569     if (ret) {
570         return ret;
571     }
572 
573     return decode_cd(cfg, &cd, event);
574 }
575 
576 /**
577  * smmuv3_get_config - Look up for a cached copy of configuration data for
578  * @sdev and on cache miss performs a configuration structure decoding from
579  * guest RAM.
580  *
581  * @sdev: SMMUDevice handle
582  * @event: output event info
583  *
584  * The configuration cache contains data resulting from both STE and CD
585  * decoding under the form of an SMMUTransCfg struct. The hash table is indexed
586  * by the SMMUDevice handle.
587  */
588 static SMMUTransCfg *smmuv3_get_config(SMMUDevice *sdev, SMMUEventInfo *event)
589 {
590     SMMUv3State *s = sdev->smmu;
591     SMMUState *bc = &s->smmu_state;
592     SMMUTransCfg *cfg;
593 
594     cfg = g_hash_table_lookup(bc->configs, sdev);
595     if (cfg) {
596         sdev->cfg_cache_hits++;
597         trace_smmuv3_config_cache_hit(smmu_get_sid(sdev),
598                             sdev->cfg_cache_hits, sdev->cfg_cache_misses,
599                             100 * sdev->cfg_cache_hits /
600                             (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
601     } else {
602         sdev->cfg_cache_misses++;
603         trace_smmuv3_config_cache_miss(smmu_get_sid(sdev),
604                             sdev->cfg_cache_hits, sdev->cfg_cache_misses,
605                             100 * sdev->cfg_cache_hits /
606                             (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
607         cfg = g_new0(SMMUTransCfg, 1);
608 
609         if (!smmuv3_decode_config(&sdev->iommu, cfg, event)) {
610             g_hash_table_insert(bc->configs, sdev, cfg);
611         } else {
612             g_free(cfg);
613             cfg = NULL;
614         }
615     }
616     return cfg;
617 }
618 
619 static void smmuv3_flush_config(SMMUDevice *sdev)
620 {
621     SMMUv3State *s = sdev->smmu;
622     SMMUState *bc = &s->smmu_state;
623 
624     trace_smmuv3_config_cache_inv(smmu_get_sid(sdev));
625     g_hash_table_remove(bc->configs, sdev);
626 }
627 
628 static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr,
629                                       IOMMUAccessFlags flag, int iommu_idx)
630 {
631     SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
632     SMMUv3State *s = sdev->smmu;
633     uint32_t sid = smmu_get_sid(sdev);
634     SMMUEventInfo event = {.type = SMMU_EVT_NONE,
635                            .sid = sid,
636                            .inval_ste_allowed = false};
637     SMMUPTWEventInfo ptw_info = {};
638     SMMUTranslationStatus status;
639     SMMUState *bs = ARM_SMMU(s);
640     uint64_t page_mask, aligned_addr;
641     SMMUTLBEntry *cached_entry = NULL;
642     SMMUTransTableInfo *tt;
643     SMMUTransCfg *cfg = NULL;
644     IOMMUTLBEntry entry = {
645         .target_as = &address_space_memory,
646         .iova = addr,
647         .translated_addr = addr,
648         .addr_mask = ~(hwaddr)0,
649         .perm = IOMMU_NONE,
650     };
651 
652     qemu_mutex_lock(&s->mutex);
653 
654     if (!smmu_enabled(s)) {
655         status = SMMU_TRANS_DISABLE;
656         goto epilogue;
657     }
658 
659     cfg = smmuv3_get_config(sdev, &event);
660     if (!cfg) {
661         status = SMMU_TRANS_ERROR;
662         goto epilogue;
663     }
664 
665     if (cfg->aborted) {
666         status = SMMU_TRANS_ABORT;
667         goto epilogue;
668     }
669 
670     if (cfg->bypassed) {
671         status = SMMU_TRANS_BYPASS;
672         goto epilogue;
673     }
674 
675     tt = select_tt(cfg, addr);
676     if (!tt) {
677         if (event.record_trans_faults) {
678             event.type = SMMU_EVT_F_TRANSLATION;
679             event.u.f_translation.addr = addr;
680             event.u.f_translation.rnw = flag & 0x1;
681         }
682         status = SMMU_TRANS_ERROR;
683         goto epilogue;
684     }
685 
686     page_mask = (1ULL << (tt->granule_sz)) - 1;
687     aligned_addr = addr & ~page_mask;
688 
689     cached_entry = smmu_iotlb_lookup(bs, cfg, tt, aligned_addr);
690     if (cached_entry) {
691         if ((flag & IOMMU_WO) && !(cached_entry->entry.perm & IOMMU_WO)) {
692             status = SMMU_TRANS_ERROR;
693             if (event.record_trans_faults) {
694                 event.type = SMMU_EVT_F_PERMISSION;
695                 event.u.f_permission.addr = addr;
696                 event.u.f_permission.rnw = flag & 0x1;
697             }
698         } else {
699             status = SMMU_TRANS_SUCCESS;
700         }
701         goto epilogue;
702     }
703 
704     cached_entry = g_new0(SMMUTLBEntry, 1);
705 
706     if (smmu_ptw(cfg, aligned_addr, flag, cached_entry, &ptw_info)) {
707         g_free(cached_entry);
708         switch (ptw_info.type) {
709         case SMMU_PTW_ERR_WALK_EABT:
710             event.type = SMMU_EVT_F_WALK_EABT;
711             event.u.f_walk_eabt.addr = addr;
712             event.u.f_walk_eabt.rnw = flag & 0x1;
713             event.u.f_walk_eabt.class = 0x1;
714             event.u.f_walk_eabt.addr2 = ptw_info.addr;
715             break;
716         case SMMU_PTW_ERR_TRANSLATION:
717             if (event.record_trans_faults) {
718                 event.type = SMMU_EVT_F_TRANSLATION;
719                 event.u.f_translation.addr = addr;
720                 event.u.f_translation.rnw = flag & 0x1;
721             }
722             break;
723         case SMMU_PTW_ERR_ADDR_SIZE:
724             if (event.record_trans_faults) {
725                 event.type = SMMU_EVT_F_ADDR_SIZE;
726                 event.u.f_addr_size.addr = addr;
727                 event.u.f_addr_size.rnw = flag & 0x1;
728             }
729             break;
730         case SMMU_PTW_ERR_ACCESS:
731             if (event.record_trans_faults) {
732                 event.type = SMMU_EVT_F_ACCESS;
733                 event.u.f_access.addr = addr;
734                 event.u.f_access.rnw = flag & 0x1;
735             }
736             break;
737         case SMMU_PTW_ERR_PERMISSION:
738             if (event.record_trans_faults) {
739                 event.type = SMMU_EVT_F_PERMISSION;
740                 event.u.f_permission.addr = addr;
741                 event.u.f_permission.rnw = flag & 0x1;
742             }
743             break;
744         default:
745             g_assert_not_reached();
746         }
747         status = SMMU_TRANS_ERROR;
748     } else {
749         smmu_iotlb_insert(bs, cfg, cached_entry);
750         status = SMMU_TRANS_SUCCESS;
751     }
752 
753 epilogue:
754     qemu_mutex_unlock(&s->mutex);
755     switch (status) {
756     case SMMU_TRANS_SUCCESS:
757         entry.perm = flag;
758         entry.translated_addr = cached_entry->entry.translated_addr +
759                                     (addr & cached_entry->entry.addr_mask);
760         entry.addr_mask = cached_entry->entry.addr_mask;
761         trace_smmuv3_translate_success(mr->parent_obj.name, sid, addr,
762                                        entry.translated_addr, entry.perm);
763         break;
764     case SMMU_TRANS_DISABLE:
765         entry.perm = flag;
766         entry.addr_mask = ~TARGET_PAGE_MASK;
767         trace_smmuv3_translate_disable(mr->parent_obj.name, sid, addr,
768                                       entry.perm);
769         break;
770     case SMMU_TRANS_BYPASS:
771         entry.perm = flag;
772         entry.addr_mask = ~TARGET_PAGE_MASK;
773         trace_smmuv3_translate_bypass(mr->parent_obj.name, sid, addr,
774                                       entry.perm);
775         break;
776     case SMMU_TRANS_ABORT:
777         /* no event is recorded on abort */
778         trace_smmuv3_translate_abort(mr->parent_obj.name, sid, addr,
779                                      entry.perm);
780         break;
781     case SMMU_TRANS_ERROR:
782         qemu_log_mask(LOG_GUEST_ERROR,
783                       "%s translation failed for iova=0x%"PRIx64"(%s)\n",
784                       mr->parent_obj.name, addr, smmu_event_string(event.type));
785         smmuv3_record_event(s, &event);
786         break;
787     }
788 
789     return entry;
790 }
791 
792 /**
793  * smmuv3_notify_iova - call the notifier @n for a given
794  * @asid and @iova tuple.
795  *
796  * @mr: IOMMU mr region handle
797  * @n: notifier to be called
798  * @asid: address space ID or negative value if we don't care
799  * @iova: iova
800  * @tg: translation granule (if communicated through range invalidation)
801  * @num_pages: number of @granule sized pages (if tg != 0), otherwise 1
802  */
803 static void smmuv3_notify_iova(IOMMUMemoryRegion *mr,
804                                IOMMUNotifier *n,
805                                int asid, dma_addr_t iova,
806                                uint8_t tg, uint64_t num_pages)
807 {
808     SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
809     IOMMUTLBEvent event;
810     uint8_t granule;
811 
812     if (!tg) {
813         SMMUEventInfo event = {.inval_ste_allowed = true};
814         SMMUTransCfg *cfg = smmuv3_get_config(sdev, &event);
815         SMMUTransTableInfo *tt;
816 
817         if (!cfg) {
818             return;
819         }
820 
821         if (asid >= 0 && cfg->asid != asid) {
822             return;
823         }
824 
825         tt = select_tt(cfg, iova);
826         if (!tt) {
827             return;
828         }
829         granule = tt->granule_sz;
830     } else {
831         granule = tg * 2 + 10;
832     }
833 
834     event.type = IOMMU_NOTIFIER_UNMAP;
835     event.entry.target_as = &address_space_memory;
836     event.entry.iova = iova;
837     event.entry.addr_mask = num_pages * (1 << granule) - 1;
838     event.entry.perm = IOMMU_NONE;
839 
840     memory_region_notify_iommu_one(n, &event);
841 }
842 
843 /* invalidate an asid/iova range tuple in all mr's */
844 static void smmuv3_inv_notifiers_iova(SMMUState *s, int asid, dma_addr_t iova,
845                                       uint8_t tg, uint64_t num_pages)
846 {
847     SMMUDevice *sdev;
848 
849     QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
850         IOMMUMemoryRegion *mr = &sdev->iommu;
851         IOMMUNotifier *n;
852 
853         trace_smmuv3_inv_notifiers_iova(mr->parent_obj.name, asid, iova,
854                                         tg, num_pages);
855 
856         IOMMU_NOTIFIER_FOREACH(n, mr) {
857             smmuv3_notify_iova(mr, n, asid, iova, tg, num_pages);
858         }
859     }
860 }
861 
862 static void smmuv3_s1_range_inval(SMMUState *s, Cmd *cmd)
863 {
864     dma_addr_t end, addr = CMD_ADDR(cmd);
865     uint8_t type = CMD_TYPE(cmd);
866     uint16_t vmid = CMD_VMID(cmd);
867     uint8_t scale = CMD_SCALE(cmd);
868     uint8_t num = CMD_NUM(cmd);
869     uint8_t ttl = CMD_TTL(cmd);
870     bool leaf = CMD_LEAF(cmd);
871     uint8_t tg = CMD_TG(cmd);
872     uint64_t num_pages;
873     uint8_t granule;
874     int asid = -1;
875 
876     if (type == SMMU_CMD_TLBI_NH_VA) {
877         asid = CMD_ASID(cmd);
878     }
879 
880     if (!tg) {
881         trace_smmuv3_s1_range_inval(vmid, asid, addr, tg, 1, ttl, leaf);
882         smmuv3_inv_notifiers_iova(s, asid, addr, tg, 1);
883         smmu_iotlb_inv_iova(s, asid, addr, tg, 1, ttl);
884         return;
885     }
886 
887     /* RIL in use */
888 
889     num_pages = (num + 1) * BIT_ULL(scale);
890     granule = tg * 2 + 10;
891 
892     /* Split invalidations into ^2 range invalidations */
893     end = addr + (num_pages << granule) - 1;
894 
895     while (addr != end + 1) {
896         uint64_t mask = dma_aligned_pow2_mask(addr, end, 64);
897 
898         num_pages = (mask + 1) >> granule;
899         trace_smmuv3_s1_range_inval(vmid, asid, addr, tg, num_pages, ttl, leaf);
900         smmuv3_inv_notifiers_iova(s, asid, addr, tg, num_pages);
901         smmu_iotlb_inv_iova(s, asid, addr, tg, num_pages, ttl);
902         addr += mask + 1;
903     }
904 }
905 
906 static gboolean
907 smmuv3_invalidate_ste(gpointer key, gpointer value, gpointer user_data)
908 {
909     SMMUDevice *sdev = (SMMUDevice *)key;
910     uint32_t sid = smmu_get_sid(sdev);
911     SMMUSIDRange *sid_range = (SMMUSIDRange *)user_data;
912 
913     if (sid < sid_range->start || sid > sid_range->end) {
914         return false;
915     }
916     trace_smmuv3_config_cache_inv(sid);
917     return true;
918 }
919 
920 static int smmuv3_cmdq_consume(SMMUv3State *s)
921 {
922     SMMUState *bs = ARM_SMMU(s);
923     SMMUCmdError cmd_error = SMMU_CERROR_NONE;
924     SMMUQueue *q = &s->cmdq;
925     SMMUCommandType type = 0;
926 
927     if (!smmuv3_cmdq_enabled(s)) {
928         return 0;
929     }
930     /*
931      * some commands depend on register values, typically CR0. In case those
932      * register values change while handling the command, spec says it
933      * is UNPREDICTABLE whether the command is interpreted under the new
934      * or old value.
935      */
936 
937     while (!smmuv3_q_empty(q)) {
938         uint32_t pending = s->gerror ^ s->gerrorn;
939         Cmd cmd;
940 
941         trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q),
942                                   Q_PROD_WRAP(q), Q_CONS_WRAP(q));
943 
944         if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) {
945             break;
946         }
947 
948         if (queue_read(q, &cmd) != MEMTX_OK) {
949             cmd_error = SMMU_CERROR_ABT;
950             break;
951         }
952 
953         type = CMD_TYPE(&cmd);
954 
955         trace_smmuv3_cmdq_opcode(smmu_cmd_string(type));
956 
957         qemu_mutex_lock(&s->mutex);
958         switch (type) {
959         case SMMU_CMD_SYNC:
960             if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) {
961                 smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0);
962             }
963             break;
964         case SMMU_CMD_PREFETCH_CONFIG:
965         case SMMU_CMD_PREFETCH_ADDR:
966             break;
967         case SMMU_CMD_CFGI_STE:
968         {
969             uint32_t sid = CMD_SID(&cmd);
970             IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
971             SMMUDevice *sdev;
972 
973             if (CMD_SSEC(&cmd)) {
974                 cmd_error = SMMU_CERROR_ILL;
975                 break;
976             }
977 
978             if (!mr) {
979                 break;
980             }
981 
982             trace_smmuv3_cmdq_cfgi_ste(sid);
983             sdev = container_of(mr, SMMUDevice, iommu);
984             smmuv3_flush_config(sdev);
985 
986             break;
987         }
988         case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */
989         {
990             uint32_t sid = CMD_SID(&cmd), mask;
991             uint8_t range = CMD_STE_RANGE(&cmd);
992             SMMUSIDRange sid_range;
993 
994             if (CMD_SSEC(&cmd)) {
995                 cmd_error = SMMU_CERROR_ILL;
996                 break;
997             }
998 
999             mask = (1ULL << (range + 1)) - 1;
1000             sid_range.start = sid & ~mask;
1001             sid_range.end = sid_range.start + mask;
1002 
1003             trace_smmuv3_cmdq_cfgi_ste_range(sid_range.start, sid_range.end);
1004             g_hash_table_foreach_remove(bs->configs, smmuv3_invalidate_ste,
1005                                         &sid_range);
1006             break;
1007         }
1008         case SMMU_CMD_CFGI_CD:
1009         case SMMU_CMD_CFGI_CD_ALL:
1010         {
1011             uint32_t sid = CMD_SID(&cmd);
1012             IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
1013             SMMUDevice *sdev;
1014 
1015             if (CMD_SSEC(&cmd)) {
1016                 cmd_error = SMMU_CERROR_ILL;
1017                 break;
1018             }
1019 
1020             if (!mr) {
1021                 break;
1022             }
1023 
1024             trace_smmuv3_cmdq_cfgi_cd(sid);
1025             sdev = container_of(mr, SMMUDevice, iommu);
1026             smmuv3_flush_config(sdev);
1027             break;
1028         }
1029         case SMMU_CMD_TLBI_NH_ASID:
1030         {
1031             uint16_t asid = CMD_ASID(&cmd);
1032 
1033             trace_smmuv3_cmdq_tlbi_nh_asid(asid);
1034             smmu_inv_notifiers_all(&s->smmu_state);
1035             smmu_iotlb_inv_asid(bs, asid);
1036             break;
1037         }
1038         case SMMU_CMD_TLBI_NH_ALL:
1039         case SMMU_CMD_TLBI_NSNH_ALL:
1040             trace_smmuv3_cmdq_tlbi_nh();
1041             smmu_inv_notifiers_all(&s->smmu_state);
1042             smmu_iotlb_inv_all(bs);
1043             break;
1044         case SMMU_CMD_TLBI_NH_VAA:
1045         case SMMU_CMD_TLBI_NH_VA:
1046             smmuv3_s1_range_inval(bs, &cmd);
1047             break;
1048         case SMMU_CMD_TLBI_EL3_ALL:
1049         case SMMU_CMD_TLBI_EL3_VA:
1050         case SMMU_CMD_TLBI_EL2_ALL:
1051         case SMMU_CMD_TLBI_EL2_ASID:
1052         case SMMU_CMD_TLBI_EL2_VA:
1053         case SMMU_CMD_TLBI_EL2_VAA:
1054         case SMMU_CMD_TLBI_S12_VMALL:
1055         case SMMU_CMD_TLBI_S2_IPA:
1056         case SMMU_CMD_ATC_INV:
1057         case SMMU_CMD_PRI_RESP:
1058         case SMMU_CMD_RESUME:
1059         case SMMU_CMD_STALL_TERM:
1060             trace_smmuv3_unhandled_cmd(type);
1061             break;
1062         default:
1063             cmd_error = SMMU_CERROR_ILL;
1064             qemu_log_mask(LOG_GUEST_ERROR,
1065                           "Illegal command type: %d\n", CMD_TYPE(&cmd));
1066             break;
1067         }
1068         qemu_mutex_unlock(&s->mutex);
1069         if (cmd_error) {
1070             break;
1071         }
1072         /*
1073          * We only increment the cons index after the completion of
1074          * the command. We do that because the SYNC returns immediately
1075          * and does not check the completion of previous commands
1076          */
1077         queue_cons_incr(q);
1078     }
1079 
1080     if (cmd_error) {
1081         trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error);
1082         smmu_write_cmdq_err(s, cmd_error);
1083         smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK);
1084     }
1085 
1086     trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q),
1087                                   Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1088 
1089     return 0;
1090 }
1091 
1092 static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset,
1093                                uint64_t data, MemTxAttrs attrs)
1094 {
1095     switch (offset) {
1096     case A_GERROR_IRQ_CFG0:
1097         s->gerror_irq_cfg0 = data;
1098         return MEMTX_OK;
1099     case A_STRTAB_BASE:
1100         s->strtab_base = data;
1101         return MEMTX_OK;
1102     case A_CMDQ_BASE:
1103         s->cmdq.base = data;
1104         s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1105         if (s->cmdq.log2size > SMMU_CMDQS) {
1106             s->cmdq.log2size = SMMU_CMDQS;
1107         }
1108         return MEMTX_OK;
1109     case A_EVENTQ_BASE:
1110         s->eventq.base = data;
1111         s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1112         if (s->eventq.log2size > SMMU_EVENTQS) {
1113             s->eventq.log2size = SMMU_EVENTQS;
1114         }
1115         return MEMTX_OK;
1116     case A_EVENTQ_IRQ_CFG0:
1117         s->eventq_irq_cfg0 = data;
1118         return MEMTX_OK;
1119     default:
1120         qemu_log_mask(LOG_UNIMP,
1121                       "%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n",
1122                       __func__, offset);
1123         return MEMTX_OK;
1124     }
1125 }
1126 
1127 static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset,
1128                                uint64_t data, MemTxAttrs attrs)
1129 {
1130     switch (offset) {
1131     case A_CR0:
1132         s->cr[0] = data;
1133         s->cr0ack = data & ~SMMU_CR0_RESERVED;
1134         /* in case the command queue has been enabled */
1135         smmuv3_cmdq_consume(s);
1136         return MEMTX_OK;
1137     case A_CR1:
1138         s->cr[1] = data;
1139         return MEMTX_OK;
1140     case A_CR2:
1141         s->cr[2] = data;
1142         return MEMTX_OK;
1143     case A_IRQ_CTRL:
1144         s->irq_ctrl = data;
1145         return MEMTX_OK;
1146     case A_GERRORN:
1147         smmuv3_write_gerrorn(s, data);
1148         /*
1149          * By acknowledging the CMDQ_ERR, SW may notify cmds can
1150          * be processed again
1151          */
1152         smmuv3_cmdq_consume(s);
1153         return MEMTX_OK;
1154     case A_GERROR_IRQ_CFG0: /* 64b */
1155         s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data);
1156         return MEMTX_OK;
1157     case A_GERROR_IRQ_CFG0 + 4:
1158         s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data);
1159         return MEMTX_OK;
1160     case A_GERROR_IRQ_CFG1:
1161         s->gerror_irq_cfg1 = data;
1162         return MEMTX_OK;
1163     case A_GERROR_IRQ_CFG2:
1164         s->gerror_irq_cfg2 = data;
1165         return MEMTX_OK;
1166     case A_STRTAB_BASE: /* 64b */
1167         s->strtab_base = deposit64(s->strtab_base, 0, 32, data);
1168         return MEMTX_OK;
1169     case A_STRTAB_BASE + 4:
1170         s->strtab_base = deposit64(s->strtab_base, 32, 32, data);
1171         return MEMTX_OK;
1172     case A_STRTAB_BASE_CFG:
1173         s->strtab_base_cfg = data;
1174         if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) {
1175             s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT);
1176             s->features |= SMMU_FEATURE_2LVL_STE;
1177         }
1178         return MEMTX_OK;
1179     case A_CMDQ_BASE: /* 64b */
1180         s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data);
1181         s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1182         if (s->cmdq.log2size > SMMU_CMDQS) {
1183             s->cmdq.log2size = SMMU_CMDQS;
1184         }
1185         return MEMTX_OK;
1186     case A_CMDQ_BASE + 4: /* 64b */
1187         s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data);
1188         return MEMTX_OK;
1189     case A_CMDQ_PROD:
1190         s->cmdq.prod = data;
1191         smmuv3_cmdq_consume(s);
1192         return MEMTX_OK;
1193     case A_CMDQ_CONS:
1194         s->cmdq.cons = data;
1195         return MEMTX_OK;
1196     case A_EVENTQ_BASE: /* 64b */
1197         s->eventq.base = deposit64(s->eventq.base, 0, 32, data);
1198         s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1199         if (s->eventq.log2size > SMMU_EVENTQS) {
1200             s->eventq.log2size = SMMU_EVENTQS;
1201         }
1202         return MEMTX_OK;
1203     case A_EVENTQ_BASE + 4:
1204         s->eventq.base = deposit64(s->eventq.base, 32, 32, data);
1205         return MEMTX_OK;
1206     case A_EVENTQ_PROD:
1207         s->eventq.prod = data;
1208         return MEMTX_OK;
1209     case A_EVENTQ_CONS:
1210         s->eventq.cons = data;
1211         return MEMTX_OK;
1212     case A_EVENTQ_IRQ_CFG0: /* 64b */
1213         s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data);
1214         return MEMTX_OK;
1215     case A_EVENTQ_IRQ_CFG0 + 4:
1216         s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data);
1217         return MEMTX_OK;
1218     case A_EVENTQ_IRQ_CFG1:
1219         s->eventq_irq_cfg1 = data;
1220         return MEMTX_OK;
1221     case A_EVENTQ_IRQ_CFG2:
1222         s->eventq_irq_cfg2 = data;
1223         return MEMTX_OK;
1224     default:
1225         qemu_log_mask(LOG_UNIMP,
1226                       "%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n",
1227                       __func__, offset);
1228         return MEMTX_OK;
1229     }
1230 }
1231 
1232 static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data,
1233                                    unsigned size, MemTxAttrs attrs)
1234 {
1235     SMMUState *sys = opaque;
1236     SMMUv3State *s = ARM_SMMUV3(sys);
1237     MemTxResult r;
1238 
1239     /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1240     offset &= ~0x10000;
1241 
1242     switch (size) {
1243     case 8:
1244         r = smmu_writell(s, offset, data, attrs);
1245         break;
1246     case 4:
1247         r = smmu_writel(s, offset, data, attrs);
1248         break;
1249     default:
1250         r = MEMTX_ERROR;
1251         break;
1252     }
1253 
1254     trace_smmuv3_write_mmio(offset, data, size, r);
1255     return r;
1256 }
1257 
1258 static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset,
1259                                uint64_t *data, MemTxAttrs attrs)
1260 {
1261     switch (offset) {
1262     case A_GERROR_IRQ_CFG0:
1263         *data = s->gerror_irq_cfg0;
1264         return MEMTX_OK;
1265     case A_STRTAB_BASE:
1266         *data = s->strtab_base;
1267         return MEMTX_OK;
1268     case A_CMDQ_BASE:
1269         *data = s->cmdq.base;
1270         return MEMTX_OK;
1271     case A_EVENTQ_BASE:
1272         *data = s->eventq.base;
1273         return MEMTX_OK;
1274     default:
1275         *data = 0;
1276         qemu_log_mask(LOG_UNIMP,
1277                       "%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n",
1278                       __func__, offset);
1279         return MEMTX_OK;
1280     }
1281 }
1282 
1283 static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset,
1284                               uint64_t *data, MemTxAttrs attrs)
1285 {
1286     switch (offset) {
1287     case A_IDREGS ... A_IDREGS + 0x2f:
1288         *data = smmuv3_idreg(offset - A_IDREGS);
1289         return MEMTX_OK;
1290     case A_IDR0 ... A_IDR5:
1291         *data = s->idr[(offset - A_IDR0) / 4];
1292         return MEMTX_OK;
1293     case A_IIDR:
1294         *data = s->iidr;
1295         return MEMTX_OK;
1296     case A_AIDR:
1297         *data = s->aidr;
1298         return MEMTX_OK;
1299     case A_CR0:
1300         *data = s->cr[0];
1301         return MEMTX_OK;
1302     case A_CR0ACK:
1303         *data = s->cr0ack;
1304         return MEMTX_OK;
1305     case A_CR1:
1306         *data = s->cr[1];
1307         return MEMTX_OK;
1308     case A_CR2:
1309         *data = s->cr[2];
1310         return MEMTX_OK;
1311     case A_STATUSR:
1312         *data = s->statusr;
1313         return MEMTX_OK;
1314     case A_IRQ_CTRL:
1315     case A_IRQ_CTRL_ACK:
1316         *data = s->irq_ctrl;
1317         return MEMTX_OK;
1318     case A_GERROR:
1319         *data = s->gerror;
1320         return MEMTX_OK;
1321     case A_GERRORN:
1322         *data = s->gerrorn;
1323         return MEMTX_OK;
1324     case A_GERROR_IRQ_CFG0: /* 64b */
1325         *data = extract64(s->gerror_irq_cfg0, 0, 32);
1326         return MEMTX_OK;
1327     case A_GERROR_IRQ_CFG0 + 4:
1328         *data = extract64(s->gerror_irq_cfg0, 32, 32);
1329         return MEMTX_OK;
1330     case A_GERROR_IRQ_CFG1:
1331         *data = s->gerror_irq_cfg1;
1332         return MEMTX_OK;
1333     case A_GERROR_IRQ_CFG2:
1334         *data = s->gerror_irq_cfg2;
1335         return MEMTX_OK;
1336     case A_STRTAB_BASE: /* 64b */
1337         *data = extract64(s->strtab_base, 0, 32);
1338         return MEMTX_OK;
1339     case A_STRTAB_BASE + 4: /* 64b */
1340         *data = extract64(s->strtab_base, 32, 32);
1341         return MEMTX_OK;
1342     case A_STRTAB_BASE_CFG:
1343         *data = s->strtab_base_cfg;
1344         return MEMTX_OK;
1345     case A_CMDQ_BASE: /* 64b */
1346         *data = extract64(s->cmdq.base, 0, 32);
1347         return MEMTX_OK;
1348     case A_CMDQ_BASE + 4:
1349         *data = extract64(s->cmdq.base, 32, 32);
1350         return MEMTX_OK;
1351     case A_CMDQ_PROD:
1352         *data = s->cmdq.prod;
1353         return MEMTX_OK;
1354     case A_CMDQ_CONS:
1355         *data = s->cmdq.cons;
1356         return MEMTX_OK;
1357     case A_EVENTQ_BASE: /* 64b */
1358         *data = extract64(s->eventq.base, 0, 32);
1359         return MEMTX_OK;
1360     case A_EVENTQ_BASE + 4: /* 64b */
1361         *data = extract64(s->eventq.base, 32, 32);
1362         return MEMTX_OK;
1363     case A_EVENTQ_PROD:
1364         *data = s->eventq.prod;
1365         return MEMTX_OK;
1366     case A_EVENTQ_CONS:
1367         *data = s->eventq.cons;
1368         return MEMTX_OK;
1369     default:
1370         *data = 0;
1371         qemu_log_mask(LOG_UNIMP,
1372                       "%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n",
1373                       __func__, offset);
1374         return MEMTX_OK;
1375     }
1376 }
1377 
1378 static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data,
1379                                   unsigned size, MemTxAttrs attrs)
1380 {
1381     SMMUState *sys = opaque;
1382     SMMUv3State *s = ARM_SMMUV3(sys);
1383     MemTxResult r;
1384 
1385     /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1386     offset &= ~0x10000;
1387 
1388     switch (size) {
1389     case 8:
1390         r = smmu_readll(s, offset, data, attrs);
1391         break;
1392     case 4:
1393         r = smmu_readl(s, offset, data, attrs);
1394         break;
1395     default:
1396         r = MEMTX_ERROR;
1397         break;
1398     }
1399 
1400     trace_smmuv3_read_mmio(offset, *data, size, r);
1401     return r;
1402 }
1403 
1404 static const MemoryRegionOps smmu_mem_ops = {
1405     .read_with_attrs = smmu_read_mmio,
1406     .write_with_attrs = smmu_write_mmio,
1407     .endianness = DEVICE_LITTLE_ENDIAN,
1408     .valid = {
1409         .min_access_size = 4,
1410         .max_access_size = 8,
1411     },
1412     .impl = {
1413         .min_access_size = 4,
1414         .max_access_size = 8,
1415     },
1416 };
1417 
1418 static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev)
1419 {
1420     int i;
1421 
1422     for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
1423         sysbus_init_irq(dev, &s->irq[i]);
1424     }
1425 }
1426 
1427 static void smmu_reset(DeviceState *dev)
1428 {
1429     SMMUv3State *s = ARM_SMMUV3(dev);
1430     SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1431 
1432     c->parent_reset(dev);
1433 
1434     smmuv3_init_regs(s);
1435 }
1436 
1437 static void smmu_realize(DeviceState *d, Error **errp)
1438 {
1439     SMMUState *sys = ARM_SMMU(d);
1440     SMMUv3State *s = ARM_SMMUV3(sys);
1441     SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1442     SysBusDevice *dev = SYS_BUS_DEVICE(d);
1443     Error *local_err = NULL;
1444 
1445     c->parent_realize(d, &local_err);
1446     if (local_err) {
1447         error_propagate(errp, local_err);
1448         return;
1449     }
1450 
1451     qemu_mutex_init(&s->mutex);
1452 
1453     memory_region_init_io(&sys->iomem, OBJECT(s),
1454                           &smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000);
1455 
1456     sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION;
1457 
1458     sysbus_init_mmio(dev, &sys->iomem);
1459 
1460     smmu_init_irq(s, dev);
1461 }
1462 
1463 static const VMStateDescription vmstate_smmuv3_queue = {
1464     .name = "smmuv3_queue",
1465     .version_id = 1,
1466     .minimum_version_id = 1,
1467     .fields = (VMStateField[]) {
1468         VMSTATE_UINT64(base, SMMUQueue),
1469         VMSTATE_UINT32(prod, SMMUQueue),
1470         VMSTATE_UINT32(cons, SMMUQueue),
1471         VMSTATE_UINT8(log2size, SMMUQueue),
1472         VMSTATE_END_OF_LIST(),
1473     },
1474 };
1475 
1476 static const VMStateDescription vmstate_smmuv3 = {
1477     .name = "smmuv3",
1478     .version_id = 1,
1479     .minimum_version_id = 1,
1480     .priority = MIG_PRI_IOMMU,
1481     .fields = (VMStateField[]) {
1482         VMSTATE_UINT32(features, SMMUv3State),
1483         VMSTATE_UINT8(sid_size, SMMUv3State),
1484         VMSTATE_UINT8(sid_split, SMMUv3State),
1485 
1486         VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3),
1487         VMSTATE_UINT32(cr0ack, SMMUv3State),
1488         VMSTATE_UINT32(statusr, SMMUv3State),
1489         VMSTATE_UINT32(irq_ctrl, SMMUv3State),
1490         VMSTATE_UINT32(gerror, SMMUv3State),
1491         VMSTATE_UINT32(gerrorn, SMMUv3State),
1492         VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State),
1493         VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State),
1494         VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State),
1495         VMSTATE_UINT64(strtab_base, SMMUv3State),
1496         VMSTATE_UINT32(strtab_base_cfg, SMMUv3State),
1497         VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State),
1498         VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State),
1499         VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State),
1500 
1501         VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1502         VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1503 
1504         VMSTATE_END_OF_LIST(),
1505     },
1506 };
1507 
1508 static void smmuv3_instance_init(Object *obj)
1509 {
1510     /* Nothing much to do here as of now */
1511 }
1512 
1513 static void smmuv3_class_init(ObjectClass *klass, void *data)
1514 {
1515     DeviceClass *dc = DEVICE_CLASS(klass);
1516     SMMUv3Class *c = ARM_SMMUV3_CLASS(klass);
1517 
1518     dc->vmsd = &vmstate_smmuv3;
1519     device_class_set_parent_reset(dc, smmu_reset, &c->parent_reset);
1520     c->parent_realize = dc->realize;
1521     dc->realize = smmu_realize;
1522 }
1523 
1524 static int smmuv3_notify_flag_changed(IOMMUMemoryRegion *iommu,
1525                                       IOMMUNotifierFlag old,
1526                                       IOMMUNotifierFlag new,
1527                                       Error **errp)
1528 {
1529     SMMUDevice *sdev = container_of(iommu, SMMUDevice, iommu);
1530     SMMUv3State *s3 = sdev->smmu;
1531     SMMUState *s = &(s3->smmu_state);
1532 
1533     if (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
1534         error_setg(errp, "SMMUv3 does not support dev-iotlb yet");
1535         return -EINVAL;
1536     }
1537 
1538     if (new & IOMMU_NOTIFIER_MAP) {
1539         error_setg(errp,
1540                    "device %02x.%02x.%x requires iommu MAP notifier which is "
1541                    "not currently supported", pci_bus_num(sdev->bus),
1542                    PCI_SLOT(sdev->devfn), PCI_FUNC(sdev->devfn));
1543         return -EINVAL;
1544     }
1545 
1546     if (old == IOMMU_NOTIFIER_NONE) {
1547         trace_smmuv3_notify_flag_add(iommu->parent_obj.name);
1548         QLIST_INSERT_HEAD(&s->devices_with_notifiers, sdev, next);
1549     } else if (new == IOMMU_NOTIFIER_NONE) {
1550         trace_smmuv3_notify_flag_del(iommu->parent_obj.name);
1551         QLIST_REMOVE(sdev, next);
1552     }
1553     return 0;
1554 }
1555 
1556 static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass,
1557                                                   void *data)
1558 {
1559     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1560 
1561     imrc->translate = smmuv3_translate;
1562     imrc->notify_flag_changed = smmuv3_notify_flag_changed;
1563 }
1564 
1565 static const TypeInfo smmuv3_type_info = {
1566     .name          = TYPE_ARM_SMMUV3,
1567     .parent        = TYPE_ARM_SMMU,
1568     .instance_size = sizeof(SMMUv3State),
1569     .instance_init = smmuv3_instance_init,
1570     .class_size    = sizeof(SMMUv3Class),
1571     .class_init    = smmuv3_class_init,
1572 };
1573 
1574 static const TypeInfo smmuv3_iommu_memory_region_info = {
1575     .parent = TYPE_IOMMU_MEMORY_REGION,
1576     .name = TYPE_SMMUV3_IOMMU_MEMORY_REGION,
1577     .class_init = smmuv3_iommu_memory_region_class_init,
1578 };
1579 
1580 static void smmuv3_register_types(void)
1581 {
1582     type_register(&smmuv3_type_info);
1583     type_register(&smmuv3_iommu_memory_region_info);
1584 }
1585 
1586 type_init(smmuv3_register_types)
1587 
1588