xref: /openbmc/qemu/hw/arm/smmuv3.c (revision 6016b7b46edb714a53a31536b30ead9c3aafaef7)
1 /*
2  * Copyright (C) 2014-2016 Broadcom Corporation
3  * Copyright (c) 2017 Red Hat, Inc.
4  * Written by Prem Mallappa, Eric Auger
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "hw/irq.h"
22 #include "hw/sysbus.h"
23 #include "migration/vmstate.h"
24 #include "hw/qdev-core.h"
25 #include "hw/pci/pci.h"
26 #include "cpu.h"
27 #include "trace.h"
28 #include "qemu/log.h"
29 #include "qemu/error-report.h"
30 #include "qapi/error.h"
31 
32 #include "hw/arm/smmuv3.h"
33 #include "smmuv3-internal.h"
34 #include "smmu-internal.h"
35 
36 /**
37  * smmuv3_trigger_irq - pulse @irq if enabled and update
38  * GERROR register in case of GERROR interrupt
39  *
40  * @irq: irq type
41  * @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR)
42  */
43 static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq,
44                                uint32_t gerror_mask)
45 {
46 
47     bool pulse = false;
48 
49     switch (irq) {
50     case SMMU_IRQ_EVTQ:
51         pulse = smmuv3_eventq_irq_enabled(s);
52         break;
53     case SMMU_IRQ_PRIQ:
54         qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n");
55         break;
56     case SMMU_IRQ_CMD_SYNC:
57         pulse = true;
58         break;
59     case SMMU_IRQ_GERROR:
60     {
61         uint32_t pending = s->gerror ^ s->gerrorn;
62         uint32_t new_gerrors = ~pending & gerror_mask;
63 
64         if (!new_gerrors) {
65             /* only toggle non pending errors */
66             return;
67         }
68         s->gerror ^= new_gerrors;
69         trace_smmuv3_write_gerror(new_gerrors, s->gerror);
70 
71         pulse = smmuv3_gerror_irq_enabled(s);
72         break;
73     }
74     }
75     if (pulse) {
76             trace_smmuv3_trigger_irq(irq);
77             qemu_irq_pulse(s->irq[irq]);
78     }
79 }
80 
81 static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn)
82 {
83     uint32_t pending = s->gerror ^ s->gerrorn;
84     uint32_t toggled = s->gerrorn ^ new_gerrorn;
85 
86     if (toggled & ~pending) {
87         qemu_log_mask(LOG_GUEST_ERROR,
88                       "guest toggles non pending errors = 0x%x\n",
89                       toggled & ~pending);
90     }
91 
92     /*
93      * We do not raise any error in case guest toggles bits corresponding
94      * to not active IRQs (CONSTRAINED UNPREDICTABLE)
95      */
96     s->gerrorn = new_gerrorn;
97 
98     trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn);
99 }
100 
101 static inline MemTxResult queue_read(SMMUQueue *q, void *data)
102 {
103     dma_addr_t addr = Q_CONS_ENTRY(q);
104 
105     return dma_memory_read(&address_space_memory, addr, data, q->entry_size);
106 }
107 
108 static MemTxResult queue_write(SMMUQueue *q, void *data)
109 {
110     dma_addr_t addr = Q_PROD_ENTRY(q);
111     MemTxResult ret;
112 
113     ret = dma_memory_write(&address_space_memory, addr, data, q->entry_size);
114     if (ret != MEMTX_OK) {
115         return ret;
116     }
117 
118     queue_prod_incr(q);
119     return MEMTX_OK;
120 }
121 
122 static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt)
123 {
124     SMMUQueue *q = &s->eventq;
125     MemTxResult r;
126 
127     if (!smmuv3_eventq_enabled(s)) {
128         return MEMTX_ERROR;
129     }
130 
131     if (smmuv3_q_full(q)) {
132         return MEMTX_ERROR;
133     }
134 
135     r = queue_write(q, evt);
136     if (r != MEMTX_OK) {
137         return r;
138     }
139 
140     if (!smmuv3_q_empty(q)) {
141         smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0);
142     }
143     return MEMTX_OK;
144 }
145 
146 void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
147 {
148     Evt evt = {};
149     MemTxResult r;
150 
151     if (!smmuv3_eventq_enabled(s)) {
152         return;
153     }
154 
155     EVT_SET_TYPE(&evt, info->type);
156     EVT_SET_SID(&evt, info->sid);
157 
158     switch (info->type) {
159     case SMMU_EVT_NONE:
160         return;
161     case SMMU_EVT_F_UUT:
162         EVT_SET_SSID(&evt, info->u.f_uut.ssid);
163         EVT_SET_SSV(&evt,  info->u.f_uut.ssv);
164         EVT_SET_ADDR(&evt, info->u.f_uut.addr);
165         EVT_SET_RNW(&evt,  info->u.f_uut.rnw);
166         EVT_SET_PNU(&evt,  info->u.f_uut.pnu);
167         EVT_SET_IND(&evt,  info->u.f_uut.ind);
168         break;
169     case SMMU_EVT_C_BAD_STREAMID:
170         EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid);
171         EVT_SET_SSV(&evt,  info->u.c_bad_streamid.ssv);
172         break;
173     case SMMU_EVT_F_STE_FETCH:
174         EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
175         EVT_SET_SSV(&evt,  info->u.f_ste_fetch.ssv);
176         EVT_SET_ADDR2(&evt, info->u.f_ste_fetch.addr);
177         break;
178     case SMMU_EVT_C_BAD_STE:
179         EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
180         EVT_SET_SSV(&evt,  info->u.c_bad_ste.ssv);
181         break;
182     case SMMU_EVT_F_STREAM_DISABLED:
183         break;
184     case SMMU_EVT_F_TRANS_FORBIDDEN:
185         EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr);
186         EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw);
187         break;
188     case SMMU_EVT_C_BAD_SUBSTREAMID:
189         EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid);
190         break;
191     case SMMU_EVT_F_CD_FETCH:
192         EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid);
193         EVT_SET_SSV(&evt,  info->u.f_cd_fetch.ssv);
194         EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr);
195         break;
196     case SMMU_EVT_C_BAD_CD:
197         EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid);
198         EVT_SET_SSV(&evt,  info->u.c_bad_cd.ssv);
199         break;
200     case SMMU_EVT_F_WALK_EABT:
201     case SMMU_EVT_F_TRANSLATION:
202     case SMMU_EVT_F_ADDR_SIZE:
203     case SMMU_EVT_F_ACCESS:
204     case SMMU_EVT_F_PERMISSION:
205         EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall);
206         EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag);
207         EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid);
208         EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv);
209         EVT_SET_S2(&evt, info->u.f_walk_eabt.s2);
210         EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr);
211         EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw);
212         EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu);
213         EVT_SET_IND(&evt, info->u.f_walk_eabt.ind);
214         EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class);
215         EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2);
216         break;
217     case SMMU_EVT_F_CFG_CONFLICT:
218         EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid);
219         EVT_SET_SSV(&evt,  info->u.f_cfg_conflict.ssv);
220         break;
221     /* rest is not implemented */
222     case SMMU_EVT_F_BAD_ATS_TREQ:
223     case SMMU_EVT_F_TLB_CONFLICT:
224     case SMMU_EVT_E_PAGE_REQ:
225     default:
226         g_assert_not_reached();
227     }
228 
229     trace_smmuv3_record_event(smmu_event_string(info->type), info->sid);
230     r = smmuv3_write_eventq(s, &evt);
231     if (r != MEMTX_OK) {
232         smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK);
233     }
234     info->recorded = true;
235 }
236 
237 static void smmuv3_init_regs(SMMUv3State *s)
238 {
239     /**
240      * IDR0: stage1 only, AArch64 only, coherent access, 16b ASID,
241      *       multi-level stream table
242      */
243     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1); /* stage 1 supported */
244     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */
245     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */
246     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */
247     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */
248     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */
249     /* terminated transaction will always be aborted/error returned */
250     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1);
251     /* 2-level stream table supported */
252     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1);
253 
254     s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE);
255     s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS);
256     s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS,   SMMU_CMDQS);
257 
258     s->idr[3] = FIELD_DP32(s->idr[3], IDR3, RIL, 1);
259     s->idr[3] = FIELD_DP32(s->idr[3], IDR3, HAD, 1);
260 
261     /* 4K, 16K and 64K granule support */
262     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1);
263     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN16K, 1);
264     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1);
265     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */
266 
267     s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS);
268     s->cmdq.prod = 0;
269     s->cmdq.cons = 0;
270     s->cmdq.entry_size = sizeof(struct Cmd);
271     s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS);
272     s->eventq.prod = 0;
273     s->eventq.cons = 0;
274     s->eventq.entry_size = sizeof(struct Evt);
275 
276     s->features = 0;
277     s->sid_split = 0;
278     s->aidr = 0x1;
279 }
280 
281 static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf,
282                         SMMUEventInfo *event)
283 {
284     int ret;
285 
286     trace_smmuv3_get_ste(addr);
287     /* TODO: guarantee 64-bit single-copy atomicity */
288     ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf));
289     if (ret != MEMTX_OK) {
290         qemu_log_mask(LOG_GUEST_ERROR,
291                       "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
292         event->type = SMMU_EVT_F_STE_FETCH;
293         event->u.f_ste_fetch.addr = addr;
294         return -EINVAL;
295     }
296     return 0;
297 
298 }
299 
300 /* @ssid > 0 not supported yet */
301 static int smmu_get_cd(SMMUv3State *s, STE *ste, uint32_t ssid,
302                        CD *buf, SMMUEventInfo *event)
303 {
304     dma_addr_t addr = STE_CTXPTR(ste);
305     int ret;
306 
307     trace_smmuv3_get_cd(addr);
308     /* TODO: guarantee 64-bit single-copy atomicity */
309     ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf));
310     if (ret != MEMTX_OK) {
311         qemu_log_mask(LOG_GUEST_ERROR,
312                       "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
313         event->type = SMMU_EVT_F_CD_FETCH;
314         event->u.f_ste_fetch.addr = addr;
315         return -EINVAL;
316     }
317     return 0;
318 }
319 
320 /* Returns < 0 in case of invalid STE, 0 otherwise */
321 static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg,
322                       STE *ste, SMMUEventInfo *event)
323 {
324     uint32_t config;
325 
326     if (!STE_VALID(ste)) {
327         if (!event->inval_ste_allowed) {
328             qemu_log_mask(LOG_GUEST_ERROR, "invalid STE\n");
329         }
330         goto bad_ste;
331     }
332 
333     config = STE_CONFIG(ste);
334 
335     if (STE_CFG_ABORT(config)) {
336         cfg->aborted = true;
337         return 0;
338     }
339 
340     if (STE_CFG_BYPASS(config)) {
341         cfg->bypassed = true;
342         return 0;
343     }
344 
345     if (STE_CFG_S2_ENABLED(config)) {
346         qemu_log_mask(LOG_UNIMP, "SMMUv3 does not support stage 2 yet\n");
347         goto bad_ste;
348     }
349 
350     if (STE_S1CDMAX(ste) != 0) {
351         qemu_log_mask(LOG_UNIMP,
352                       "SMMUv3 does not support multiple context descriptors yet\n");
353         goto bad_ste;
354     }
355 
356     if (STE_S1STALLD(ste)) {
357         qemu_log_mask(LOG_UNIMP,
358                       "SMMUv3 S1 stalling fault model not allowed yet\n");
359         goto bad_ste;
360     }
361     return 0;
362 
363 bad_ste:
364     event->type = SMMU_EVT_C_BAD_STE;
365     return -EINVAL;
366 }
367 
368 /**
369  * smmu_find_ste - Return the stream table entry associated
370  * to the sid
371  *
372  * @s: smmuv3 handle
373  * @sid: stream ID
374  * @ste: returned stream table entry
375  * @event: handle to an event info
376  *
377  * Supports linear and 2-level stream table
378  * Return 0 on success, -EINVAL otherwise
379  */
380 static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
381                          SMMUEventInfo *event)
382 {
383     dma_addr_t addr, strtab_base;
384     uint32_t log2size;
385     int strtab_size_shift;
386     int ret;
387 
388     trace_smmuv3_find_ste(sid, s->features, s->sid_split);
389     log2size = FIELD_EX32(s->strtab_base_cfg, STRTAB_BASE_CFG, LOG2SIZE);
390     /*
391      * Check SID range against both guest-configured and implementation limits
392      */
393     if (sid >= (1 << MIN(log2size, SMMU_IDR1_SIDSIZE))) {
394         event->type = SMMU_EVT_C_BAD_STREAMID;
395         return -EINVAL;
396     }
397     if (s->features & SMMU_FEATURE_2LVL_STE) {
398         int l1_ste_offset, l2_ste_offset, max_l2_ste, span;
399         dma_addr_t l1ptr, l2ptr;
400         STEDesc l1std;
401 
402         /*
403          * Align strtab base address to table size. For this purpose, assume it
404          * is not bounded by SMMU_IDR1_SIDSIZE.
405          */
406         strtab_size_shift = MAX(5, (int)log2size - s->sid_split - 1 + 3);
407         strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
408                       ~MAKE_64BIT_MASK(0, strtab_size_shift);
409         l1_ste_offset = sid >> s->sid_split;
410         l2_ste_offset = sid & ((1 << s->sid_split) - 1);
411         l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
412         /* TODO: guarantee 64-bit single-copy atomicity */
413         ret = dma_memory_read(&address_space_memory, l1ptr, &l1std,
414                               sizeof(l1std));
415         if (ret != MEMTX_OK) {
416             qemu_log_mask(LOG_GUEST_ERROR,
417                           "Could not read L1PTR at 0X%"PRIx64"\n", l1ptr);
418             event->type = SMMU_EVT_F_STE_FETCH;
419             event->u.f_ste_fetch.addr = l1ptr;
420             return -EINVAL;
421         }
422 
423         span = L1STD_SPAN(&l1std);
424 
425         if (!span) {
426             /* l2ptr is not valid */
427             if (!event->inval_ste_allowed) {
428                 qemu_log_mask(LOG_GUEST_ERROR,
429                               "invalid sid=%d (L1STD span=0)\n", sid);
430             }
431             event->type = SMMU_EVT_C_BAD_STREAMID;
432             return -EINVAL;
433         }
434         max_l2_ste = (1 << span) - 1;
435         l2ptr = l1std_l2ptr(&l1std);
436         trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset,
437                                    l2ptr, l2_ste_offset, max_l2_ste);
438         if (l2_ste_offset > max_l2_ste) {
439             qemu_log_mask(LOG_GUEST_ERROR,
440                           "l2_ste_offset=%d > max_l2_ste=%d\n",
441                           l2_ste_offset, max_l2_ste);
442             event->type = SMMU_EVT_C_BAD_STE;
443             return -EINVAL;
444         }
445         addr = l2ptr + l2_ste_offset * sizeof(*ste);
446     } else {
447         strtab_size_shift = log2size + 5;
448         strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
449                       ~MAKE_64BIT_MASK(0, strtab_size_shift);
450         addr = strtab_base + sid * sizeof(*ste);
451     }
452 
453     if (smmu_get_ste(s, addr, ste, event)) {
454         return -EINVAL;
455     }
456 
457     return 0;
458 }
459 
460 static int decode_cd(SMMUTransCfg *cfg, CD *cd, SMMUEventInfo *event)
461 {
462     int ret = -EINVAL;
463     int i;
464 
465     if (!CD_VALID(cd) || !CD_AARCH64(cd)) {
466         goto bad_cd;
467     }
468     if (!CD_A(cd)) {
469         goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */
470     }
471     if (CD_S(cd)) {
472         goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */
473     }
474     if (CD_HA(cd) || CD_HD(cd)) {
475         goto bad_cd; /* HTTU = 0 */
476     }
477 
478     /* we support only those at the moment */
479     cfg->aa64 = true;
480     cfg->stage = 1;
481 
482     cfg->oas = oas2bits(CD_IPS(cd));
483     cfg->oas = MIN(oas2bits(SMMU_IDR5_OAS), cfg->oas);
484     cfg->tbi = CD_TBI(cd);
485     cfg->asid = CD_ASID(cd);
486 
487     trace_smmuv3_decode_cd(cfg->oas);
488 
489     /* decode data dependent on TT */
490     for (i = 0; i <= 1; i++) {
491         int tg, tsz;
492         SMMUTransTableInfo *tt = &cfg->tt[i];
493 
494         cfg->tt[i].disabled = CD_EPD(cd, i);
495         if (cfg->tt[i].disabled) {
496             continue;
497         }
498 
499         tsz = CD_TSZ(cd, i);
500         if (tsz < 16 || tsz > 39) {
501             goto bad_cd;
502         }
503 
504         tg = CD_TG(cd, i);
505         tt->granule_sz = tg2granule(tg, i);
506         if ((tt->granule_sz != 12 && tt->granule_sz != 14 &&
507              tt->granule_sz != 16) || CD_ENDI(cd)) {
508             goto bad_cd;
509         }
510 
511         tt->tsz = tsz;
512         tt->ttb = CD_TTB(cd, i);
513         if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) {
514             goto bad_cd;
515         }
516         tt->had = CD_HAD(cd, i);
517         trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz, tt->had);
518     }
519 
520     event->record_trans_faults = CD_R(cd);
521 
522     return 0;
523 
524 bad_cd:
525     event->type = SMMU_EVT_C_BAD_CD;
526     return ret;
527 }
528 
529 /**
530  * smmuv3_decode_config - Prepare the translation configuration
531  * for the @mr iommu region
532  * @mr: iommu memory region the translation config must be prepared for
533  * @cfg: output translation configuration which is populated through
534  *       the different configuration decoding steps
535  * @event: must be zero'ed by the caller
536  *
537  * return < 0 in case of config decoding error (@event is filled
538  * accordingly). Return 0 otherwise.
539  */
540 static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg,
541                                 SMMUEventInfo *event)
542 {
543     SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
544     uint32_t sid = smmu_get_sid(sdev);
545     SMMUv3State *s = sdev->smmu;
546     int ret;
547     STE ste;
548     CD cd;
549 
550     ret = smmu_find_ste(s, sid, &ste, event);
551     if (ret) {
552         return ret;
553     }
554 
555     ret = decode_ste(s, cfg, &ste, event);
556     if (ret) {
557         return ret;
558     }
559 
560     if (cfg->aborted || cfg->bypassed) {
561         return 0;
562     }
563 
564     ret = smmu_get_cd(s, &ste, 0 /* ssid */, &cd, event);
565     if (ret) {
566         return ret;
567     }
568 
569     return decode_cd(cfg, &cd, event);
570 }
571 
572 /**
573  * smmuv3_get_config - Look up for a cached copy of configuration data for
574  * @sdev and on cache miss performs a configuration structure decoding from
575  * guest RAM.
576  *
577  * @sdev: SMMUDevice handle
578  * @event: output event info
579  *
580  * The configuration cache contains data resulting from both STE and CD
581  * decoding under the form of an SMMUTransCfg struct. The hash table is indexed
582  * by the SMMUDevice handle.
583  */
584 static SMMUTransCfg *smmuv3_get_config(SMMUDevice *sdev, SMMUEventInfo *event)
585 {
586     SMMUv3State *s = sdev->smmu;
587     SMMUState *bc = &s->smmu_state;
588     SMMUTransCfg *cfg;
589 
590     cfg = g_hash_table_lookup(bc->configs, sdev);
591     if (cfg) {
592         sdev->cfg_cache_hits++;
593         trace_smmuv3_config_cache_hit(smmu_get_sid(sdev),
594                             sdev->cfg_cache_hits, sdev->cfg_cache_misses,
595                             100 * sdev->cfg_cache_hits /
596                             (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
597     } else {
598         sdev->cfg_cache_misses++;
599         trace_smmuv3_config_cache_miss(smmu_get_sid(sdev),
600                             sdev->cfg_cache_hits, sdev->cfg_cache_misses,
601                             100 * sdev->cfg_cache_hits /
602                             (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
603         cfg = g_new0(SMMUTransCfg, 1);
604 
605         if (!smmuv3_decode_config(&sdev->iommu, cfg, event)) {
606             g_hash_table_insert(bc->configs, sdev, cfg);
607         } else {
608             g_free(cfg);
609             cfg = NULL;
610         }
611     }
612     return cfg;
613 }
614 
615 static void smmuv3_flush_config(SMMUDevice *sdev)
616 {
617     SMMUv3State *s = sdev->smmu;
618     SMMUState *bc = &s->smmu_state;
619 
620     trace_smmuv3_config_cache_inv(smmu_get_sid(sdev));
621     g_hash_table_remove(bc->configs, sdev);
622 }
623 
624 static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr,
625                                       IOMMUAccessFlags flag, int iommu_idx)
626 {
627     SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
628     SMMUv3State *s = sdev->smmu;
629     uint32_t sid = smmu_get_sid(sdev);
630     SMMUEventInfo event = {.type = SMMU_EVT_NONE,
631                            .sid = sid,
632                            .inval_ste_allowed = false};
633     SMMUPTWEventInfo ptw_info = {};
634     SMMUTranslationStatus status;
635     SMMUState *bs = ARM_SMMU(s);
636     uint64_t page_mask, aligned_addr;
637     SMMUTLBEntry *cached_entry = NULL;
638     SMMUTransTableInfo *tt;
639     SMMUTransCfg *cfg = NULL;
640     IOMMUTLBEntry entry = {
641         .target_as = &address_space_memory,
642         .iova = addr,
643         .translated_addr = addr,
644         .addr_mask = ~(hwaddr)0,
645         .perm = IOMMU_NONE,
646     };
647 
648     qemu_mutex_lock(&s->mutex);
649 
650     if (!smmu_enabled(s)) {
651         status = SMMU_TRANS_DISABLE;
652         goto epilogue;
653     }
654 
655     cfg = smmuv3_get_config(sdev, &event);
656     if (!cfg) {
657         status = SMMU_TRANS_ERROR;
658         goto epilogue;
659     }
660 
661     if (cfg->aborted) {
662         status = SMMU_TRANS_ABORT;
663         goto epilogue;
664     }
665 
666     if (cfg->bypassed) {
667         status = SMMU_TRANS_BYPASS;
668         goto epilogue;
669     }
670 
671     tt = select_tt(cfg, addr);
672     if (!tt) {
673         if (event.record_trans_faults) {
674             event.type = SMMU_EVT_F_TRANSLATION;
675             event.u.f_translation.addr = addr;
676             event.u.f_translation.rnw = flag & 0x1;
677         }
678         status = SMMU_TRANS_ERROR;
679         goto epilogue;
680     }
681 
682     page_mask = (1ULL << (tt->granule_sz)) - 1;
683     aligned_addr = addr & ~page_mask;
684 
685     cached_entry = smmu_iotlb_lookup(bs, cfg, tt, aligned_addr);
686     if (cached_entry) {
687         if ((flag & IOMMU_WO) && !(cached_entry->entry.perm & IOMMU_WO)) {
688             status = SMMU_TRANS_ERROR;
689             if (event.record_trans_faults) {
690                 event.type = SMMU_EVT_F_PERMISSION;
691                 event.u.f_permission.addr = addr;
692                 event.u.f_permission.rnw = flag & 0x1;
693             }
694         } else {
695             status = SMMU_TRANS_SUCCESS;
696         }
697         goto epilogue;
698     }
699 
700     cached_entry = g_new0(SMMUTLBEntry, 1);
701 
702     if (smmu_ptw(cfg, aligned_addr, flag, cached_entry, &ptw_info)) {
703         g_free(cached_entry);
704         switch (ptw_info.type) {
705         case SMMU_PTW_ERR_WALK_EABT:
706             event.type = SMMU_EVT_F_WALK_EABT;
707             event.u.f_walk_eabt.addr = addr;
708             event.u.f_walk_eabt.rnw = flag & 0x1;
709             event.u.f_walk_eabt.class = 0x1;
710             event.u.f_walk_eabt.addr2 = ptw_info.addr;
711             break;
712         case SMMU_PTW_ERR_TRANSLATION:
713             if (event.record_trans_faults) {
714                 event.type = SMMU_EVT_F_TRANSLATION;
715                 event.u.f_translation.addr = addr;
716                 event.u.f_translation.rnw = flag & 0x1;
717             }
718             break;
719         case SMMU_PTW_ERR_ADDR_SIZE:
720             if (event.record_trans_faults) {
721                 event.type = SMMU_EVT_F_ADDR_SIZE;
722                 event.u.f_addr_size.addr = addr;
723                 event.u.f_addr_size.rnw = flag & 0x1;
724             }
725             break;
726         case SMMU_PTW_ERR_ACCESS:
727             if (event.record_trans_faults) {
728                 event.type = SMMU_EVT_F_ACCESS;
729                 event.u.f_access.addr = addr;
730                 event.u.f_access.rnw = flag & 0x1;
731             }
732             break;
733         case SMMU_PTW_ERR_PERMISSION:
734             if (event.record_trans_faults) {
735                 event.type = SMMU_EVT_F_PERMISSION;
736                 event.u.f_permission.addr = addr;
737                 event.u.f_permission.rnw = flag & 0x1;
738             }
739             break;
740         default:
741             g_assert_not_reached();
742         }
743         status = SMMU_TRANS_ERROR;
744     } else {
745         smmu_iotlb_insert(bs, cfg, cached_entry);
746         status = SMMU_TRANS_SUCCESS;
747     }
748 
749 epilogue:
750     qemu_mutex_unlock(&s->mutex);
751     switch (status) {
752     case SMMU_TRANS_SUCCESS:
753         entry.perm = flag;
754         entry.translated_addr = cached_entry->entry.translated_addr +
755                                     (addr & cached_entry->entry.addr_mask);
756         entry.addr_mask = cached_entry->entry.addr_mask;
757         trace_smmuv3_translate_success(mr->parent_obj.name, sid, addr,
758                                        entry.translated_addr, entry.perm);
759         break;
760     case SMMU_TRANS_DISABLE:
761         entry.perm = flag;
762         entry.addr_mask = ~TARGET_PAGE_MASK;
763         trace_smmuv3_translate_disable(mr->parent_obj.name, sid, addr,
764                                       entry.perm);
765         break;
766     case SMMU_TRANS_BYPASS:
767         entry.perm = flag;
768         entry.addr_mask = ~TARGET_PAGE_MASK;
769         trace_smmuv3_translate_bypass(mr->parent_obj.name, sid, addr,
770                                       entry.perm);
771         break;
772     case SMMU_TRANS_ABORT:
773         /* no event is recorded on abort */
774         trace_smmuv3_translate_abort(mr->parent_obj.name, sid, addr,
775                                      entry.perm);
776         break;
777     case SMMU_TRANS_ERROR:
778         qemu_log_mask(LOG_GUEST_ERROR,
779                       "%s translation failed for iova=0x%"PRIx64"(%s)\n",
780                       mr->parent_obj.name, addr, smmu_event_string(event.type));
781         smmuv3_record_event(s, &event);
782         break;
783     }
784 
785     return entry;
786 }
787 
788 /**
789  * smmuv3_notify_iova - call the notifier @n for a given
790  * @asid and @iova tuple.
791  *
792  * @mr: IOMMU mr region handle
793  * @n: notifier to be called
794  * @asid: address space ID or negative value if we don't care
795  * @iova: iova
796  * @tg: translation granule (if communicated through range invalidation)
797  * @num_pages: number of @granule sized pages (if tg != 0), otherwise 1
798  */
799 static void smmuv3_notify_iova(IOMMUMemoryRegion *mr,
800                                IOMMUNotifier *n,
801                                int asid, dma_addr_t iova,
802                                uint8_t tg, uint64_t num_pages)
803 {
804     SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
805     IOMMUTLBEvent event;
806     uint8_t granule;
807 
808     if (!tg) {
809         SMMUEventInfo event = {.inval_ste_allowed = true};
810         SMMUTransCfg *cfg = smmuv3_get_config(sdev, &event);
811         SMMUTransTableInfo *tt;
812 
813         if (!cfg) {
814             return;
815         }
816 
817         if (asid >= 0 && cfg->asid != asid) {
818             return;
819         }
820 
821         tt = select_tt(cfg, iova);
822         if (!tt) {
823             return;
824         }
825         granule = tt->granule_sz;
826     } else {
827         granule = tg * 2 + 10;
828     }
829 
830     event.type = IOMMU_NOTIFIER_UNMAP;
831     event.entry.target_as = &address_space_memory;
832     event.entry.iova = iova;
833     event.entry.addr_mask = num_pages * (1 << granule) - 1;
834     event.entry.perm = IOMMU_NONE;
835 
836     memory_region_notify_iommu_one(n, &event);
837 }
838 
839 /* invalidate an asid/iova range tuple in all mr's */
840 static void smmuv3_inv_notifiers_iova(SMMUState *s, int asid, dma_addr_t iova,
841                                       uint8_t tg, uint64_t num_pages)
842 {
843     SMMUDevice *sdev;
844 
845     QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
846         IOMMUMemoryRegion *mr = &sdev->iommu;
847         IOMMUNotifier *n;
848 
849         trace_smmuv3_inv_notifiers_iova(mr->parent_obj.name, asid, iova,
850                                         tg, num_pages);
851 
852         IOMMU_NOTIFIER_FOREACH(n, mr) {
853             smmuv3_notify_iova(mr, n, asid, iova, tg, num_pages);
854         }
855     }
856 }
857 
858 static void smmuv3_s1_range_inval(SMMUState *s, Cmd *cmd)
859 {
860     dma_addr_t end, addr = CMD_ADDR(cmd);
861     uint8_t type = CMD_TYPE(cmd);
862     uint16_t vmid = CMD_VMID(cmd);
863     uint8_t scale = CMD_SCALE(cmd);
864     uint8_t num = CMD_NUM(cmd);
865     uint8_t ttl = CMD_TTL(cmd);
866     bool leaf = CMD_LEAF(cmd);
867     uint8_t tg = CMD_TG(cmd);
868     uint64_t num_pages;
869     uint8_t granule;
870     int asid = -1;
871 
872     if (type == SMMU_CMD_TLBI_NH_VA) {
873         asid = CMD_ASID(cmd);
874     }
875 
876     if (!tg) {
877         trace_smmuv3_s1_range_inval(vmid, asid, addr, tg, 1, ttl, leaf);
878         smmuv3_inv_notifiers_iova(s, asid, addr, tg, 1);
879         smmu_iotlb_inv_iova(s, asid, addr, tg, 1, ttl);
880         return;
881     }
882 
883     /* RIL in use */
884 
885     num_pages = (num + 1) * BIT_ULL(scale);
886     granule = tg * 2 + 10;
887 
888     /* Split invalidations into ^2 range invalidations */
889     end = addr + (num_pages << granule) - 1;
890 
891     while (addr != end + 1) {
892         uint64_t mask = dma_aligned_pow2_mask(addr, end, 64);
893 
894         num_pages = (mask + 1) >> granule;
895         trace_smmuv3_s1_range_inval(vmid, asid, addr, tg, num_pages, ttl, leaf);
896         smmuv3_inv_notifiers_iova(s, asid, addr, tg, num_pages);
897         smmu_iotlb_inv_iova(s, asid, addr, tg, num_pages, ttl);
898         addr += mask + 1;
899     }
900 }
901 
902 static gboolean
903 smmuv3_invalidate_ste(gpointer key, gpointer value, gpointer user_data)
904 {
905     SMMUDevice *sdev = (SMMUDevice *)key;
906     uint32_t sid = smmu_get_sid(sdev);
907     SMMUSIDRange *sid_range = (SMMUSIDRange *)user_data;
908 
909     if (sid < sid_range->start || sid > sid_range->end) {
910         return false;
911     }
912     trace_smmuv3_config_cache_inv(sid);
913     return true;
914 }
915 
916 static int smmuv3_cmdq_consume(SMMUv3State *s)
917 {
918     SMMUState *bs = ARM_SMMU(s);
919     SMMUCmdError cmd_error = SMMU_CERROR_NONE;
920     SMMUQueue *q = &s->cmdq;
921     SMMUCommandType type = 0;
922 
923     if (!smmuv3_cmdq_enabled(s)) {
924         return 0;
925     }
926     /*
927      * some commands depend on register values, typically CR0. In case those
928      * register values change while handling the command, spec says it
929      * is UNPREDICTABLE whether the command is interpreted under the new
930      * or old value.
931      */
932 
933     while (!smmuv3_q_empty(q)) {
934         uint32_t pending = s->gerror ^ s->gerrorn;
935         Cmd cmd;
936 
937         trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q),
938                                   Q_PROD_WRAP(q), Q_CONS_WRAP(q));
939 
940         if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) {
941             break;
942         }
943 
944         if (queue_read(q, &cmd) != MEMTX_OK) {
945             cmd_error = SMMU_CERROR_ABT;
946             break;
947         }
948 
949         type = CMD_TYPE(&cmd);
950 
951         trace_smmuv3_cmdq_opcode(smmu_cmd_string(type));
952 
953         qemu_mutex_lock(&s->mutex);
954         switch (type) {
955         case SMMU_CMD_SYNC:
956             if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) {
957                 smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0);
958             }
959             break;
960         case SMMU_CMD_PREFETCH_CONFIG:
961         case SMMU_CMD_PREFETCH_ADDR:
962             break;
963         case SMMU_CMD_CFGI_STE:
964         {
965             uint32_t sid = CMD_SID(&cmd);
966             IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
967             SMMUDevice *sdev;
968 
969             if (CMD_SSEC(&cmd)) {
970                 cmd_error = SMMU_CERROR_ILL;
971                 break;
972             }
973 
974             if (!mr) {
975                 break;
976             }
977 
978             trace_smmuv3_cmdq_cfgi_ste(sid);
979             sdev = container_of(mr, SMMUDevice, iommu);
980             smmuv3_flush_config(sdev);
981 
982             break;
983         }
984         case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */
985         {
986             uint32_t sid = CMD_SID(&cmd), mask;
987             uint8_t range = CMD_STE_RANGE(&cmd);
988             SMMUSIDRange sid_range;
989 
990             if (CMD_SSEC(&cmd)) {
991                 cmd_error = SMMU_CERROR_ILL;
992                 break;
993             }
994 
995             mask = (1ULL << (range + 1)) - 1;
996             sid_range.start = sid & ~mask;
997             sid_range.end = sid_range.start + mask;
998 
999             trace_smmuv3_cmdq_cfgi_ste_range(sid_range.start, sid_range.end);
1000             g_hash_table_foreach_remove(bs->configs, smmuv3_invalidate_ste,
1001                                         &sid_range);
1002             break;
1003         }
1004         case SMMU_CMD_CFGI_CD:
1005         case SMMU_CMD_CFGI_CD_ALL:
1006         {
1007             uint32_t sid = CMD_SID(&cmd);
1008             IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
1009             SMMUDevice *sdev;
1010 
1011             if (CMD_SSEC(&cmd)) {
1012                 cmd_error = SMMU_CERROR_ILL;
1013                 break;
1014             }
1015 
1016             if (!mr) {
1017                 break;
1018             }
1019 
1020             trace_smmuv3_cmdq_cfgi_cd(sid);
1021             sdev = container_of(mr, SMMUDevice, iommu);
1022             smmuv3_flush_config(sdev);
1023             break;
1024         }
1025         case SMMU_CMD_TLBI_NH_ASID:
1026         {
1027             uint16_t asid = CMD_ASID(&cmd);
1028 
1029             trace_smmuv3_cmdq_tlbi_nh_asid(asid);
1030             smmu_inv_notifiers_all(&s->smmu_state);
1031             smmu_iotlb_inv_asid(bs, asid);
1032             break;
1033         }
1034         case SMMU_CMD_TLBI_NH_ALL:
1035         case SMMU_CMD_TLBI_NSNH_ALL:
1036             trace_smmuv3_cmdq_tlbi_nh();
1037             smmu_inv_notifiers_all(&s->smmu_state);
1038             smmu_iotlb_inv_all(bs);
1039             break;
1040         case SMMU_CMD_TLBI_NH_VAA:
1041         case SMMU_CMD_TLBI_NH_VA:
1042             smmuv3_s1_range_inval(bs, &cmd);
1043             break;
1044         case SMMU_CMD_TLBI_EL3_ALL:
1045         case SMMU_CMD_TLBI_EL3_VA:
1046         case SMMU_CMD_TLBI_EL2_ALL:
1047         case SMMU_CMD_TLBI_EL2_ASID:
1048         case SMMU_CMD_TLBI_EL2_VA:
1049         case SMMU_CMD_TLBI_EL2_VAA:
1050         case SMMU_CMD_TLBI_S12_VMALL:
1051         case SMMU_CMD_TLBI_S2_IPA:
1052         case SMMU_CMD_ATC_INV:
1053         case SMMU_CMD_PRI_RESP:
1054         case SMMU_CMD_RESUME:
1055         case SMMU_CMD_STALL_TERM:
1056             trace_smmuv3_unhandled_cmd(type);
1057             break;
1058         default:
1059             cmd_error = SMMU_CERROR_ILL;
1060             qemu_log_mask(LOG_GUEST_ERROR,
1061                           "Illegal command type: %d\n", CMD_TYPE(&cmd));
1062             break;
1063         }
1064         qemu_mutex_unlock(&s->mutex);
1065         if (cmd_error) {
1066             break;
1067         }
1068         /*
1069          * We only increment the cons index after the completion of
1070          * the command. We do that because the SYNC returns immediately
1071          * and does not check the completion of previous commands
1072          */
1073         queue_cons_incr(q);
1074     }
1075 
1076     if (cmd_error) {
1077         trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error);
1078         smmu_write_cmdq_err(s, cmd_error);
1079         smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK);
1080     }
1081 
1082     trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q),
1083                                   Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1084 
1085     return 0;
1086 }
1087 
1088 static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset,
1089                                uint64_t data, MemTxAttrs attrs)
1090 {
1091     switch (offset) {
1092     case A_GERROR_IRQ_CFG0:
1093         s->gerror_irq_cfg0 = data;
1094         return MEMTX_OK;
1095     case A_STRTAB_BASE:
1096         s->strtab_base = data;
1097         return MEMTX_OK;
1098     case A_CMDQ_BASE:
1099         s->cmdq.base = data;
1100         s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1101         if (s->cmdq.log2size > SMMU_CMDQS) {
1102             s->cmdq.log2size = SMMU_CMDQS;
1103         }
1104         return MEMTX_OK;
1105     case A_EVENTQ_BASE:
1106         s->eventq.base = data;
1107         s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1108         if (s->eventq.log2size > SMMU_EVENTQS) {
1109             s->eventq.log2size = SMMU_EVENTQS;
1110         }
1111         return MEMTX_OK;
1112     case A_EVENTQ_IRQ_CFG0:
1113         s->eventq_irq_cfg0 = data;
1114         return MEMTX_OK;
1115     default:
1116         qemu_log_mask(LOG_UNIMP,
1117                       "%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n",
1118                       __func__, offset);
1119         return MEMTX_OK;
1120     }
1121 }
1122 
1123 static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset,
1124                                uint64_t data, MemTxAttrs attrs)
1125 {
1126     switch (offset) {
1127     case A_CR0:
1128         s->cr[0] = data;
1129         s->cr0ack = data & ~SMMU_CR0_RESERVED;
1130         /* in case the command queue has been enabled */
1131         smmuv3_cmdq_consume(s);
1132         return MEMTX_OK;
1133     case A_CR1:
1134         s->cr[1] = data;
1135         return MEMTX_OK;
1136     case A_CR2:
1137         s->cr[2] = data;
1138         return MEMTX_OK;
1139     case A_IRQ_CTRL:
1140         s->irq_ctrl = data;
1141         return MEMTX_OK;
1142     case A_GERRORN:
1143         smmuv3_write_gerrorn(s, data);
1144         /*
1145          * By acknowledging the CMDQ_ERR, SW may notify cmds can
1146          * be processed again
1147          */
1148         smmuv3_cmdq_consume(s);
1149         return MEMTX_OK;
1150     case A_GERROR_IRQ_CFG0: /* 64b */
1151         s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data);
1152         return MEMTX_OK;
1153     case A_GERROR_IRQ_CFG0 + 4:
1154         s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data);
1155         return MEMTX_OK;
1156     case A_GERROR_IRQ_CFG1:
1157         s->gerror_irq_cfg1 = data;
1158         return MEMTX_OK;
1159     case A_GERROR_IRQ_CFG2:
1160         s->gerror_irq_cfg2 = data;
1161         return MEMTX_OK;
1162     case A_STRTAB_BASE: /* 64b */
1163         s->strtab_base = deposit64(s->strtab_base, 0, 32, data);
1164         return MEMTX_OK;
1165     case A_STRTAB_BASE + 4:
1166         s->strtab_base = deposit64(s->strtab_base, 32, 32, data);
1167         return MEMTX_OK;
1168     case A_STRTAB_BASE_CFG:
1169         s->strtab_base_cfg = data;
1170         if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) {
1171             s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT);
1172             s->features |= SMMU_FEATURE_2LVL_STE;
1173         }
1174         return MEMTX_OK;
1175     case A_CMDQ_BASE: /* 64b */
1176         s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data);
1177         s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1178         if (s->cmdq.log2size > SMMU_CMDQS) {
1179             s->cmdq.log2size = SMMU_CMDQS;
1180         }
1181         return MEMTX_OK;
1182     case A_CMDQ_BASE + 4: /* 64b */
1183         s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data);
1184         return MEMTX_OK;
1185     case A_CMDQ_PROD:
1186         s->cmdq.prod = data;
1187         smmuv3_cmdq_consume(s);
1188         return MEMTX_OK;
1189     case A_CMDQ_CONS:
1190         s->cmdq.cons = data;
1191         return MEMTX_OK;
1192     case A_EVENTQ_BASE: /* 64b */
1193         s->eventq.base = deposit64(s->eventq.base, 0, 32, data);
1194         s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1195         if (s->eventq.log2size > SMMU_EVENTQS) {
1196             s->eventq.log2size = SMMU_EVENTQS;
1197         }
1198         return MEMTX_OK;
1199     case A_EVENTQ_BASE + 4:
1200         s->eventq.base = deposit64(s->eventq.base, 32, 32, data);
1201         return MEMTX_OK;
1202     case A_EVENTQ_PROD:
1203         s->eventq.prod = data;
1204         return MEMTX_OK;
1205     case A_EVENTQ_CONS:
1206         s->eventq.cons = data;
1207         return MEMTX_OK;
1208     case A_EVENTQ_IRQ_CFG0: /* 64b */
1209         s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data);
1210         return MEMTX_OK;
1211     case A_EVENTQ_IRQ_CFG0 + 4:
1212         s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data);
1213         return MEMTX_OK;
1214     case A_EVENTQ_IRQ_CFG1:
1215         s->eventq_irq_cfg1 = data;
1216         return MEMTX_OK;
1217     case A_EVENTQ_IRQ_CFG2:
1218         s->eventq_irq_cfg2 = data;
1219         return MEMTX_OK;
1220     default:
1221         qemu_log_mask(LOG_UNIMP,
1222                       "%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n",
1223                       __func__, offset);
1224         return MEMTX_OK;
1225     }
1226 }
1227 
1228 static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data,
1229                                    unsigned size, MemTxAttrs attrs)
1230 {
1231     SMMUState *sys = opaque;
1232     SMMUv3State *s = ARM_SMMUV3(sys);
1233     MemTxResult r;
1234 
1235     /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1236     offset &= ~0x10000;
1237 
1238     switch (size) {
1239     case 8:
1240         r = smmu_writell(s, offset, data, attrs);
1241         break;
1242     case 4:
1243         r = smmu_writel(s, offset, data, attrs);
1244         break;
1245     default:
1246         r = MEMTX_ERROR;
1247         break;
1248     }
1249 
1250     trace_smmuv3_write_mmio(offset, data, size, r);
1251     return r;
1252 }
1253 
1254 static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset,
1255                                uint64_t *data, MemTxAttrs attrs)
1256 {
1257     switch (offset) {
1258     case A_GERROR_IRQ_CFG0:
1259         *data = s->gerror_irq_cfg0;
1260         return MEMTX_OK;
1261     case A_STRTAB_BASE:
1262         *data = s->strtab_base;
1263         return MEMTX_OK;
1264     case A_CMDQ_BASE:
1265         *data = s->cmdq.base;
1266         return MEMTX_OK;
1267     case A_EVENTQ_BASE:
1268         *data = s->eventq.base;
1269         return MEMTX_OK;
1270     default:
1271         *data = 0;
1272         qemu_log_mask(LOG_UNIMP,
1273                       "%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n",
1274                       __func__, offset);
1275         return MEMTX_OK;
1276     }
1277 }
1278 
1279 static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset,
1280                               uint64_t *data, MemTxAttrs attrs)
1281 {
1282     switch (offset) {
1283     case A_IDREGS ... A_IDREGS + 0x2f:
1284         *data = smmuv3_idreg(offset - A_IDREGS);
1285         return MEMTX_OK;
1286     case A_IDR0 ... A_IDR5:
1287         *data = s->idr[(offset - A_IDR0) / 4];
1288         return MEMTX_OK;
1289     case A_IIDR:
1290         *data = s->iidr;
1291         return MEMTX_OK;
1292     case A_AIDR:
1293         *data = s->aidr;
1294         return MEMTX_OK;
1295     case A_CR0:
1296         *data = s->cr[0];
1297         return MEMTX_OK;
1298     case A_CR0ACK:
1299         *data = s->cr0ack;
1300         return MEMTX_OK;
1301     case A_CR1:
1302         *data = s->cr[1];
1303         return MEMTX_OK;
1304     case A_CR2:
1305         *data = s->cr[2];
1306         return MEMTX_OK;
1307     case A_STATUSR:
1308         *data = s->statusr;
1309         return MEMTX_OK;
1310     case A_IRQ_CTRL:
1311     case A_IRQ_CTRL_ACK:
1312         *data = s->irq_ctrl;
1313         return MEMTX_OK;
1314     case A_GERROR:
1315         *data = s->gerror;
1316         return MEMTX_OK;
1317     case A_GERRORN:
1318         *data = s->gerrorn;
1319         return MEMTX_OK;
1320     case A_GERROR_IRQ_CFG0: /* 64b */
1321         *data = extract64(s->gerror_irq_cfg0, 0, 32);
1322         return MEMTX_OK;
1323     case A_GERROR_IRQ_CFG0 + 4:
1324         *data = extract64(s->gerror_irq_cfg0, 32, 32);
1325         return MEMTX_OK;
1326     case A_GERROR_IRQ_CFG1:
1327         *data = s->gerror_irq_cfg1;
1328         return MEMTX_OK;
1329     case A_GERROR_IRQ_CFG2:
1330         *data = s->gerror_irq_cfg2;
1331         return MEMTX_OK;
1332     case A_STRTAB_BASE: /* 64b */
1333         *data = extract64(s->strtab_base, 0, 32);
1334         return MEMTX_OK;
1335     case A_STRTAB_BASE + 4: /* 64b */
1336         *data = extract64(s->strtab_base, 32, 32);
1337         return MEMTX_OK;
1338     case A_STRTAB_BASE_CFG:
1339         *data = s->strtab_base_cfg;
1340         return MEMTX_OK;
1341     case A_CMDQ_BASE: /* 64b */
1342         *data = extract64(s->cmdq.base, 0, 32);
1343         return MEMTX_OK;
1344     case A_CMDQ_BASE + 4:
1345         *data = extract64(s->cmdq.base, 32, 32);
1346         return MEMTX_OK;
1347     case A_CMDQ_PROD:
1348         *data = s->cmdq.prod;
1349         return MEMTX_OK;
1350     case A_CMDQ_CONS:
1351         *data = s->cmdq.cons;
1352         return MEMTX_OK;
1353     case A_EVENTQ_BASE: /* 64b */
1354         *data = extract64(s->eventq.base, 0, 32);
1355         return MEMTX_OK;
1356     case A_EVENTQ_BASE + 4: /* 64b */
1357         *data = extract64(s->eventq.base, 32, 32);
1358         return MEMTX_OK;
1359     case A_EVENTQ_PROD:
1360         *data = s->eventq.prod;
1361         return MEMTX_OK;
1362     case A_EVENTQ_CONS:
1363         *data = s->eventq.cons;
1364         return MEMTX_OK;
1365     default:
1366         *data = 0;
1367         qemu_log_mask(LOG_UNIMP,
1368                       "%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n",
1369                       __func__, offset);
1370         return MEMTX_OK;
1371     }
1372 }
1373 
1374 static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data,
1375                                   unsigned size, MemTxAttrs attrs)
1376 {
1377     SMMUState *sys = opaque;
1378     SMMUv3State *s = ARM_SMMUV3(sys);
1379     MemTxResult r;
1380 
1381     /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1382     offset &= ~0x10000;
1383 
1384     switch (size) {
1385     case 8:
1386         r = smmu_readll(s, offset, data, attrs);
1387         break;
1388     case 4:
1389         r = smmu_readl(s, offset, data, attrs);
1390         break;
1391     default:
1392         r = MEMTX_ERROR;
1393         break;
1394     }
1395 
1396     trace_smmuv3_read_mmio(offset, *data, size, r);
1397     return r;
1398 }
1399 
1400 static const MemoryRegionOps smmu_mem_ops = {
1401     .read_with_attrs = smmu_read_mmio,
1402     .write_with_attrs = smmu_write_mmio,
1403     .endianness = DEVICE_LITTLE_ENDIAN,
1404     .valid = {
1405         .min_access_size = 4,
1406         .max_access_size = 8,
1407     },
1408     .impl = {
1409         .min_access_size = 4,
1410         .max_access_size = 8,
1411     },
1412 };
1413 
1414 static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev)
1415 {
1416     int i;
1417 
1418     for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
1419         sysbus_init_irq(dev, &s->irq[i]);
1420     }
1421 }
1422 
1423 static void smmu_reset(DeviceState *dev)
1424 {
1425     SMMUv3State *s = ARM_SMMUV3(dev);
1426     SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1427 
1428     c->parent_reset(dev);
1429 
1430     smmuv3_init_regs(s);
1431 }
1432 
1433 static void smmu_realize(DeviceState *d, Error **errp)
1434 {
1435     SMMUState *sys = ARM_SMMU(d);
1436     SMMUv3State *s = ARM_SMMUV3(sys);
1437     SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1438     SysBusDevice *dev = SYS_BUS_DEVICE(d);
1439     Error *local_err = NULL;
1440 
1441     c->parent_realize(d, &local_err);
1442     if (local_err) {
1443         error_propagate(errp, local_err);
1444         return;
1445     }
1446 
1447     qemu_mutex_init(&s->mutex);
1448 
1449     memory_region_init_io(&sys->iomem, OBJECT(s),
1450                           &smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000);
1451 
1452     sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION;
1453 
1454     sysbus_init_mmio(dev, &sys->iomem);
1455 
1456     smmu_init_irq(s, dev);
1457 }
1458 
1459 static const VMStateDescription vmstate_smmuv3_queue = {
1460     .name = "smmuv3_queue",
1461     .version_id = 1,
1462     .minimum_version_id = 1,
1463     .fields = (VMStateField[]) {
1464         VMSTATE_UINT64(base, SMMUQueue),
1465         VMSTATE_UINT32(prod, SMMUQueue),
1466         VMSTATE_UINT32(cons, SMMUQueue),
1467         VMSTATE_UINT8(log2size, SMMUQueue),
1468         VMSTATE_END_OF_LIST(),
1469     },
1470 };
1471 
1472 static const VMStateDescription vmstate_smmuv3 = {
1473     .name = "smmuv3",
1474     .version_id = 1,
1475     .minimum_version_id = 1,
1476     .priority = MIG_PRI_IOMMU,
1477     .fields = (VMStateField[]) {
1478         VMSTATE_UINT32(features, SMMUv3State),
1479         VMSTATE_UINT8(sid_size, SMMUv3State),
1480         VMSTATE_UINT8(sid_split, SMMUv3State),
1481 
1482         VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3),
1483         VMSTATE_UINT32(cr0ack, SMMUv3State),
1484         VMSTATE_UINT32(statusr, SMMUv3State),
1485         VMSTATE_UINT32(irq_ctrl, SMMUv3State),
1486         VMSTATE_UINT32(gerror, SMMUv3State),
1487         VMSTATE_UINT32(gerrorn, SMMUv3State),
1488         VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State),
1489         VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State),
1490         VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State),
1491         VMSTATE_UINT64(strtab_base, SMMUv3State),
1492         VMSTATE_UINT32(strtab_base_cfg, SMMUv3State),
1493         VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State),
1494         VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State),
1495         VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State),
1496 
1497         VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1498         VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1499 
1500         VMSTATE_END_OF_LIST(),
1501     },
1502 };
1503 
1504 static void smmuv3_instance_init(Object *obj)
1505 {
1506     /* Nothing much to do here as of now */
1507 }
1508 
1509 static void smmuv3_class_init(ObjectClass *klass, void *data)
1510 {
1511     DeviceClass *dc = DEVICE_CLASS(klass);
1512     SMMUv3Class *c = ARM_SMMUV3_CLASS(klass);
1513 
1514     dc->vmsd = &vmstate_smmuv3;
1515     device_class_set_parent_reset(dc, smmu_reset, &c->parent_reset);
1516     c->parent_realize = dc->realize;
1517     dc->realize = smmu_realize;
1518 }
1519 
1520 static int smmuv3_notify_flag_changed(IOMMUMemoryRegion *iommu,
1521                                       IOMMUNotifierFlag old,
1522                                       IOMMUNotifierFlag new,
1523                                       Error **errp)
1524 {
1525     SMMUDevice *sdev = container_of(iommu, SMMUDevice, iommu);
1526     SMMUv3State *s3 = sdev->smmu;
1527     SMMUState *s = &(s3->smmu_state);
1528 
1529     if (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
1530         error_setg(errp, "SMMUv3 does not support dev-iotlb yet");
1531         return -EINVAL;
1532     }
1533 
1534     if (new & IOMMU_NOTIFIER_MAP) {
1535         error_setg(errp,
1536                    "device %02x.%02x.%x requires iommu MAP notifier which is "
1537                    "not currently supported", pci_bus_num(sdev->bus),
1538                    PCI_SLOT(sdev->devfn), PCI_FUNC(sdev->devfn));
1539         return -EINVAL;
1540     }
1541 
1542     if (old == IOMMU_NOTIFIER_NONE) {
1543         trace_smmuv3_notify_flag_add(iommu->parent_obj.name);
1544         QLIST_INSERT_HEAD(&s->devices_with_notifiers, sdev, next);
1545     } else if (new == IOMMU_NOTIFIER_NONE) {
1546         trace_smmuv3_notify_flag_del(iommu->parent_obj.name);
1547         QLIST_REMOVE(sdev, next);
1548     }
1549     return 0;
1550 }
1551 
1552 static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass,
1553                                                   void *data)
1554 {
1555     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1556 
1557     imrc->translate = smmuv3_translate;
1558     imrc->notify_flag_changed = smmuv3_notify_flag_changed;
1559 }
1560 
1561 static const TypeInfo smmuv3_type_info = {
1562     .name          = TYPE_ARM_SMMUV3,
1563     .parent        = TYPE_ARM_SMMU,
1564     .instance_size = sizeof(SMMUv3State),
1565     .instance_init = smmuv3_instance_init,
1566     .class_size    = sizeof(SMMUv3Class),
1567     .class_init    = smmuv3_class_init,
1568 };
1569 
1570 static const TypeInfo smmuv3_iommu_memory_region_info = {
1571     .parent = TYPE_IOMMU_MEMORY_REGION,
1572     .name = TYPE_SMMUV3_IOMMU_MEMORY_REGION,
1573     .class_init = smmuv3_iommu_memory_region_class_init,
1574 };
1575 
1576 static void smmuv3_register_types(void)
1577 {
1578     type_register(&smmuv3_type_info);
1579     type_register(&smmuv3_iommu_memory_region_info);
1580 }
1581 
1582 type_init(smmuv3_register_types)
1583 
1584