xref: /openbmc/qemu/hw/arm/smmuv3.c (revision 8b7b9c5c)
1 /*
2  * Copyright (C) 2014-2016 Broadcom Corporation
3  * Copyright (c) 2017 Red Hat, Inc.
4  * Written by Prem Mallappa, Eric Auger
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "hw/irq.h"
22 #include "hw/sysbus.h"
23 #include "migration/vmstate.h"
24 #include "hw/qdev-properties.h"
25 #include "hw/qdev-core.h"
26 #include "hw/pci/pci.h"
27 #include "cpu.h"
28 #include "trace.h"
29 #include "qemu/log.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 
33 #include "hw/arm/smmuv3.h"
34 #include "smmuv3-internal.h"
35 #include "smmu-internal.h"
36 
37 #define PTW_RECORD_FAULT(cfg)   (((cfg)->stage == 1) ? (cfg)->record_faults : \
38                                  (cfg)->s2cfg.record_faults)
39 
40 /**
41  * smmuv3_trigger_irq - pulse @irq if enabled and update
42  * GERROR register in case of GERROR interrupt
43  *
44  * @irq: irq type
45  * @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR)
46  */
47 static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq,
48                                uint32_t gerror_mask)
49 {
50 
51     bool pulse = false;
52 
53     switch (irq) {
54     case SMMU_IRQ_EVTQ:
55         pulse = smmuv3_eventq_irq_enabled(s);
56         break;
57     case SMMU_IRQ_PRIQ:
58         qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n");
59         break;
60     case SMMU_IRQ_CMD_SYNC:
61         pulse = true;
62         break;
63     case SMMU_IRQ_GERROR:
64     {
65         uint32_t pending = s->gerror ^ s->gerrorn;
66         uint32_t new_gerrors = ~pending & gerror_mask;
67 
68         if (!new_gerrors) {
69             /* only toggle non pending errors */
70             return;
71         }
72         s->gerror ^= new_gerrors;
73         trace_smmuv3_write_gerror(new_gerrors, s->gerror);
74 
75         pulse = smmuv3_gerror_irq_enabled(s);
76         break;
77     }
78     }
79     if (pulse) {
80             trace_smmuv3_trigger_irq(irq);
81             qemu_irq_pulse(s->irq[irq]);
82     }
83 }
84 
85 static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn)
86 {
87     uint32_t pending = s->gerror ^ s->gerrorn;
88     uint32_t toggled = s->gerrorn ^ new_gerrorn;
89 
90     if (toggled & ~pending) {
91         qemu_log_mask(LOG_GUEST_ERROR,
92                       "guest toggles non pending errors = 0x%x\n",
93                       toggled & ~pending);
94     }
95 
96     /*
97      * We do not raise any error in case guest toggles bits corresponding
98      * to not active IRQs (CONSTRAINED UNPREDICTABLE)
99      */
100     s->gerrorn = new_gerrorn;
101 
102     trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn);
103 }
104 
105 static inline MemTxResult queue_read(SMMUQueue *q, Cmd *cmd)
106 {
107     dma_addr_t addr = Q_CONS_ENTRY(q);
108     MemTxResult ret;
109     int i;
110 
111     ret = dma_memory_read(&address_space_memory, addr, cmd, sizeof(Cmd),
112                           MEMTXATTRS_UNSPECIFIED);
113     if (ret != MEMTX_OK) {
114         return ret;
115     }
116     for (i = 0; i < ARRAY_SIZE(cmd->word); i++) {
117         le32_to_cpus(&cmd->word[i]);
118     }
119     return ret;
120 }
121 
122 static MemTxResult queue_write(SMMUQueue *q, Evt *evt_in)
123 {
124     dma_addr_t addr = Q_PROD_ENTRY(q);
125     MemTxResult ret;
126     Evt evt = *evt_in;
127     int i;
128 
129     for (i = 0; i < ARRAY_SIZE(evt.word); i++) {
130         cpu_to_le32s(&evt.word[i]);
131     }
132     ret = dma_memory_write(&address_space_memory, addr, &evt, sizeof(Evt),
133                            MEMTXATTRS_UNSPECIFIED);
134     if (ret != MEMTX_OK) {
135         return ret;
136     }
137 
138     queue_prod_incr(q);
139     return MEMTX_OK;
140 }
141 
142 static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt)
143 {
144     SMMUQueue *q = &s->eventq;
145     MemTxResult r;
146 
147     if (!smmuv3_eventq_enabled(s)) {
148         return MEMTX_ERROR;
149     }
150 
151     if (smmuv3_q_full(q)) {
152         return MEMTX_ERROR;
153     }
154 
155     r = queue_write(q, evt);
156     if (r != MEMTX_OK) {
157         return r;
158     }
159 
160     if (!smmuv3_q_empty(q)) {
161         smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0);
162     }
163     return MEMTX_OK;
164 }
165 
166 void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
167 {
168     Evt evt = {};
169     MemTxResult r;
170 
171     if (!smmuv3_eventq_enabled(s)) {
172         return;
173     }
174 
175     EVT_SET_TYPE(&evt, info->type);
176     EVT_SET_SID(&evt, info->sid);
177 
178     switch (info->type) {
179     case SMMU_EVT_NONE:
180         return;
181     case SMMU_EVT_F_UUT:
182         EVT_SET_SSID(&evt, info->u.f_uut.ssid);
183         EVT_SET_SSV(&evt,  info->u.f_uut.ssv);
184         EVT_SET_ADDR(&evt, info->u.f_uut.addr);
185         EVT_SET_RNW(&evt,  info->u.f_uut.rnw);
186         EVT_SET_PNU(&evt,  info->u.f_uut.pnu);
187         EVT_SET_IND(&evt,  info->u.f_uut.ind);
188         break;
189     case SMMU_EVT_C_BAD_STREAMID:
190         EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid);
191         EVT_SET_SSV(&evt,  info->u.c_bad_streamid.ssv);
192         break;
193     case SMMU_EVT_F_STE_FETCH:
194         EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
195         EVT_SET_SSV(&evt,  info->u.f_ste_fetch.ssv);
196         EVT_SET_ADDR2(&evt, info->u.f_ste_fetch.addr);
197         break;
198     case SMMU_EVT_C_BAD_STE:
199         EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
200         EVT_SET_SSV(&evt,  info->u.c_bad_ste.ssv);
201         break;
202     case SMMU_EVT_F_STREAM_DISABLED:
203         break;
204     case SMMU_EVT_F_TRANS_FORBIDDEN:
205         EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr);
206         EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw);
207         break;
208     case SMMU_EVT_C_BAD_SUBSTREAMID:
209         EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid);
210         break;
211     case SMMU_EVT_F_CD_FETCH:
212         EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid);
213         EVT_SET_SSV(&evt,  info->u.f_cd_fetch.ssv);
214         EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr);
215         break;
216     case SMMU_EVT_C_BAD_CD:
217         EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid);
218         EVT_SET_SSV(&evt,  info->u.c_bad_cd.ssv);
219         break;
220     case SMMU_EVT_F_WALK_EABT:
221     case SMMU_EVT_F_TRANSLATION:
222     case SMMU_EVT_F_ADDR_SIZE:
223     case SMMU_EVT_F_ACCESS:
224     case SMMU_EVT_F_PERMISSION:
225         EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall);
226         EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag);
227         EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid);
228         EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv);
229         EVT_SET_S2(&evt, info->u.f_walk_eabt.s2);
230         EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr);
231         EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw);
232         EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu);
233         EVT_SET_IND(&evt, info->u.f_walk_eabt.ind);
234         EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class);
235         EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2);
236         break;
237     case SMMU_EVT_F_CFG_CONFLICT:
238         EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid);
239         EVT_SET_SSV(&evt,  info->u.f_cfg_conflict.ssv);
240         break;
241     /* rest is not implemented */
242     case SMMU_EVT_F_BAD_ATS_TREQ:
243     case SMMU_EVT_F_TLB_CONFLICT:
244     case SMMU_EVT_E_PAGE_REQ:
245     default:
246         g_assert_not_reached();
247     }
248 
249     trace_smmuv3_record_event(smmu_event_string(info->type), info->sid);
250     r = smmuv3_write_eventq(s, &evt);
251     if (r != MEMTX_OK) {
252         smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK);
253     }
254     info->recorded = true;
255 }
256 
257 static void smmuv3_init_regs(SMMUv3State *s)
258 {
259     /* Based on sys property, the stages supported in smmu will be advertised.*/
260     if (s->stage && !strcmp("2", s->stage)) {
261         s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S2P, 1);
262     } else {
263         s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1);
264     }
265 
266     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */
267     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */
268     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */
269     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, VMID16, 1); /* 16-bit VMID */
270     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */
271     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */
272     /* terminated transaction will always be aborted/error returned */
273     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1);
274     /* 2-level stream table supported */
275     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1);
276 
277     s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE);
278     s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS);
279     s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS,   SMMU_CMDQS);
280 
281     s->idr[3] = FIELD_DP32(s->idr[3], IDR3, RIL, 1);
282     s->idr[3] = FIELD_DP32(s->idr[3], IDR3, HAD, 1);
283     s->idr[3] = FIELD_DP32(s->idr[3], IDR3, BBML, 2);
284 
285     /* 4K, 16K and 64K granule support */
286     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1);
287     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN16K, 1);
288     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1);
289     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */
290 
291     s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS);
292     s->cmdq.prod = 0;
293     s->cmdq.cons = 0;
294     s->cmdq.entry_size = sizeof(struct Cmd);
295     s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS);
296     s->eventq.prod = 0;
297     s->eventq.cons = 0;
298     s->eventq.entry_size = sizeof(struct Evt);
299 
300     s->features = 0;
301     s->sid_split = 0;
302     s->aidr = 0x1;
303     s->cr[0] = 0;
304     s->cr0ack = 0;
305     s->irq_ctrl = 0;
306     s->gerror = 0;
307     s->gerrorn = 0;
308     s->statusr = 0;
309     s->gbpa = SMMU_GBPA_RESET_VAL;
310 }
311 
312 static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf,
313                         SMMUEventInfo *event)
314 {
315     int ret, i;
316 
317     trace_smmuv3_get_ste(addr);
318     /* TODO: guarantee 64-bit single-copy atomicity */
319     ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf),
320                           MEMTXATTRS_UNSPECIFIED);
321     if (ret != MEMTX_OK) {
322         qemu_log_mask(LOG_GUEST_ERROR,
323                       "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
324         event->type = SMMU_EVT_F_STE_FETCH;
325         event->u.f_ste_fetch.addr = addr;
326         return -EINVAL;
327     }
328     for (i = 0; i < ARRAY_SIZE(buf->word); i++) {
329         le32_to_cpus(&buf->word[i]);
330     }
331     return 0;
332 
333 }
334 
335 /* @ssid > 0 not supported yet */
336 static int smmu_get_cd(SMMUv3State *s, STE *ste, uint32_t ssid,
337                        CD *buf, SMMUEventInfo *event)
338 {
339     dma_addr_t addr = STE_CTXPTR(ste);
340     int ret, i;
341 
342     trace_smmuv3_get_cd(addr);
343     /* TODO: guarantee 64-bit single-copy atomicity */
344     ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf),
345                           MEMTXATTRS_UNSPECIFIED);
346     if (ret != MEMTX_OK) {
347         qemu_log_mask(LOG_GUEST_ERROR,
348                       "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
349         event->type = SMMU_EVT_F_CD_FETCH;
350         event->u.f_ste_fetch.addr = addr;
351         return -EINVAL;
352     }
353     for (i = 0; i < ARRAY_SIZE(buf->word); i++) {
354         le32_to_cpus(&buf->word[i]);
355     }
356     return 0;
357 }
358 
359 /*
360  * Max valid value is 39 when SMMU_IDR3.STT == 0.
361  * In architectures after SMMUv3.0:
362  * - If STE.S2TG selects a 4KB or 16KB granule, the minimum valid value for this
363  *   field is MAX(16, 64-IAS)
364  * - If STE.S2TG selects a 64KB granule, the minimum valid value for this field
365  *   is (64-IAS).
366  * As we only support AA64, IAS = OAS.
367  */
368 static bool s2t0sz_valid(SMMUTransCfg *cfg)
369 {
370     if (cfg->s2cfg.tsz > 39) {
371         return false;
372     }
373 
374     if (cfg->s2cfg.granule_sz == 16) {
375         return (cfg->s2cfg.tsz >= 64 - oas2bits(SMMU_IDR5_OAS));
376     }
377 
378     return (cfg->s2cfg.tsz >= MAX(64 - oas2bits(SMMU_IDR5_OAS), 16));
379 }
380 
381 /*
382  * Return true if s2 page table config is valid.
383  * This checks with the configured start level, ias_bits and granularity we can
384  * have a valid page table as described in ARM ARM D8.2 Translation process.
385  * The idea here is to see for the highest possible number of IPA bits, how
386  * many concatenated tables we would need, if it is more than 16, then this is
387  * not possible.
388  */
389 static bool s2_pgtable_config_valid(uint8_t sl0, uint8_t t0sz, uint8_t gran)
390 {
391     int level = get_start_level(sl0, gran);
392     uint64_t ipa_bits = 64 - t0sz;
393     uint64_t max_ipa = (1ULL << ipa_bits) - 1;
394     int nr_concat = pgd_concat_idx(level, gran, max_ipa) + 1;
395 
396     return nr_concat <= VMSA_MAX_S2_CONCAT;
397 }
398 
399 static int decode_ste_s2_cfg(SMMUTransCfg *cfg, STE *ste)
400 {
401     cfg->stage = 2;
402 
403     if (STE_S2AA64(ste) == 0x0) {
404         qemu_log_mask(LOG_UNIMP,
405                       "SMMUv3 AArch32 tables not supported\n");
406         g_assert_not_reached();
407     }
408 
409     switch (STE_S2TG(ste)) {
410     case 0x0: /* 4KB */
411         cfg->s2cfg.granule_sz = 12;
412         break;
413     case 0x1: /* 64KB */
414         cfg->s2cfg.granule_sz = 16;
415         break;
416     case 0x2: /* 16KB */
417         cfg->s2cfg.granule_sz = 14;
418         break;
419     default:
420         qemu_log_mask(LOG_GUEST_ERROR,
421                       "SMMUv3 bad STE S2TG: %x\n", STE_S2TG(ste));
422         goto bad_ste;
423     }
424 
425     cfg->s2cfg.vttb = STE_S2TTB(ste);
426 
427     cfg->s2cfg.sl0 = STE_S2SL0(ste);
428     /* FEAT_TTST not supported. */
429     if (cfg->s2cfg.sl0 == 0x3) {
430         qemu_log_mask(LOG_UNIMP, "SMMUv3 S2SL0 = 0x3 has no meaning!\n");
431         goto bad_ste;
432     }
433 
434     /* For AA64, The effective S2PS size is capped to the OAS. */
435     cfg->s2cfg.eff_ps = oas2bits(MIN(STE_S2PS(ste), SMMU_IDR5_OAS));
436     /*
437      * It is ILLEGAL for the address in S2TTB to be outside the range
438      * described by the effective S2PS value.
439      */
440     if (cfg->s2cfg.vttb & ~(MAKE_64BIT_MASK(0, cfg->s2cfg.eff_ps))) {
441         qemu_log_mask(LOG_GUEST_ERROR,
442                       "SMMUv3 S2TTB too large 0x%" PRIx64
443                       ", effective PS %d bits\n",
444                       cfg->s2cfg.vttb,  cfg->s2cfg.eff_ps);
445         goto bad_ste;
446     }
447 
448     cfg->s2cfg.tsz = STE_S2T0SZ(ste);
449 
450     if (!s2t0sz_valid(cfg)) {
451         qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 bad STE S2T0SZ = %d\n",
452                       cfg->s2cfg.tsz);
453         goto bad_ste;
454     }
455 
456     if (!s2_pgtable_config_valid(cfg->s2cfg.sl0, cfg->s2cfg.tsz,
457                                     cfg->s2cfg.granule_sz)) {
458         qemu_log_mask(LOG_GUEST_ERROR,
459                       "SMMUv3 STE stage 2 config not valid!\n");
460         goto bad_ste;
461     }
462 
463     /* Only LE supported(IDR0.TTENDIAN). */
464     if (STE_S2ENDI(ste)) {
465         qemu_log_mask(LOG_GUEST_ERROR,
466                       "SMMUv3 STE_S2ENDI only supports LE!\n");
467         goto bad_ste;
468     }
469 
470     cfg->s2cfg.affd = STE_S2AFFD(ste);
471 
472     cfg->s2cfg.record_faults = STE_S2R(ste);
473     /* As stall is not supported. */
474     if (STE_S2S(ste)) {
475         qemu_log_mask(LOG_UNIMP, "SMMUv3 Stall not implemented!\n");
476         goto bad_ste;
477     }
478 
479     return 0;
480 
481 bad_ste:
482     return -EINVAL;
483 }
484 
485 /* Returns < 0 in case of invalid STE, 0 otherwise */
486 static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg,
487                       STE *ste, SMMUEventInfo *event)
488 {
489     uint32_t config;
490     int ret;
491 
492     if (!STE_VALID(ste)) {
493         if (!event->inval_ste_allowed) {
494             qemu_log_mask(LOG_GUEST_ERROR, "invalid STE\n");
495         }
496         goto bad_ste;
497     }
498 
499     config = STE_CONFIG(ste);
500 
501     if (STE_CFG_ABORT(config)) {
502         cfg->aborted = true;
503         return 0;
504     }
505 
506     if (STE_CFG_BYPASS(config)) {
507         cfg->bypassed = true;
508         return 0;
509     }
510 
511     /*
512      * If a stage is enabled in SW while not advertised, throw bad ste
513      * according to user manual(IHI0070E) "5.2 Stream Table Entry".
514      */
515     if (!STAGE1_SUPPORTED(s) && STE_CFG_S1_ENABLED(config)) {
516         qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 S1 used but not supported.\n");
517         goto bad_ste;
518     }
519     if (!STAGE2_SUPPORTED(s) && STE_CFG_S2_ENABLED(config)) {
520         qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 S2 used but not supported.\n");
521         goto bad_ste;
522     }
523 
524     if (STAGE2_SUPPORTED(s)) {
525         /* VMID is considered even if s2 is disabled. */
526         cfg->s2cfg.vmid = STE_S2VMID(ste);
527     } else {
528         /* Default to -1 */
529         cfg->s2cfg.vmid = -1;
530     }
531 
532     if (STE_CFG_S2_ENABLED(config)) {
533         /*
534          * Stage-1 OAS defaults to OAS even if not enabled as it would be used
535          * in input address check for stage-2.
536          */
537         cfg->oas = oas2bits(SMMU_IDR5_OAS);
538         ret = decode_ste_s2_cfg(cfg, ste);
539         if (ret) {
540             goto bad_ste;
541         }
542     }
543 
544     if (STE_S1CDMAX(ste) != 0) {
545         qemu_log_mask(LOG_UNIMP,
546                       "SMMUv3 does not support multiple context descriptors yet\n");
547         goto bad_ste;
548     }
549 
550     if (STE_S1STALLD(ste)) {
551         qemu_log_mask(LOG_UNIMP,
552                       "SMMUv3 S1 stalling fault model not allowed yet\n");
553         goto bad_ste;
554     }
555     return 0;
556 
557 bad_ste:
558     event->type = SMMU_EVT_C_BAD_STE;
559     return -EINVAL;
560 }
561 
562 /**
563  * smmu_find_ste - Return the stream table entry associated
564  * to the sid
565  *
566  * @s: smmuv3 handle
567  * @sid: stream ID
568  * @ste: returned stream table entry
569  * @event: handle to an event info
570  *
571  * Supports linear and 2-level stream table
572  * Return 0 on success, -EINVAL otherwise
573  */
574 static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
575                          SMMUEventInfo *event)
576 {
577     dma_addr_t addr, strtab_base;
578     uint32_t log2size;
579     int strtab_size_shift;
580     int ret;
581 
582     trace_smmuv3_find_ste(sid, s->features, s->sid_split);
583     log2size = FIELD_EX32(s->strtab_base_cfg, STRTAB_BASE_CFG, LOG2SIZE);
584     /*
585      * Check SID range against both guest-configured and implementation limits
586      */
587     if (sid >= (1 << MIN(log2size, SMMU_IDR1_SIDSIZE))) {
588         event->type = SMMU_EVT_C_BAD_STREAMID;
589         return -EINVAL;
590     }
591     if (s->features & SMMU_FEATURE_2LVL_STE) {
592         int l1_ste_offset, l2_ste_offset, max_l2_ste, span, i;
593         dma_addr_t l1ptr, l2ptr;
594         STEDesc l1std;
595 
596         /*
597          * Align strtab base address to table size. For this purpose, assume it
598          * is not bounded by SMMU_IDR1_SIDSIZE.
599          */
600         strtab_size_shift = MAX(5, (int)log2size - s->sid_split - 1 + 3);
601         strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
602                       ~MAKE_64BIT_MASK(0, strtab_size_shift);
603         l1_ste_offset = sid >> s->sid_split;
604         l2_ste_offset = sid & ((1 << s->sid_split) - 1);
605         l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
606         /* TODO: guarantee 64-bit single-copy atomicity */
607         ret = dma_memory_read(&address_space_memory, l1ptr, &l1std,
608                               sizeof(l1std), MEMTXATTRS_UNSPECIFIED);
609         if (ret != MEMTX_OK) {
610             qemu_log_mask(LOG_GUEST_ERROR,
611                           "Could not read L1PTR at 0X%"PRIx64"\n", l1ptr);
612             event->type = SMMU_EVT_F_STE_FETCH;
613             event->u.f_ste_fetch.addr = l1ptr;
614             return -EINVAL;
615         }
616         for (i = 0; i < ARRAY_SIZE(l1std.word); i++) {
617             le32_to_cpus(&l1std.word[i]);
618         }
619 
620         span = L1STD_SPAN(&l1std);
621 
622         if (!span) {
623             /* l2ptr is not valid */
624             if (!event->inval_ste_allowed) {
625                 qemu_log_mask(LOG_GUEST_ERROR,
626                               "invalid sid=%d (L1STD span=0)\n", sid);
627             }
628             event->type = SMMU_EVT_C_BAD_STREAMID;
629             return -EINVAL;
630         }
631         max_l2_ste = (1 << span) - 1;
632         l2ptr = l1std_l2ptr(&l1std);
633         trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset,
634                                    l2ptr, l2_ste_offset, max_l2_ste);
635         if (l2_ste_offset > max_l2_ste) {
636             qemu_log_mask(LOG_GUEST_ERROR,
637                           "l2_ste_offset=%d > max_l2_ste=%d\n",
638                           l2_ste_offset, max_l2_ste);
639             event->type = SMMU_EVT_C_BAD_STE;
640             return -EINVAL;
641         }
642         addr = l2ptr + l2_ste_offset * sizeof(*ste);
643     } else {
644         strtab_size_shift = log2size + 5;
645         strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
646                       ~MAKE_64BIT_MASK(0, strtab_size_shift);
647         addr = strtab_base + sid * sizeof(*ste);
648     }
649 
650     if (smmu_get_ste(s, addr, ste, event)) {
651         return -EINVAL;
652     }
653 
654     return 0;
655 }
656 
657 static int decode_cd(SMMUTransCfg *cfg, CD *cd, SMMUEventInfo *event)
658 {
659     int ret = -EINVAL;
660     int i;
661 
662     if (!CD_VALID(cd) || !CD_AARCH64(cd)) {
663         goto bad_cd;
664     }
665     if (!CD_A(cd)) {
666         goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */
667     }
668     if (CD_S(cd)) {
669         goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */
670     }
671     if (CD_HA(cd) || CD_HD(cd)) {
672         goto bad_cd; /* HTTU = 0 */
673     }
674 
675     /* we support only those at the moment */
676     cfg->aa64 = true;
677     cfg->stage = 1;
678 
679     cfg->oas = oas2bits(CD_IPS(cd));
680     cfg->oas = MIN(oas2bits(SMMU_IDR5_OAS), cfg->oas);
681     cfg->tbi = CD_TBI(cd);
682     cfg->asid = CD_ASID(cd);
683 
684     trace_smmuv3_decode_cd(cfg->oas);
685 
686     /* decode data dependent on TT */
687     for (i = 0; i <= 1; i++) {
688         int tg, tsz;
689         SMMUTransTableInfo *tt = &cfg->tt[i];
690 
691         cfg->tt[i].disabled = CD_EPD(cd, i);
692         if (cfg->tt[i].disabled) {
693             continue;
694         }
695 
696         tsz = CD_TSZ(cd, i);
697         if (tsz < 16 || tsz > 39) {
698             goto bad_cd;
699         }
700 
701         tg = CD_TG(cd, i);
702         tt->granule_sz = tg2granule(tg, i);
703         if ((tt->granule_sz != 12 && tt->granule_sz != 14 &&
704              tt->granule_sz != 16) || CD_ENDI(cd)) {
705             goto bad_cd;
706         }
707 
708         tt->tsz = tsz;
709         tt->ttb = CD_TTB(cd, i);
710         if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) {
711             goto bad_cd;
712         }
713         tt->had = CD_HAD(cd, i);
714         trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz, tt->had);
715     }
716 
717     cfg->record_faults = CD_R(cd);
718 
719     return 0;
720 
721 bad_cd:
722     event->type = SMMU_EVT_C_BAD_CD;
723     return ret;
724 }
725 
726 /**
727  * smmuv3_decode_config - Prepare the translation configuration
728  * for the @mr iommu region
729  * @mr: iommu memory region the translation config must be prepared for
730  * @cfg: output translation configuration which is populated through
731  *       the different configuration decoding steps
732  * @event: must be zero'ed by the caller
733  *
734  * return < 0 in case of config decoding error (@event is filled
735  * accordingly). Return 0 otherwise.
736  */
737 static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg,
738                                 SMMUEventInfo *event)
739 {
740     SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
741     uint32_t sid = smmu_get_sid(sdev);
742     SMMUv3State *s = sdev->smmu;
743     int ret;
744     STE ste;
745     CD cd;
746 
747     /* ASID defaults to -1 (if s1 is not supported). */
748     cfg->asid = -1;
749 
750     ret = smmu_find_ste(s, sid, &ste, event);
751     if (ret) {
752         return ret;
753     }
754 
755     ret = decode_ste(s, cfg, &ste, event);
756     if (ret) {
757         return ret;
758     }
759 
760     if (cfg->aborted || cfg->bypassed || (cfg->stage == 2)) {
761         return 0;
762     }
763 
764     ret = smmu_get_cd(s, &ste, 0 /* ssid */, &cd, event);
765     if (ret) {
766         return ret;
767     }
768 
769     return decode_cd(cfg, &cd, event);
770 }
771 
772 /**
773  * smmuv3_get_config - Look up for a cached copy of configuration data for
774  * @sdev and on cache miss performs a configuration structure decoding from
775  * guest RAM.
776  *
777  * @sdev: SMMUDevice handle
778  * @event: output event info
779  *
780  * The configuration cache contains data resulting from both STE and CD
781  * decoding under the form of an SMMUTransCfg struct. The hash table is indexed
782  * by the SMMUDevice handle.
783  */
784 static SMMUTransCfg *smmuv3_get_config(SMMUDevice *sdev, SMMUEventInfo *event)
785 {
786     SMMUv3State *s = sdev->smmu;
787     SMMUState *bc = &s->smmu_state;
788     SMMUTransCfg *cfg;
789 
790     cfg = g_hash_table_lookup(bc->configs, sdev);
791     if (cfg) {
792         sdev->cfg_cache_hits++;
793         trace_smmuv3_config_cache_hit(smmu_get_sid(sdev),
794                             sdev->cfg_cache_hits, sdev->cfg_cache_misses,
795                             100 * sdev->cfg_cache_hits /
796                             (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
797     } else {
798         sdev->cfg_cache_misses++;
799         trace_smmuv3_config_cache_miss(smmu_get_sid(sdev),
800                             sdev->cfg_cache_hits, sdev->cfg_cache_misses,
801                             100 * sdev->cfg_cache_hits /
802                             (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
803         cfg = g_new0(SMMUTransCfg, 1);
804 
805         if (!smmuv3_decode_config(&sdev->iommu, cfg, event)) {
806             g_hash_table_insert(bc->configs, sdev, cfg);
807         } else {
808             g_free(cfg);
809             cfg = NULL;
810         }
811     }
812     return cfg;
813 }
814 
815 static void smmuv3_flush_config(SMMUDevice *sdev)
816 {
817     SMMUv3State *s = sdev->smmu;
818     SMMUState *bc = &s->smmu_state;
819 
820     trace_smmuv3_config_cache_inv(smmu_get_sid(sdev));
821     g_hash_table_remove(bc->configs, sdev);
822 }
823 
824 static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr,
825                                       IOMMUAccessFlags flag, int iommu_idx)
826 {
827     SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
828     SMMUv3State *s = sdev->smmu;
829     uint32_t sid = smmu_get_sid(sdev);
830     SMMUEventInfo event = {.type = SMMU_EVT_NONE,
831                            .sid = sid,
832                            .inval_ste_allowed = false};
833     SMMUPTWEventInfo ptw_info = {};
834     SMMUTranslationStatus status;
835     SMMUState *bs = ARM_SMMU(s);
836     uint64_t page_mask, aligned_addr;
837     SMMUTLBEntry *cached_entry = NULL;
838     SMMUTransTableInfo *tt;
839     SMMUTransCfg *cfg = NULL;
840     IOMMUTLBEntry entry = {
841         .target_as = &address_space_memory,
842         .iova = addr,
843         .translated_addr = addr,
844         .addr_mask = ~(hwaddr)0,
845         .perm = IOMMU_NONE,
846     };
847     /*
848      * Combined attributes used for TLB lookup, as only one stage is supported,
849      * it will hold attributes based on the enabled stage.
850      */
851     SMMUTransTableInfo tt_combined;
852 
853     qemu_mutex_lock(&s->mutex);
854 
855     if (!smmu_enabled(s)) {
856         if (FIELD_EX32(s->gbpa, GBPA, ABORT)) {
857             status = SMMU_TRANS_ABORT;
858         } else {
859             status = SMMU_TRANS_DISABLE;
860         }
861         goto epilogue;
862     }
863 
864     cfg = smmuv3_get_config(sdev, &event);
865     if (!cfg) {
866         status = SMMU_TRANS_ERROR;
867         goto epilogue;
868     }
869 
870     if (cfg->aborted) {
871         status = SMMU_TRANS_ABORT;
872         goto epilogue;
873     }
874 
875     if (cfg->bypassed) {
876         status = SMMU_TRANS_BYPASS;
877         goto epilogue;
878     }
879 
880     if (cfg->stage == 1) {
881         /* Select stage1 translation table. */
882         tt = select_tt(cfg, addr);
883         if (!tt) {
884             if (cfg->record_faults) {
885                 event.type = SMMU_EVT_F_TRANSLATION;
886                 event.u.f_translation.addr = addr;
887                 event.u.f_translation.rnw = flag & 0x1;
888             }
889             status = SMMU_TRANS_ERROR;
890             goto epilogue;
891         }
892         tt_combined.granule_sz = tt->granule_sz;
893         tt_combined.tsz = tt->tsz;
894 
895     } else {
896         /* Stage2. */
897         tt_combined.granule_sz = cfg->s2cfg.granule_sz;
898         tt_combined.tsz = cfg->s2cfg.tsz;
899     }
900     /*
901      * TLB lookup looks for granule and input size for a translation stage,
902      * as only one stage is supported right now, choose the right values
903      * from the configuration.
904      */
905     page_mask = (1ULL << tt_combined.granule_sz) - 1;
906     aligned_addr = addr & ~page_mask;
907 
908     cached_entry = smmu_iotlb_lookup(bs, cfg, &tt_combined, aligned_addr);
909     if (cached_entry) {
910         if ((flag & IOMMU_WO) && !(cached_entry->entry.perm & IOMMU_WO)) {
911             status = SMMU_TRANS_ERROR;
912             /*
913              * We know that the TLB only contains either stage-1 or stage-2 as
914              * nesting is not supported. So it is sufficient to check the
915              * translation stage to know the TLB stage for now.
916              */
917             event.u.f_walk_eabt.s2 = (cfg->stage == 2);
918             if (PTW_RECORD_FAULT(cfg)) {
919                 event.type = SMMU_EVT_F_PERMISSION;
920                 event.u.f_permission.addr = addr;
921                 event.u.f_permission.rnw = flag & 0x1;
922             }
923         } else {
924             status = SMMU_TRANS_SUCCESS;
925         }
926         goto epilogue;
927     }
928 
929     cached_entry = g_new0(SMMUTLBEntry, 1);
930 
931     if (smmu_ptw(cfg, aligned_addr, flag, cached_entry, &ptw_info)) {
932         /* All faults from PTW has S2 field. */
933         event.u.f_walk_eabt.s2 = (ptw_info.stage == 2);
934         g_free(cached_entry);
935         switch (ptw_info.type) {
936         case SMMU_PTW_ERR_WALK_EABT:
937             event.type = SMMU_EVT_F_WALK_EABT;
938             event.u.f_walk_eabt.addr = addr;
939             event.u.f_walk_eabt.rnw = flag & 0x1;
940             event.u.f_walk_eabt.class = 0x1;
941             event.u.f_walk_eabt.addr2 = ptw_info.addr;
942             break;
943         case SMMU_PTW_ERR_TRANSLATION:
944             if (PTW_RECORD_FAULT(cfg)) {
945                 event.type = SMMU_EVT_F_TRANSLATION;
946                 event.u.f_translation.addr = addr;
947                 event.u.f_translation.rnw = flag & 0x1;
948             }
949             break;
950         case SMMU_PTW_ERR_ADDR_SIZE:
951             if (PTW_RECORD_FAULT(cfg)) {
952                 event.type = SMMU_EVT_F_ADDR_SIZE;
953                 event.u.f_addr_size.addr = addr;
954                 event.u.f_addr_size.rnw = flag & 0x1;
955             }
956             break;
957         case SMMU_PTW_ERR_ACCESS:
958             if (PTW_RECORD_FAULT(cfg)) {
959                 event.type = SMMU_EVT_F_ACCESS;
960                 event.u.f_access.addr = addr;
961                 event.u.f_access.rnw = flag & 0x1;
962             }
963             break;
964         case SMMU_PTW_ERR_PERMISSION:
965             if (PTW_RECORD_FAULT(cfg)) {
966                 event.type = SMMU_EVT_F_PERMISSION;
967                 event.u.f_permission.addr = addr;
968                 event.u.f_permission.rnw = flag & 0x1;
969             }
970             break;
971         default:
972             g_assert_not_reached();
973         }
974         status = SMMU_TRANS_ERROR;
975     } else {
976         smmu_iotlb_insert(bs, cfg, cached_entry);
977         status = SMMU_TRANS_SUCCESS;
978     }
979 
980 epilogue:
981     qemu_mutex_unlock(&s->mutex);
982     switch (status) {
983     case SMMU_TRANS_SUCCESS:
984         entry.perm = cached_entry->entry.perm;
985         entry.translated_addr = cached_entry->entry.translated_addr +
986                                     (addr & cached_entry->entry.addr_mask);
987         entry.addr_mask = cached_entry->entry.addr_mask;
988         trace_smmuv3_translate_success(mr->parent_obj.name, sid, addr,
989                                        entry.translated_addr, entry.perm);
990         break;
991     case SMMU_TRANS_DISABLE:
992         entry.perm = flag;
993         entry.addr_mask = ~TARGET_PAGE_MASK;
994         trace_smmuv3_translate_disable(mr->parent_obj.name, sid, addr,
995                                       entry.perm);
996         break;
997     case SMMU_TRANS_BYPASS:
998         entry.perm = flag;
999         entry.addr_mask = ~TARGET_PAGE_MASK;
1000         trace_smmuv3_translate_bypass(mr->parent_obj.name, sid, addr,
1001                                       entry.perm);
1002         break;
1003     case SMMU_TRANS_ABORT:
1004         /* no event is recorded on abort */
1005         trace_smmuv3_translate_abort(mr->parent_obj.name, sid, addr,
1006                                      entry.perm);
1007         break;
1008     case SMMU_TRANS_ERROR:
1009         qemu_log_mask(LOG_GUEST_ERROR,
1010                       "%s translation failed for iova=0x%"PRIx64" (%s)\n",
1011                       mr->parent_obj.name, addr, smmu_event_string(event.type));
1012         smmuv3_record_event(s, &event);
1013         break;
1014     }
1015 
1016     return entry;
1017 }
1018 
1019 /**
1020  * smmuv3_notify_iova - call the notifier @n for a given
1021  * @asid and @iova tuple.
1022  *
1023  * @mr: IOMMU mr region handle
1024  * @n: notifier to be called
1025  * @asid: address space ID or negative value if we don't care
1026  * @vmid: virtual machine ID or negative value if we don't care
1027  * @iova: iova
1028  * @tg: translation granule (if communicated through range invalidation)
1029  * @num_pages: number of @granule sized pages (if tg != 0), otherwise 1
1030  */
1031 static void smmuv3_notify_iova(IOMMUMemoryRegion *mr,
1032                                IOMMUNotifier *n,
1033                                int asid, int vmid,
1034                                dma_addr_t iova, uint8_t tg,
1035                                uint64_t num_pages)
1036 {
1037     SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
1038     IOMMUTLBEvent event;
1039     uint8_t granule;
1040     SMMUv3State *s = sdev->smmu;
1041 
1042     if (!tg) {
1043         SMMUEventInfo eventinfo = {.inval_ste_allowed = true};
1044         SMMUTransCfg *cfg = smmuv3_get_config(sdev, &eventinfo);
1045         SMMUTransTableInfo *tt;
1046 
1047         if (!cfg) {
1048             return;
1049         }
1050 
1051         if (asid >= 0 && cfg->asid != asid) {
1052             return;
1053         }
1054 
1055         if (vmid >= 0 && cfg->s2cfg.vmid != vmid) {
1056             return;
1057         }
1058 
1059         if (STAGE1_SUPPORTED(s)) {
1060             tt = select_tt(cfg, iova);
1061             if (!tt) {
1062                 return;
1063             }
1064             granule = tt->granule_sz;
1065         } else {
1066             granule = cfg->s2cfg.granule_sz;
1067         }
1068 
1069     } else {
1070         granule = tg * 2 + 10;
1071     }
1072 
1073     event.type = IOMMU_NOTIFIER_UNMAP;
1074     event.entry.target_as = &address_space_memory;
1075     event.entry.iova = iova;
1076     event.entry.addr_mask = num_pages * (1 << granule) - 1;
1077     event.entry.perm = IOMMU_NONE;
1078 
1079     memory_region_notify_iommu_one(n, &event);
1080 }
1081 
1082 /* invalidate an asid/vmid/iova range tuple in all mr's */
1083 static void smmuv3_inv_notifiers_iova(SMMUState *s, int asid, int vmid,
1084                                       dma_addr_t iova, uint8_t tg,
1085                                       uint64_t num_pages)
1086 {
1087     SMMUDevice *sdev;
1088 
1089     QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
1090         IOMMUMemoryRegion *mr = &sdev->iommu;
1091         IOMMUNotifier *n;
1092 
1093         trace_smmuv3_inv_notifiers_iova(mr->parent_obj.name, asid, vmid,
1094                                         iova, tg, num_pages);
1095 
1096         IOMMU_NOTIFIER_FOREACH(n, mr) {
1097             smmuv3_notify_iova(mr, n, asid, vmid, iova, tg, num_pages);
1098         }
1099     }
1100 }
1101 
1102 static void smmuv3_range_inval(SMMUState *s, Cmd *cmd)
1103 {
1104     dma_addr_t end, addr = CMD_ADDR(cmd);
1105     uint8_t type = CMD_TYPE(cmd);
1106     int vmid = -1;
1107     uint8_t scale = CMD_SCALE(cmd);
1108     uint8_t num = CMD_NUM(cmd);
1109     uint8_t ttl = CMD_TTL(cmd);
1110     bool leaf = CMD_LEAF(cmd);
1111     uint8_t tg = CMD_TG(cmd);
1112     uint64_t num_pages;
1113     uint8_t granule;
1114     int asid = -1;
1115     SMMUv3State *smmuv3 = ARM_SMMUV3(s);
1116 
1117     /* Only consider VMID if stage-2 is supported. */
1118     if (STAGE2_SUPPORTED(smmuv3)) {
1119         vmid = CMD_VMID(cmd);
1120     }
1121 
1122     if (type == SMMU_CMD_TLBI_NH_VA) {
1123         asid = CMD_ASID(cmd);
1124     }
1125 
1126     if (!tg) {
1127         trace_smmuv3_range_inval(vmid, asid, addr, tg, 1, ttl, leaf);
1128         smmuv3_inv_notifiers_iova(s, asid, vmid, addr, tg, 1);
1129         smmu_iotlb_inv_iova(s, asid, vmid, addr, tg, 1, ttl);
1130         return;
1131     }
1132 
1133     /* RIL in use */
1134 
1135     num_pages = (num + 1) * BIT_ULL(scale);
1136     granule = tg * 2 + 10;
1137 
1138     /* Split invalidations into ^2 range invalidations */
1139     end = addr + (num_pages << granule) - 1;
1140 
1141     while (addr != end + 1) {
1142         uint64_t mask = dma_aligned_pow2_mask(addr, end, 64);
1143 
1144         num_pages = (mask + 1) >> granule;
1145         trace_smmuv3_range_inval(vmid, asid, addr, tg, num_pages, ttl, leaf);
1146         smmuv3_inv_notifiers_iova(s, asid, vmid, addr, tg, num_pages);
1147         smmu_iotlb_inv_iova(s, asid, vmid, addr, tg, num_pages, ttl);
1148         addr += mask + 1;
1149     }
1150 }
1151 
1152 static gboolean
1153 smmuv3_invalidate_ste(gpointer key, gpointer value, gpointer user_data)
1154 {
1155     SMMUDevice *sdev = (SMMUDevice *)key;
1156     uint32_t sid = smmu_get_sid(sdev);
1157     SMMUSIDRange *sid_range = (SMMUSIDRange *)user_data;
1158 
1159     if (sid < sid_range->start || sid > sid_range->end) {
1160         return false;
1161     }
1162     trace_smmuv3_config_cache_inv(sid);
1163     return true;
1164 }
1165 
1166 static int smmuv3_cmdq_consume(SMMUv3State *s)
1167 {
1168     SMMUState *bs = ARM_SMMU(s);
1169     SMMUCmdError cmd_error = SMMU_CERROR_NONE;
1170     SMMUQueue *q = &s->cmdq;
1171     SMMUCommandType type = 0;
1172 
1173     if (!smmuv3_cmdq_enabled(s)) {
1174         return 0;
1175     }
1176     /*
1177      * some commands depend on register values, typically CR0. In case those
1178      * register values change while handling the command, spec says it
1179      * is UNPREDICTABLE whether the command is interpreted under the new
1180      * or old value.
1181      */
1182 
1183     while (!smmuv3_q_empty(q)) {
1184         uint32_t pending = s->gerror ^ s->gerrorn;
1185         Cmd cmd;
1186 
1187         trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q),
1188                                   Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1189 
1190         if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) {
1191             break;
1192         }
1193 
1194         if (queue_read(q, &cmd) != MEMTX_OK) {
1195             cmd_error = SMMU_CERROR_ABT;
1196             break;
1197         }
1198 
1199         type = CMD_TYPE(&cmd);
1200 
1201         trace_smmuv3_cmdq_opcode(smmu_cmd_string(type));
1202 
1203         qemu_mutex_lock(&s->mutex);
1204         switch (type) {
1205         case SMMU_CMD_SYNC:
1206             if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) {
1207                 smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0);
1208             }
1209             break;
1210         case SMMU_CMD_PREFETCH_CONFIG:
1211         case SMMU_CMD_PREFETCH_ADDR:
1212             break;
1213         case SMMU_CMD_CFGI_STE:
1214         {
1215             uint32_t sid = CMD_SID(&cmd);
1216             IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
1217             SMMUDevice *sdev;
1218 
1219             if (CMD_SSEC(&cmd)) {
1220                 cmd_error = SMMU_CERROR_ILL;
1221                 break;
1222             }
1223 
1224             if (!mr) {
1225                 break;
1226             }
1227 
1228             trace_smmuv3_cmdq_cfgi_ste(sid);
1229             sdev = container_of(mr, SMMUDevice, iommu);
1230             smmuv3_flush_config(sdev);
1231 
1232             break;
1233         }
1234         case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */
1235         {
1236             uint32_t sid = CMD_SID(&cmd), mask;
1237             uint8_t range = CMD_STE_RANGE(&cmd);
1238             SMMUSIDRange sid_range;
1239 
1240             if (CMD_SSEC(&cmd)) {
1241                 cmd_error = SMMU_CERROR_ILL;
1242                 break;
1243             }
1244 
1245             mask = (1ULL << (range + 1)) - 1;
1246             sid_range.start = sid & ~mask;
1247             sid_range.end = sid_range.start + mask;
1248 
1249             trace_smmuv3_cmdq_cfgi_ste_range(sid_range.start, sid_range.end);
1250             g_hash_table_foreach_remove(bs->configs, smmuv3_invalidate_ste,
1251                                         &sid_range);
1252             break;
1253         }
1254         case SMMU_CMD_CFGI_CD:
1255         case SMMU_CMD_CFGI_CD_ALL:
1256         {
1257             uint32_t sid = CMD_SID(&cmd);
1258             IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
1259             SMMUDevice *sdev;
1260 
1261             if (CMD_SSEC(&cmd)) {
1262                 cmd_error = SMMU_CERROR_ILL;
1263                 break;
1264             }
1265 
1266             if (!mr) {
1267                 break;
1268             }
1269 
1270             trace_smmuv3_cmdq_cfgi_cd(sid);
1271             sdev = container_of(mr, SMMUDevice, iommu);
1272             smmuv3_flush_config(sdev);
1273             break;
1274         }
1275         case SMMU_CMD_TLBI_NH_ASID:
1276         {
1277             uint16_t asid = CMD_ASID(&cmd);
1278 
1279             if (!STAGE1_SUPPORTED(s)) {
1280                 cmd_error = SMMU_CERROR_ILL;
1281                 break;
1282             }
1283 
1284             trace_smmuv3_cmdq_tlbi_nh_asid(asid);
1285             smmu_inv_notifiers_all(&s->smmu_state);
1286             smmu_iotlb_inv_asid(bs, asid);
1287             break;
1288         }
1289         case SMMU_CMD_TLBI_NH_ALL:
1290             if (!STAGE1_SUPPORTED(s)) {
1291                 cmd_error = SMMU_CERROR_ILL;
1292                 break;
1293             }
1294             QEMU_FALLTHROUGH;
1295         case SMMU_CMD_TLBI_NSNH_ALL:
1296             trace_smmuv3_cmdq_tlbi_nh();
1297             smmu_inv_notifiers_all(&s->smmu_state);
1298             smmu_iotlb_inv_all(bs);
1299             break;
1300         case SMMU_CMD_TLBI_NH_VAA:
1301         case SMMU_CMD_TLBI_NH_VA:
1302             if (!STAGE1_SUPPORTED(s)) {
1303                 cmd_error = SMMU_CERROR_ILL;
1304                 break;
1305             }
1306             smmuv3_range_inval(bs, &cmd);
1307             break;
1308         case SMMU_CMD_TLBI_S12_VMALL:
1309         {
1310             uint16_t vmid = CMD_VMID(&cmd);
1311 
1312             if (!STAGE2_SUPPORTED(s)) {
1313                 cmd_error = SMMU_CERROR_ILL;
1314                 break;
1315             }
1316 
1317             trace_smmuv3_cmdq_tlbi_s12_vmid(vmid);
1318             smmu_inv_notifiers_all(&s->smmu_state);
1319             smmu_iotlb_inv_vmid(bs, vmid);
1320             break;
1321         }
1322         case SMMU_CMD_TLBI_S2_IPA:
1323             if (!STAGE2_SUPPORTED(s)) {
1324                 cmd_error = SMMU_CERROR_ILL;
1325                 break;
1326             }
1327             /*
1328              * As currently only either s1 or s2 are supported
1329              * we can reuse same function for s2.
1330              */
1331             smmuv3_range_inval(bs, &cmd);
1332             break;
1333         case SMMU_CMD_TLBI_EL3_ALL:
1334         case SMMU_CMD_TLBI_EL3_VA:
1335         case SMMU_CMD_TLBI_EL2_ALL:
1336         case SMMU_CMD_TLBI_EL2_ASID:
1337         case SMMU_CMD_TLBI_EL2_VA:
1338         case SMMU_CMD_TLBI_EL2_VAA:
1339         case SMMU_CMD_ATC_INV:
1340         case SMMU_CMD_PRI_RESP:
1341         case SMMU_CMD_RESUME:
1342         case SMMU_CMD_STALL_TERM:
1343             trace_smmuv3_unhandled_cmd(type);
1344             break;
1345         default:
1346             cmd_error = SMMU_CERROR_ILL;
1347             break;
1348         }
1349         qemu_mutex_unlock(&s->mutex);
1350         if (cmd_error) {
1351             if (cmd_error == SMMU_CERROR_ILL) {
1352                 qemu_log_mask(LOG_GUEST_ERROR,
1353                               "Illegal command type: %d\n", CMD_TYPE(&cmd));
1354             }
1355             break;
1356         }
1357         /*
1358          * We only increment the cons index after the completion of
1359          * the command. We do that because the SYNC returns immediately
1360          * and does not check the completion of previous commands
1361          */
1362         queue_cons_incr(q);
1363     }
1364 
1365     if (cmd_error) {
1366         trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error);
1367         smmu_write_cmdq_err(s, cmd_error);
1368         smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK);
1369     }
1370 
1371     trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q),
1372                                   Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1373 
1374     return 0;
1375 }
1376 
1377 static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset,
1378                                uint64_t data, MemTxAttrs attrs)
1379 {
1380     switch (offset) {
1381     case A_GERROR_IRQ_CFG0:
1382         s->gerror_irq_cfg0 = data;
1383         return MEMTX_OK;
1384     case A_STRTAB_BASE:
1385         s->strtab_base = data;
1386         return MEMTX_OK;
1387     case A_CMDQ_BASE:
1388         s->cmdq.base = data;
1389         s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1390         if (s->cmdq.log2size > SMMU_CMDQS) {
1391             s->cmdq.log2size = SMMU_CMDQS;
1392         }
1393         return MEMTX_OK;
1394     case A_EVENTQ_BASE:
1395         s->eventq.base = data;
1396         s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1397         if (s->eventq.log2size > SMMU_EVENTQS) {
1398             s->eventq.log2size = SMMU_EVENTQS;
1399         }
1400         return MEMTX_OK;
1401     case A_EVENTQ_IRQ_CFG0:
1402         s->eventq_irq_cfg0 = data;
1403         return MEMTX_OK;
1404     default:
1405         qemu_log_mask(LOG_UNIMP,
1406                       "%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n",
1407                       __func__, offset);
1408         return MEMTX_OK;
1409     }
1410 }
1411 
1412 static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset,
1413                                uint64_t data, MemTxAttrs attrs)
1414 {
1415     switch (offset) {
1416     case A_CR0:
1417         s->cr[0] = data;
1418         s->cr0ack = data & ~SMMU_CR0_RESERVED;
1419         /* in case the command queue has been enabled */
1420         smmuv3_cmdq_consume(s);
1421         return MEMTX_OK;
1422     case A_CR1:
1423         s->cr[1] = data;
1424         return MEMTX_OK;
1425     case A_CR2:
1426         s->cr[2] = data;
1427         return MEMTX_OK;
1428     case A_IRQ_CTRL:
1429         s->irq_ctrl = data;
1430         return MEMTX_OK;
1431     case A_GERRORN:
1432         smmuv3_write_gerrorn(s, data);
1433         /*
1434          * By acknowledging the CMDQ_ERR, SW may notify cmds can
1435          * be processed again
1436          */
1437         smmuv3_cmdq_consume(s);
1438         return MEMTX_OK;
1439     case A_GERROR_IRQ_CFG0: /* 64b */
1440         s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data);
1441         return MEMTX_OK;
1442     case A_GERROR_IRQ_CFG0 + 4:
1443         s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data);
1444         return MEMTX_OK;
1445     case A_GERROR_IRQ_CFG1:
1446         s->gerror_irq_cfg1 = data;
1447         return MEMTX_OK;
1448     case A_GERROR_IRQ_CFG2:
1449         s->gerror_irq_cfg2 = data;
1450         return MEMTX_OK;
1451     case A_GBPA:
1452         /*
1453          * If UPDATE is not set, the write is ignored. This is the only
1454          * permitted behavior in SMMUv3.2 and later.
1455          */
1456         if (data & R_GBPA_UPDATE_MASK) {
1457             /* Ignore update bit as write is synchronous. */
1458             s->gbpa = data & ~R_GBPA_UPDATE_MASK;
1459         }
1460         return MEMTX_OK;
1461     case A_STRTAB_BASE: /* 64b */
1462         s->strtab_base = deposit64(s->strtab_base, 0, 32, data);
1463         return MEMTX_OK;
1464     case A_STRTAB_BASE + 4:
1465         s->strtab_base = deposit64(s->strtab_base, 32, 32, data);
1466         return MEMTX_OK;
1467     case A_STRTAB_BASE_CFG:
1468         s->strtab_base_cfg = data;
1469         if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) {
1470             s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT);
1471             s->features |= SMMU_FEATURE_2LVL_STE;
1472         }
1473         return MEMTX_OK;
1474     case A_CMDQ_BASE: /* 64b */
1475         s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data);
1476         s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1477         if (s->cmdq.log2size > SMMU_CMDQS) {
1478             s->cmdq.log2size = SMMU_CMDQS;
1479         }
1480         return MEMTX_OK;
1481     case A_CMDQ_BASE + 4: /* 64b */
1482         s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data);
1483         return MEMTX_OK;
1484     case A_CMDQ_PROD:
1485         s->cmdq.prod = data;
1486         smmuv3_cmdq_consume(s);
1487         return MEMTX_OK;
1488     case A_CMDQ_CONS:
1489         s->cmdq.cons = data;
1490         return MEMTX_OK;
1491     case A_EVENTQ_BASE: /* 64b */
1492         s->eventq.base = deposit64(s->eventq.base, 0, 32, data);
1493         s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1494         if (s->eventq.log2size > SMMU_EVENTQS) {
1495             s->eventq.log2size = SMMU_EVENTQS;
1496         }
1497         return MEMTX_OK;
1498     case A_EVENTQ_BASE + 4:
1499         s->eventq.base = deposit64(s->eventq.base, 32, 32, data);
1500         return MEMTX_OK;
1501     case A_EVENTQ_PROD:
1502         s->eventq.prod = data;
1503         return MEMTX_OK;
1504     case A_EVENTQ_CONS:
1505         s->eventq.cons = data;
1506         return MEMTX_OK;
1507     case A_EVENTQ_IRQ_CFG0: /* 64b */
1508         s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data);
1509         return MEMTX_OK;
1510     case A_EVENTQ_IRQ_CFG0 + 4:
1511         s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data);
1512         return MEMTX_OK;
1513     case A_EVENTQ_IRQ_CFG1:
1514         s->eventq_irq_cfg1 = data;
1515         return MEMTX_OK;
1516     case A_EVENTQ_IRQ_CFG2:
1517         s->eventq_irq_cfg2 = data;
1518         return MEMTX_OK;
1519     default:
1520         qemu_log_mask(LOG_UNIMP,
1521                       "%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n",
1522                       __func__, offset);
1523         return MEMTX_OK;
1524     }
1525 }
1526 
1527 static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data,
1528                                    unsigned size, MemTxAttrs attrs)
1529 {
1530     SMMUState *sys = opaque;
1531     SMMUv3State *s = ARM_SMMUV3(sys);
1532     MemTxResult r;
1533 
1534     /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1535     offset &= ~0x10000;
1536 
1537     switch (size) {
1538     case 8:
1539         r = smmu_writell(s, offset, data, attrs);
1540         break;
1541     case 4:
1542         r = smmu_writel(s, offset, data, attrs);
1543         break;
1544     default:
1545         r = MEMTX_ERROR;
1546         break;
1547     }
1548 
1549     trace_smmuv3_write_mmio(offset, data, size, r);
1550     return r;
1551 }
1552 
1553 static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset,
1554                                uint64_t *data, MemTxAttrs attrs)
1555 {
1556     switch (offset) {
1557     case A_GERROR_IRQ_CFG0:
1558         *data = s->gerror_irq_cfg0;
1559         return MEMTX_OK;
1560     case A_STRTAB_BASE:
1561         *data = s->strtab_base;
1562         return MEMTX_OK;
1563     case A_CMDQ_BASE:
1564         *data = s->cmdq.base;
1565         return MEMTX_OK;
1566     case A_EVENTQ_BASE:
1567         *data = s->eventq.base;
1568         return MEMTX_OK;
1569     default:
1570         *data = 0;
1571         qemu_log_mask(LOG_UNIMP,
1572                       "%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n",
1573                       __func__, offset);
1574         return MEMTX_OK;
1575     }
1576 }
1577 
1578 static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset,
1579                               uint64_t *data, MemTxAttrs attrs)
1580 {
1581     switch (offset) {
1582     case A_IDREGS ... A_IDREGS + 0x2f:
1583         *data = smmuv3_idreg(offset - A_IDREGS);
1584         return MEMTX_OK;
1585     case A_IDR0 ... A_IDR5:
1586         *data = s->idr[(offset - A_IDR0) / 4];
1587         return MEMTX_OK;
1588     case A_IIDR:
1589         *data = s->iidr;
1590         return MEMTX_OK;
1591     case A_AIDR:
1592         *data = s->aidr;
1593         return MEMTX_OK;
1594     case A_CR0:
1595         *data = s->cr[0];
1596         return MEMTX_OK;
1597     case A_CR0ACK:
1598         *data = s->cr0ack;
1599         return MEMTX_OK;
1600     case A_CR1:
1601         *data = s->cr[1];
1602         return MEMTX_OK;
1603     case A_CR2:
1604         *data = s->cr[2];
1605         return MEMTX_OK;
1606     case A_STATUSR:
1607         *data = s->statusr;
1608         return MEMTX_OK;
1609     case A_GBPA:
1610         *data = s->gbpa;
1611         return MEMTX_OK;
1612     case A_IRQ_CTRL:
1613     case A_IRQ_CTRL_ACK:
1614         *data = s->irq_ctrl;
1615         return MEMTX_OK;
1616     case A_GERROR:
1617         *data = s->gerror;
1618         return MEMTX_OK;
1619     case A_GERRORN:
1620         *data = s->gerrorn;
1621         return MEMTX_OK;
1622     case A_GERROR_IRQ_CFG0: /* 64b */
1623         *data = extract64(s->gerror_irq_cfg0, 0, 32);
1624         return MEMTX_OK;
1625     case A_GERROR_IRQ_CFG0 + 4:
1626         *data = extract64(s->gerror_irq_cfg0, 32, 32);
1627         return MEMTX_OK;
1628     case A_GERROR_IRQ_CFG1:
1629         *data = s->gerror_irq_cfg1;
1630         return MEMTX_OK;
1631     case A_GERROR_IRQ_CFG2:
1632         *data = s->gerror_irq_cfg2;
1633         return MEMTX_OK;
1634     case A_STRTAB_BASE: /* 64b */
1635         *data = extract64(s->strtab_base, 0, 32);
1636         return MEMTX_OK;
1637     case A_STRTAB_BASE + 4: /* 64b */
1638         *data = extract64(s->strtab_base, 32, 32);
1639         return MEMTX_OK;
1640     case A_STRTAB_BASE_CFG:
1641         *data = s->strtab_base_cfg;
1642         return MEMTX_OK;
1643     case A_CMDQ_BASE: /* 64b */
1644         *data = extract64(s->cmdq.base, 0, 32);
1645         return MEMTX_OK;
1646     case A_CMDQ_BASE + 4:
1647         *data = extract64(s->cmdq.base, 32, 32);
1648         return MEMTX_OK;
1649     case A_CMDQ_PROD:
1650         *data = s->cmdq.prod;
1651         return MEMTX_OK;
1652     case A_CMDQ_CONS:
1653         *data = s->cmdq.cons;
1654         return MEMTX_OK;
1655     case A_EVENTQ_BASE: /* 64b */
1656         *data = extract64(s->eventq.base, 0, 32);
1657         return MEMTX_OK;
1658     case A_EVENTQ_BASE + 4: /* 64b */
1659         *data = extract64(s->eventq.base, 32, 32);
1660         return MEMTX_OK;
1661     case A_EVENTQ_PROD:
1662         *data = s->eventq.prod;
1663         return MEMTX_OK;
1664     case A_EVENTQ_CONS:
1665         *data = s->eventq.cons;
1666         return MEMTX_OK;
1667     default:
1668         *data = 0;
1669         qemu_log_mask(LOG_UNIMP,
1670                       "%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n",
1671                       __func__, offset);
1672         return MEMTX_OK;
1673     }
1674 }
1675 
1676 static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data,
1677                                   unsigned size, MemTxAttrs attrs)
1678 {
1679     SMMUState *sys = opaque;
1680     SMMUv3State *s = ARM_SMMUV3(sys);
1681     MemTxResult r;
1682 
1683     /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1684     offset &= ~0x10000;
1685 
1686     switch (size) {
1687     case 8:
1688         r = smmu_readll(s, offset, data, attrs);
1689         break;
1690     case 4:
1691         r = smmu_readl(s, offset, data, attrs);
1692         break;
1693     default:
1694         r = MEMTX_ERROR;
1695         break;
1696     }
1697 
1698     trace_smmuv3_read_mmio(offset, *data, size, r);
1699     return r;
1700 }
1701 
1702 static const MemoryRegionOps smmu_mem_ops = {
1703     .read_with_attrs = smmu_read_mmio,
1704     .write_with_attrs = smmu_write_mmio,
1705     .endianness = DEVICE_LITTLE_ENDIAN,
1706     .valid = {
1707         .min_access_size = 4,
1708         .max_access_size = 8,
1709     },
1710     .impl = {
1711         .min_access_size = 4,
1712         .max_access_size = 8,
1713     },
1714 };
1715 
1716 static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev)
1717 {
1718     int i;
1719 
1720     for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
1721         sysbus_init_irq(dev, &s->irq[i]);
1722     }
1723 }
1724 
1725 static void smmu_reset_hold(Object *obj)
1726 {
1727     SMMUv3State *s = ARM_SMMUV3(obj);
1728     SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1729 
1730     if (c->parent_phases.hold) {
1731         c->parent_phases.hold(obj);
1732     }
1733 
1734     smmuv3_init_regs(s);
1735 }
1736 
1737 static void smmu_realize(DeviceState *d, Error **errp)
1738 {
1739     SMMUState *sys = ARM_SMMU(d);
1740     SMMUv3State *s = ARM_SMMUV3(sys);
1741     SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1742     SysBusDevice *dev = SYS_BUS_DEVICE(d);
1743     Error *local_err = NULL;
1744 
1745     c->parent_realize(d, &local_err);
1746     if (local_err) {
1747         error_propagate(errp, local_err);
1748         return;
1749     }
1750 
1751     qemu_mutex_init(&s->mutex);
1752 
1753     memory_region_init_io(&sys->iomem, OBJECT(s),
1754                           &smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000);
1755 
1756     sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION;
1757 
1758     sysbus_init_mmio(dev, &sys->iomem);
1759 
1760     smmu_init_irq(s, dev);
1761 }
1762 
1763 static const VMStateDescription vmstate_smmuv3_queue = {
1764     .name = "smmuv3_queue",
1765     .version_id = 1,
1766     .minimum_version_id = 1,
1767     .fields = (VMStateField[]) {
1768         VMSTATE_UINT64(base, SMMUQueue),
1769         VMSTATE_UINT32(prod, SMMUQueue),
1770         VMSTATE_UINT32(cons, SMMUQueue),
1771         VMSTATE_UINT8(log2size, SMMUQueue),
1772         VMSTATE_END_OF_LIST(),
1773     },
1774 };
1775 
1776 static bool smmuv3_gbpa_needed(void *opaque)
1777 {
1778     SMMUv3State *s = opaque;
1779 
1780     /* Only migrate GBPA if it has different reset value. */
1781     return s->gbpa != SMMU_GBPA_RESET_VAL;
1782 }
1783 
1784 static const VMStateDescription vmstate_gbpa = {
1785     .name = "smmuv3/gbpa",
1786     .version_id = 1,
1787     .minimum_version_id = 1,
1788     .needed = smmuv3_gbpa_needed,
1789     .fields = (VMStateField[]) {
1790         VMSTATE_UINT32(gbpa, SMMUv3State),
1791         VMSTATE_END_OF_LIST()
1792     }
1793 };
1794 
1795 static const VMStateDescription vmstate_smmuv3 = {
1796     .name = "smmuv3",
1797     .version_id = 1,
1798     .minimum_version_id = 1,
1799     .priority = MIG_PRI_IOMMU,
1800     .fields = (VMStateField[]) {
1801         VMSTATE_UINT32(features, SMMUv3State),
1802         VMSTATE_UINT8(sid_size, SMMUv3State),
1803         VMSTATE_UINT8(sid_split, SMMUv3State),
1804 
1805         VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3),
1806         VMSTATE_UINT32(cr0ack, SMMUv3State),
1807         VMSTATE_UINT32(statusr, SMMUv3State),
1808         VMSTATE_UINT32(irq_ctrl, SMMUv3State),
1809         VMSTATE_UINT32(gerror, SMMUv3State),
1810         VMSTATE_UINT32(gerrorn, SMMUv3State),
1811         VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State),
1812         VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State),
1813         VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State),
1814         VMSTATE_UINT64(strtab_base, SMMUv3State),
1815         VMSTATE_UINT32(strtab_base_cfg, SMMUv3State),
1816         VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State),
1817         VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State),
1818         VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State),
1819 
1820         VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1821         VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1822 
1823         VMSTATE_END_OF_LIST(),
1824     },
1825     .subsections = (const VMStateDescription * []) {
1826         &vmstate_gbpa,
1827         NULL
1828     }
1829 };
1830 
1831 static Property smmuv3_properties[] = {
1832     /*
1833      * Stages of translation advertised.
1834      * "1": Stage 1
1835      * "2": Stage 2
1836      * Defaults to stage 1
1837      */
1838     DEFINE_PROP_STRING("stage", SMMUv3State, stage),
1839     DEFINE_PROP_END_OF_LIST()
1840 };
1841 
1842 static void smmuv3_instance_init(Object *obj)
1843 {
1844     /* Nothing much to do here as of now */
1845 }
1846 
1847 static void smmuv3_class_init(ObjectClass *klass, void *data)
1848 {
1849     DeviceClass *dc = DEVICE_CLASS(klass);
1850     ResettableClass *rc = RESETTABLE_CLASS(klass);
1851     SMMUv3Class *c = ARM_SMMUV3_CLASS(klass);
1852 
1853     dc->vmsd = &vmstate_smmuv3;
1854     resettable_class_set_parent_phases(rc, NULL, smmu_reset_hold, NULL,
1855                                        &c->parent_phases);
1856     c->parent_realize = dc->realize;
1857     dc->realize = smmu_realize;
1858     device_class_set_props(dc, smmuv3_properties);
1859 }
1860 
1861 static int smmuv3_notify_flag_changed(IOMMUMemoryRegion *iommu,
1862                                       IOMMUNotifierFlag old,
1863                                       IOMMUNotifierFlag new,
1864                                       Error **errp)
1865 {
1866     SMMUDevice *sdev = container_of(iommu, SMMUDevice, iommu);
1867     SMMUv3State *s3 = sdev->smmu;
1868     SMMUState *s = &(s3->smmu_state);
1869 
1870     if (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
1871         error_setg(errp, "SMMUv3 does not support dev-iotlb yet");
1872         return -EINVAL;
1873     }
1874 
1875     if (new & IOMMU_NOTIFIER_MAP) {
1876         error_setg(errp,
1877                    "device %02x.%02x.%x requires iommu MAP notifier which is "
1878                    "not currently supported", pci_bus_num(sdev->bus),
1879                    PCI_SLOT(sdev->devfn), PCI_FUNC(sdev->devfn));
1880         return -EINVAL;
1881     }
1882 
1883     if (old == IOMMU_NOTIFIER_NONE) {
1884         trace_smmuv3_notify_flag_add(iommu->parent_obj.name);
1885         QLIST_INSERT_HEAD(&s->devices_with_notifiers, sdev, next);
1886     } else if (new == IOMMU_NOTIFIER_NONE) {
1887         trace_smmuv3_notify_flag_del(iommu->parent_obj.name);
1888         QLIST_REMOVE(sdev, next);
1889     }
1890     return 0;
1891 }
1892 
1893 static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass,
1894                                                   void *data)
1895 {
1896     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1897 
1898     imrc->translate = smmuv3_translate;
1899     imrc->notify_flag_changed = smmuv3_notify_flag_changed;
1900 }
1901 
1902 static const TypeInfo smmuv3_type_info = {
1903     .name          = TYPE_ARM_SMMUV3,
1904     .parent        = TYPE_ARM_SMMU,
1905     .instance_size = sizeof(SMMUv3State),
1906     .instance_init = smmuv3_instance_init,
1907     .class_size    = sizeof(SMMUv3Class),
1908     .class_init    = smmuv3_class_init,
1909 };
1910 
1911 static const TypeInfo smmuv3_iommu_memory_region_info = {
1912     .parent = TYPE_IOMMU_MEMORY_REGION,
1913     .name = TYPE_SMMUV3_IOMMU_MEMORY_REGION,
1914     .class_init = smmuv3_iommu_memory_region_class_init,
1915 };
1916 
1917 static void smmuv3_register_types(void)
1918 {
1919     type_register(&smmuv3_type_info);
1920     type_register(&smmuv3_iommu_memory_region_info);
1921 }
1922 
1923 type_init(smmuv3_register_types)
1924 
1925