xref: /openbmc/qemu/hw/arm/smmuv3.c (revision 4b9fa0b4)
1 /*
2  * Copyright (C) 2014-2016 Broadcom Corporation
3  * Copyright (c) 2017 Red Hat, Inc.
4  * Written by Prem Mallappa, Eric Auger
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "hw/irq.h"
21 #include "hw/sysbus.h"
22 #include "migration/vmstate.h"
23 #include "hw/qdev-core.h"
24 #include "hw/pci/pci.h"
25 #include "exec/address-spaces.h"
26 #include "cpu.h"
27 #include "trace.h"
28 #include "qemu/log.h"
29 #include "qemu/error-report.h"
30 #include "qapi/error.h"
31 
32 #include "hw/arm/smmuv3.h"
33 #include "smmuv3-internal.h"
34 
35 /**
36  * smmuv3_trigger_irq - pulse @irq if enabled and update
37  * GERROR register in case of GERROR interrupt
38  *
39  * @irq: irq type
40  * @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR)
41  */
42 static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq,
43                                uint32_t gerror_mask)
44 {
45 
46     bool pulse = false;
47 
48     switch (irq) {
49     case SMMU_IRQ_EVTQ:
50         pulse = smmuv3_eventq_irq_enabled(s);
51         break;
52     case SMMU_IRQ_PRIQ:
53         qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n");
54         break;
55     case SMMU_IRQ_CMD_SYNC:
56         pulse = true;
57         break;
58     case SMMU_IRQ_GERROR:
59     {
60         uint32_t pending = s->gerror ^ s->gerrorn;
61         uint32_t new_gerrors = ~pending & gerror_mask;
62 
63         if (!new_gerrors) {
64             /* only toggle non pending errors */
65             return;
66         }
67         s->gerror ^= new_gerrors;
68         trace_smmuv3_write_gerror(new_gerrors, s->gerror);
69 
70         pulse = smmuv3_gerror_irq_enabled(s);
71         break;
72     }
73     }
74     if (pulse) {
75             trace_smmuv3_trigger_irq(irq);
76             qemu_irq_pulse(s->irq[irq]);
77     }
78 }
79 
80 static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn)
81 {
82     uint32_t pending = s->gerror ^ s->gerrorn;
83     uint32_t toggled = s->gerrorn ^ new_gerrorn;
84 
85     if (toggled & ~pending) {
86         qemu_log_mask(LOG_GUEST_ERROR,
87                       "guest toggles non pending errors = 0x%x\n",
88                       toggled & ~pending);
89     }
90 
91     /*
92      * We do not raise any error in case guest toggles bits corresponding
93      * to not active IRQs (CONSTRAINED UNPREDICTABLE)
94      */
95     s->gerrorn = new_gerrorn;
96 
97     trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn);
98 }
99 
100 static inline MemTxResult queue_read(SMMUQueue *q, void *data)
101 {
102     dma_addr_t addr = Q_CONS_ENTRY(q);
103 
104     return dma_memory_read(&address_space_memory, addr, data, q->entry_size);
105 }
106 
107 static MemTxResult queue_write(SMMUQueue *q, void *data)
108 {
109     dma_addr_t addr = Q_PROD_ENTRY(q);
110     MemTxResult ret;
111 
112     ret = dma_memory_write(&address_space_memory, addr, data, q->entry_size);
113     if (ret != MEMTX_OK) {
114         return ret;
115     }
116 
117     queue_prod_incr(q);
118     return MEMTX_OK;
119 }
120 
121 static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt)
122 {
123     SMMUQueue *q = &s->eventq;
124     MemTxResult r;
125 
126     if (!smmuv3_eventq_enabled(s)) {
127         return MEMTX_ERROR;
128     }
129 
130     if (smmuv3_q_full(q)) {
131         return MEMTX_ERROR;
132     }
133 
134     r = queue_write(q, evt);
135     if (r != MEMTX_OK) {
136         return r;
137     }
138 
139     if (!smmuv3_q_empty(q)) {
140         smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0);
141     }
142     return MEMTX_OK;
143 }
144 
145 void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
146 {
147     Evt evt = {};
148     MemTxResult r;
149 
150     if (!smmuv3_eventq_enabled(s)) {
151         return;
152     }
153 
154     EVT_SET_TYPE(&evt, info->type);
155     EVT_SET_SID(&evt, info->sid);
156 
157     switch (info->type) {
158     case SMMU_EVT_NONE:
159         return;
160     case SMMU_EVT_F_UUT:
161         EVT_SET_SSID(&evt, info->u.f_uut.ssid);
162         EVT_SET_SSV(&evt,  info->u.f_uut.ssv);
163         EVT_SET_ADDR(&evt, info->u.f_uut.addr);
164         EVT_SET_RNW(&evt,  info->u.f_uut.rnw);
165         EVT_SET_PNU(&evt,  info->u.f_uut.pnu);
166         EVT_SET_IND(&evt,  info->u.f_uut.ind);
167         break;
168     case SMMU_EVT_C_BAD_STREAMID:
169         EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid);
170         EVT_SET_SSV(&evt,  info->u.c_bad_streamid.ssv);
171         break;
172     case SMMU_EVT_F_STE_FETCH:
173         EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
174         EVT_SET_SSV(&evt,  info->u.f_ste_fetch.ssv);
175         EVT_SET_ADDR(&evt, info->u.f_ste_fetch.addr);
176         break;
177     case SMMU_EVT_C_BAD_STE:
178         EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
179         EVT_SET_SSV(&evt,  info->u.c_bad_ste.ssv);
180         break;
181     case SMMU_EVT_F_STREAM_DISABLED:
182         break;
183     case SMMU_EVT_F_TRANS_FORBIDDEN:
184         EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr);
185         EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw);
186         break;
187     case SMMU_EVT_C_BAD_SUBSTREAMID:
188         EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid);
189         break;
190     case SMMU_EVT_F_CD_FETCH:
191         EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid);
192         EVT_SET_SSV(&evt,  info->u.f_cd_fetch.ssv);
193         EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr);
194         break;
195     case SMMU_EVT_C_BAD_CD:
196         EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid);
197         EVT_SET_SSV(&evt,  info->u.c_bad_cd.ssv);
198         break;
199     case SMMU_EVT_F_WALK_EABT:
200     case SMMU_EVT_F_TRANSLATION:
201     case SMMU_EVT_F_ADDR_SIZE:
202     case SMMU_EVT_F_ACCESS:
203     case SMMU_EVT_F_PERMISSION:
204         EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall);
205         EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag);
206         EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid);
207         EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv);
208         EVT_SET_S2(&evt, info->u.f_walk_eabt.s2);
209         EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr);
210         EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw);
211         EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu);
212         EVT_SET_IND(&evt, info->u.f_walk_eabt.ind);
213         EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class);
214         EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2);
215         break;
216     case SMMU_EVT_F_CFG_CONFLICT:
217         EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid);
218         EVT_SET_SSV(&evt,  info->u.f_cfg_conflict.ssv);
219         break;
220     /* rest is not implemented */
221     case SMMU_EVT_F_BAD_ATS_TREQ:
222     case SMMU_EVT_F_TLB_CONFLICT:
223     case SMMU_EVT_E_PAGE_REQ:
224     default:
225         g_assert_not_reached();
226     }
227 
228     trace_smmuv3_record_event(smmu_event_string(info->type), info->sid);
229     r = smmuv3_write_eventq(s, &evt);
230     if (r != MEMTX_OK) {
231         smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK);
232     }
233     info->recorded = true;
234 }
235 
236 static void smmuv3_init_regs(SMMUv3State *s)
237 {
238     /**
239      * IDR0: stage1 only, AArch64 only, coherent access, 16b ASID,
240      *       multi-level stream table
241      */
242     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1); /* stage 1 supported */
243     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */
244     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */
245     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */
246     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */
247     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */
248     /* terminated transaction will always be aborted/error returned */
249     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1);
250     /* 2-level stream table supported */
251     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1);
252 
253     s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE);
254     s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS);
255     s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS,   SMMU_CMDQS);
256 
257    /* 4K and 64K granule support */
258     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1);
259     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1);
260     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */
261 
262     s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS);
263     s->cmdq.prod = 0;
264     s->cmdq.cons = 0;
265     s->cmdq.entry_size = sizeof(struct Cmd);
266     s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS);
267     s->eventq.prod = 0;
268     s->eventq.cons = 0;
269     s->eventq.entry_size = sizeof(struct Evt);
270 
271     s->features = 0;
272     s->sid_split = 0;
273 }
274 
275 static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf,
276                         SMMUEventInfo *event)
277 {
278     int ret;
279 
280     trace_smmuv3_get_ste(addr);
281     /* TODO: guarantee 64-bit single-copy atomicity */
282     ret = dma_memory_read(&address_space_memory, addr,
283                           (void *)buf, sizeof(*buf));
284     if (ret != MEMTX_OK) {
285         qemu_log_mask(LOG_GUEST_ERROR,
286                       "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
287         event->type = SMMU_EVT_F_STE_FETCH;
288         event->u.f_ste_fetch.addr = addr;
289         return -EINVAL;
290     }
291     return 0;
292 
293 }
294 
295 /* @ssid > 0 not supported yet */
296 static int smmu_get_cd(SMMUv3State *s, STE *ste, uint32_t ssid,
297                        CD *buf, SMMUEventInfo *event)
298 {
299     dma_addr_t addr = STE_CTXPTR(ste);
300     int ret;
301 
302     trace_smmuv3_get_cd(addr);
303     /* TODO: guarantee 64-bit single-copy atomicity */
304     ret = dma_memory_read(&address_space_memory, addr,
305                            (void *)buf, sizeof(*buf));
306     if (ret != MEMTX_OK) {
307         qemu_log_mask(LOG_GUEST_ERROR,
308                       "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
309         event->type = SMMU_EVT_F_CD_FETCH;
310         event->u.f_ste_fetch.addr = addr;
311         return -EINVAL;
312     }
313     return 0;
314 }
315 
316 /* Returns < 0 in case of invalid STE, 0 otherwise */
317 static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg,
318                       STE *ste, SMMUEventInfo *event)
319 {
320     uint32_t config;
321 
322     if (!STE_VALID(ste)) {
323         if (!event->inval_ste_allowed) {
324             qemu_log_mask(LOG_GUEST_ERROR, "invalid STE\n");
325         }
326         goto bad_ste;
327     }
328 
329     config = STE_CONFIG(ste);
330 
331     if (STE_CFG_ABORT(config)) {
332         cfg->aborted = true;
333         return 0;
334     }
335 
336     if (STE_CFG_BYPASS(config)) {
337         cfg->bypassed = true;
338         return 0;
339     }
340 
341     if (STE_CFG_S2_ENABLED(config)) {
342         qemu_log_mask(LOG_UNIMP, "SMMUv3 does not support stage 2 yet\n");
343         goto bad_ste;
344     }
345 
346     if (STE_S1CDMAX(ste) != 0) {
347         qemu_log_mask(LOG_UNIMP,
348                       "SMMUv3 does not support multiple context descriptors yet\n");
349         goto bad_ste;
350     }
351 
352     if (STE_S1STALLD(ste)) {
353         qemu_log_mask(LOG_UNIMP,
354                       "SMMUv3 S1 stalling fault model not allowed yet\n");
355         goto bad_ste;
356     }
357     return 0;
358 
359 bad_ste:
360     event->type = SMMU_EVT_C_BAD_STE;
361     return -EINVAL;
362 }
363 
364 /**
365  * smmu_find_ste - Return the stream table entry associated
366  * to the sid
367  *
368  * @s: smmuv3 handle
369  * @sid: stream ID
370  * @ste: returned stream table entry
371  * @event: handle to an event info
372  *
373  * Supports linear and 2-level stream table
374  * Return 0 on success, -EINVAL otherwise
375  */
376 static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
377                          SMMUEventInfo *event)
378 {
379     dma_addr_t addr;
380     int ret;
381 
382     trace_smmuv3_find_ste(sid, s->features, s->sid_split);
383     /* Check SID range */
384     if (sid > (1 << SMMU_IDR1_SIDSIZE)) {
385         event->type = SMMU_EVT_C_BAD_STREAMID;
386         return -EINVAL;
387     }
388     if (s->features & SMMU_FEATURE_2LVL_STE) {
389         int l1_ste_offset, l2_ste_offset, max_l2_ste, span;
390         dma_addr_t strtab_base, l1ptr, l2ptr;
391         STEDesc l1std;
392 
393         strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK;
394         l1_ste_offset = sid >> s->sid_split;
395         l2_ste_offset = sid & ((1 << s->sid_split) - 1);
396         l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
397         /* TODO: guarantee 64-bit single-copy atomicity */
398         ret = dma_memory_read(&address_space_memory, l1ptr,
399                               (uint8_t *)&l1std, sizeof(l1std));
400         if (ret != MEMTX_OK) {
401             qemu_log_mask(LOG_GUEST_ERROR,
402                           "Could not read L1PTR at 0X%"PRIx64"\n", l1ptr);
403             event->type = SMMU_EVT_F_STE_FETCH;
404             event->u.f_ste_fetch.addr = l1ptr;
405             return -EINVAL;
406         }
407 
408         span = L1STD_SPAN(&l1std);
409 
410         if (!span) {
411             /* l2ptr is not valid */
412             if (!event->inval_ste_allowed) {
413                 qemu_log_mask(LOG_GUEST_ERROR,
414                               "invalid sid=%d (L1STD span=0)\n", sid);
415             }
416             event->type = SMMU_EVT_C_BAD_STREAMID;
417             return -EINVAL;
418         }
419         max_l2_ste = (1 << span) - 1;
420         l2ptr = l1std_l2ptr(&l1std);
421         trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset,
422                                    l2ptr, l2_ste_offset, max_l2_ste);
423         if (l2_ste_offset > max_l2_ste) {
424             qemu_log_mask(LOG_GUEST_ERROR,
425                           "l2_ste_offset=%d > max_l2_ste=%d\n",
426                           l2_ste_offset, max_l2_ste);
427             event->type = SMMU_EVT_C_BAD_STE;
428             return -EINVAL;
429         }
430         addr = l2ptr + l2_ste_offset * sizeof(*ste);
431     } else {
432         addr = s->strtab_base + sid * sizeof(*ste);
433     }
434 
435     if (smmu_get_ste(s, addr, ste, event)) {
436         return -EINVAL;
437     }
438 
439     return 0;
440 }
441 
442 static int decode_cd(SMMUTransCfg *cfg, CD *cd, SMMUEventInfo *event)
443 {
444     int ret = -EINVAL;
445     int i;
446 
447     if (!CD_VALID(cd) || !CD_AARCH64(cd)) {
448         goto bad_cd;
449     }
450     if (!CD_A(cd)) {
451         goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */
452     }
453     if (CD_S(cd)) {
454         goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */
455     }
456     if (CD_HA(cd) || CD_HD(cd)) {
457         goto bad_cd; /* HTTU = 0 */
458     }
459 
460     /* we support only those at the moment */
461     cfg->aa64 = true;
462     cfg->stage = 1;
463 
464     cfg->oas = oas2bits(CD_IPS(cd));
465     cfg->oas = MIN(oas2bits(SMMU_IDR5_OAS), cfg->oas);
466     cfg->tbi = CD_TBI(cd);
467     cfg->asid = CD_ASID(cd);
468 
469     trace_smmuv3_decode_cd(cfg->oas);
470 
471     /* decode data dependent on TT */
472     for (i = 0; i <= 1; i++) {
473         int tg, tsz;
474         SMMUTransTableInfo *tt = &cfg->tt[i];
475 
476         cfg->tt[i].disabled = CD_EPD(cd, i);
477         if (cfg->tt[i].disabled) {
478             continue;
479         }
480 
481         tsz = CD_TSZ(cd, i);
482         if (tsz < 16 || tsz > 39) {
483             goto bad_cd;
484         }
485 
486         tg = CD_TG(cd, i);
487         tt->granule_sz = tg2granule(tg, i);
488         if ((tt->granule_sz != 12 && tt->granule_sz != 16) || CD_ENDI(cd)) {
489             goto bad_cd;
490         }
491 
492         tt->tsz = tsz;
493         tt->ttb = CD_TTB(cd, i);
494         if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) {
495             goto bad_cd;
496         }
497         trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz);
498     }
499 
500     event->record_trans_faults = CD_R(cd);
501 
502     return 0;
503 
504 bad_cd:
505     event->type = SMMU_EVT_C_BAD_CD;
506     return ret;
507 }
508 
509 /**
510  * smmuv3_decode_config - Prepare the translation configuration
511  * for the @mr iommu region
512  * @mr: iommu memory region the translation config must be prepared for
513  * @cfg: output translation configuration which is populated through
514  *       the different configuration decoding steps
515  * @event: must be zero'ed by the caller
516  *
517  * return < 0 in case of config decoding error (@event is filled
518  * accordingly). Return 0 otherwise.
519  */
520 static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg,
521                                 SMMUEventInfo *event)
522 {
523     SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
524     uint32_t sid = smmu_get_sid(sdev);
525     SMMUv3State *s = sdev->smmu;
526     int ret;
527     STE ste;
528     CD cd;
529 
530     ret = smmu_find_ste(s, sid, &ste, event);
531     if (ret) {
532         return ret;
533     }
534 
535     ret = decode_ste(s, cfg, &ste, event);
536     if (ret) {
537         return ret;
538     }
539 
540     if (cfg->aborted || cfg->bypassed) {
541         return 0;
542     }
543 
544     ret = smmu_get_cd(s, &ste, 0 /* ssid */, &cd, event);
545     if (ret) {
546         return ret;
547     }
548 
549     return decode_cd(cfg, &cd, event);
550 }
551 
552 /**
553  * smmuv3_get_config - Look up for a cached copy of configuration data for
554  * @sdev and on cache miss performs a configuration structure decoding from
555  * guest RAM.
556  *
557  * @sdev: SMMUDevice handle
558  * @event: output event info
559  *
560  * The configuration cache contains data resulting from both STE and CD
561  * decoding under the form of an SMMUTransCfg struct. The hash table is indexed
562  * by the SMMUDevice handle.
563  */
564 static SMMUTransCfg *smmuv3_get_config(SMMUDevice *sdev, SMMUEventInfo *event)
565 {
566     SMMUv3State *s = sdev->smmu;
567     SMMUState *bc = &s->smmu_state;
568     SMMUTransCfg *cfg;
569 
570     cfg = g_hash_table_lookup(bc->configs, sdev);
571     if (cfg) {
572         sdev->cfg_cache_hits++;
573         trace_smmuv3_config_cache_hit(smmu_get_sid(sdev),
574                             sdev->cfg_cache_hits, sdev->cfg_cache_misses,
575                             100 * sdev->cfg_cache_hits /
576                             (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
577     } else {
578         sdev->cfg_cache_misses++;
579         trace_smmuv3_config_cache_miss(smmu_get_sid(sdev),
580                             sdev->cfg_cache_hits, sdev->cfg_cache_misses,
581                             100 * sdev->cfg_cache_hits /
582                             (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
583         cfg = g_new0(SMMUTransCfg, 1);
584 
585         if (!smmuv3_decode_config(&sdev->iommu, cfg, event)) {
586             g_hash_table_insert(bc->configs, sdev, cfg);
587         } else {
588             g_free(cfg);
589             cfg = NULL;
590         }
591     }
592     return cfg;
593 }
594 
595 static void smmuv3_flush_config(SMMUDevice *sdev)
596 {
597     SMMUv3State *s = sdev->smmu;
598     SMMUState *bc = &s->smmu_state;
599 
600     trace_smmuv3_config_cache_inv(smmu_get_sid(sdev));
601     g_hash_table_remove(bc->configs, sdev);
602 }
603 
604 static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr,
605                                       IOMMUAccessFlags flag, int iommu_idx)
606 {
607     SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
608     SMMUv3State *s = sdev->smmu;
609     uint32_t sid = smmu_get_sid(sdev);
610     SMMUEventInfo event = {.type = SMMU_EVT_NONE,
611                            .sid = sid,
612                            .inval_ste_allowed = false};
613     SMMUPTWEventInfo ptw_info = {};
614     SMMUTranslationStatus status;
615     SMMUState *bs = ARM_SMMU(s);
616     uint64_t page_mask, aligned_addr;
617     IOMMUTLBEntry *cached_entry = NULL;
618     SMMUTransTableInfo *tt;
619     SMMUTransCfg *cfg = NULL;
620     IOMMUTLBEntry entry = {
621         .target_as = &address_space_memory,
622         .iova = addr,
623         .translated_addr = addr,
624         .addr_mask = ~(hwaddr)0,
625         .perm = IOMMU_NONE,
626     };
627     SMMUIOTLBKey key, *new_key;
628 
629     qemu_mutex_lock(&s->mutex);
630 
631     if (!smmu_enabled(s)) {
632         status = SMMU_TRANS_DISABLE;
633         goto epilogue;
634     }
635 
636     cfg = smmuv3_get_config(sdev, &event);
637     if (!cfg) {
638         status = SMMU_TRANS_ERROR;
639         goto epilogue;
640     }
641 
642     if (cfg->aborted) {
643         status = SMMU_TRANS_ABORT;
644         goto epilogue;
645     }
646 
647     if (cfg->bypassed) {
648         status = SMMU_TRANS_BYPASS;
649         goto epilogue;
650     }
651 
652     tt = select_tt(cfg, addr);
653     if (!tt) {
654         if (event.record_trans_faults) {
655             event.type = SMMU_EVT_F_TRANSLATION;
656             event.u.f_translation.addr = addr;
657             event.u.f_translation.rnw = flag & 0x1;
658         }
659         status = SMMU_TRANS_ERROR;
660         goto epilogue;
661     }
662 
663     page_mask = (1ULL << (tt->granule_sz)) - 1;
664     aligned_addr = addr & ~page_mask;
665 
666     key.asid = cfg->asid;
667     key.iova = aligned_addr;
668 
669     cached_entry = g_hash_table_lookup(bs->iotlb, &key);
670     if (cached_entry) {
671         cfg->iotlb_hits++;
672         trace_smmu_iotlb_cache_hit(cfg->asid, aligned_addr,
673                                    cfg->iotlb_hits, cfg->iotlb_misses,
674                                    100 * cfg->iotlb_hits /
675                                    (cfg->iotlb_hits + cfg->iotlb_misses));
676         if ((flag & IOMMU_WO) && !(cached_entry->perm & IOMMU_WO)) {
677             status = SMMU_TRANS_ERROR;
678             if (event.record_trans_faults) {
679                 event.type = SMMU_EVT_F_PERMISSION;
680                 event.u.f_permission.addr = addr;
681                 event.u.f_permission.rnw = flag & 0x1;
682             }
683         } else {
684             status = SMMU_TRANS_SUCCESS;
685         }
686         goto epilogue;
687     }
688 
689     cfg->iotlb_misses++;
690     trace_smmu_iotlb_cache_miss(cfg->asid, addr & ~page_mask,
691                                 cfg->iotlb_hits, cfg->iotlb_misses,
692                                 100 * cfg->iotlb_hits /
693                                 (cfg->iotlb_hits + cfg->iotlb_misses));
694 
695     if (g_hash_table_size(bs->iotlb) >= SMMU_IOTLB_MAX_SIZE) {
696         smmu_iotlb_inv_all(bs);
697     }
698 
699     cached_entry = g_new0(IOMMUTLBEntry, 1);
700 
701     if (smmu_ptw(cfg, aligned_addr, flag, cached_entry, &ptw_info)) {
702         g_free(cached_entry);
703         switch (ptw_info.type) {
704         case SMMU_PTW_ERR_WALK_EABT:
705             event.type = SMMU_EVT_F_WALK_EABT;
706             event.u.f_walk_eabt.addr = addr;
707             event.u.f_walk_eabt.rnw = flag & 0x1;
708             event.u.f_walk_eabt.class = 0x1;
709             event.u.f_walk_eabt.addr2 = ptw_info.addr;
710             break;
711         case SMMU_PTW_ERR_TRANSLATION:
712             if (event.record_trans_faults) {
713                 event.type = SMMU_EVT_F_TRANSLATION;
714                 event.u.f_translation.addr = addr;
715                 event.u.f_translation.rnw = flag & 0x1;
716             }
717             break;
718         case SMMU_PTW_ERR_ADDR_SIZE:
719             if (event.record_trans_faults) {
720                 event.type = SMMU_EVT_F_ADDR_SIZE;
721                 event.u.f_addr_size.addr = addr;
722                 event.u.f_addr_size.rnw = flag & 0x1;
723             }
724             break;
725         case SMMU_PTW_ERR_ACCESS:
726             if (event.record_trans_faults) {
727                 event.type = SMMU_EVT_F_ACCESS;
728                 event.u.f_access.addr = addr;
729                 event.u.f_access.rnw = flag & 0x1;
730             }
731             break;
732         case SMMU_PTW_ERR_PERMISSION:
733             if (event.record_trans_faults) {
734                 event.type = SMMU_EVT_F_PERMISSION;
735                 event.u.f_permission.addr = addr;
736                 event.u.f_permission.rnw = flag & 0x1;
737             }
738             break;
739         default:
740             g_assert_not_reached();
741         }
742         status = SMMU_TRANS_ERROR;
743     } else {
744         new_key = g_new0(SMMUIOTLBKey, 1);
745         new_key->asid = cfg->asid;
746         new_key->iova = aligned_addr;
747         g_hash_table_insert(bs->iotlb, new_key, cached_entry);
748         status = SMMU_TRANS_SUCCESS;
749     }
750 
751 epilogue:
752     qemu_mutex_unlock(&s->mutex);
753     switch (status) {
754     case SMMU_TRANS_SUCCESS:
755         entry.perm = flag;
756         entry.translated_addr = cached_entry->translated_addr +
757                                     (addr & page_mask);
758         entry.addr_mask = cached_entry->addr_mask;
759         trace_smmuv3_translate_success(mr->parent_obj.name, sid, addr,
760                                        entry.translated_addr, entry.perm);
761         break;
762     case SMMU_TRANS_DISABLE:
763         entry.perm = flag;
764         entry.addr_mask = ~TARGET_PAGE_MASK;
765         trace_smmuv3_translate_disable(mr->parent_obj.name, sid, addr,
766                                       entry.perm);
767         break;
768     case SMMU_TRANS_BYPASS:
769         entry.perm = flag;
770         entry.addr_mask = ~TARGET_PAGE_MASK;
771         trace_smmuv3_translate_bypass(mr->parent_obj.name, sid, addr,
772                                       entry.perm);
773         break;
774     case SMMU_TRANS_ABORT:
775         /* no event is recorded on abort */
776         trace_smmuv3_translate_abort(mr->parent_obj.name, sid, addr,
777                                      entry.perm);
778         break;
779     case SMMU_TRANS_ERROR:
780         qemu_log_mask(LOG_GUEST_ERROR,
781                       "%s translation failed for iova=0x%"PRIx64"(%s)\n",
782                       mr->parent_obj.name, addr, smmu_event_string(event.type));
783         smmuv3_record_event(s, &event);
784         break;
785     }
786 
787     return entry;
788 }
789 
790 /**
791  * smmuv3_notify_iova - call the notifier @n for a given
792  * @asid and @iova tuple.
793  *
794  * @mr: IOMMU mr region handle
795  * @n: notifier to be called
796  * @asid: address space ID or negative value if we don't care
797  * @iova: iova
798  */
799 static void smmuv3_notify_iova(IOMMUMemoryRegion *mr,
800                                IOMMUNotifier *n,
801                                int asid,
802                                dma_addr_t iova)
803 {
804     SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
805     SMMUEventInfo event = {.inval_ste_allowed = true};
806     SMMUTransTableInfo *tt;
807     SMMUTransCfg *cfg;
808     IOMMUTLBEntry entry;
809 
810     cfg = smmuv3_get_config(sdev, &event);
811     if (!cfg) {
812         return;
813     }
814 
815     if (asid >= 0 && cfg->asid != asid) {
816         return;
817     }
818 
819     tt = select_tt(cfg, iova);
820     if (!tt) {
821         return;
822     }
823 
824     entry.target_as = &address_space_memory;
825     entry.iova = iova;
826     entry.addr_mask = (1 << tt->granule_sz) - 1;
827     entry.perm = IOMMU_NONE;
828 
829     memory_region_notify_one(n, &entry);
830 }
831 
832 /* invalidate an asid/iova tuple in all mr's */
833 static void smmuv3_inv_notifiers_iova(SMMUState *s, int asid, dma_addr_t iova)
834 {
835     SMMUDevice *sdev;
836 
837     QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
838         IOMMUMemoryRegion *mr = &sdev->iommu;
839         IOMMUNotifier *n;
840 
841         trace_smmuv3_inv_notifiers_iova(mr->parent_obj.name, asid, iova);
842 
843         IOMMU_NOTIFIER_FOREACH(n, mr) {
844             smmuv3_notify_iova(mr, n, asid, iova);
845         }
846     }
847 }
848 
849 static int smmuv3_cmdq_consume(SMMUv3State *s)
850 {
851     SMMUState *bs = ARM_SMMU(s);
852     SMMUCmdError cmd_error = SMMU_CERROR_NONE;
853     SMMUQueue *q = &s->cmdq;
854     SMMUCommandType type = 0;
855 
856     if (!smmuv3_cmdq_enabled(s)) {
857         return 0;
858     }
859     /*
860      * some commands depend on register values, typically CR0. In case those
861      * register values change while handling the command, spec says it
862      * is UNPREDICTABLE whether the command is interpreted under the new
863      * or old value.
864      */
865 
866     while (!smmuv3_q_empty(q)) {
867         uint32_t pending = s->gerror ^ s->gerrorn;
868         Cmd cmd;
869 
870         trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q),
871                                   Q_PROD_WRAP(q), Q_CONS_WRAP(q));
872 
873         if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) {
874             break;
875         }
876 
877         if (queue_read(q, &cmd) != MEMTX_OK) {
878             cmd_error = SMMU_CERROR_ABT;
879             break;
880         }
881 
882         type = CMD_TYPE(&cmd);
883 
884         trace_smmuv3_cmdq_opcode(smmu_cmd_string(type));
885 
886         qemu_mutex_lock(&s->mutex);
887         switch (type) {
888         case SMMU_CMD_SYNC:
889             if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) {
890                 smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0);
891             }
892             break;
893         case SMMU_CMD_PREFETCH_CONFIG:
894         case SMMU_CMD_PREFETCH_ADDR:
895             break;
896         case SMMU_CMD_CFGI_STE:
897         {
898             uint32_t sid = CMD_SID(&cmd);
899             IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
900             SMMUDevice *sdev;
901 
902             if (CMD_SSEC(&cmd)) {
903                 cmd_error = SMMU_CERROR_ILL;
904                 break;
905             }
906 
907             if (!mr) {
908                 break;
909             }
910 
911             trace_smmuv3_cmdq_cfgi_ste(sid);
912             sdev = container_of(mr, SMMUDevice, iommu);
913             smmuv3_flush_config(sdev);
914 
915             break;
916         }
917         case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */
918         {
919             uint32_t start = CMD_SID(&cmd), end, i;
920             uint8_t range = CMD_STE_RANGE(&cmd);
921 
922             if (CMD_SSEC(&cmd)) {
923                 cmd_error = SMMU_CERROR_ILL;
924                 break;
925             }
926 
927             end = start + (1 << (range + 1)) - 1;
928             trace_smmuv3_cmdq_cfgi_ste_range(start, end);
929 
930             for (i = start; i <= end; i++) {
931                 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, i);
932                 SMMUDevice *sdev;
933 
934                 if (!mr) {
935                     continue;
936                 }
937                 sdev = container_of(mr, SMMUDevice, iommu);
938                 smmuv3_flush_config(sdev);
939             }
940             break;
941         }
942         case SMMU_CMD_CFGI_CD:
943         case SMMU_CMD_CFGI_CD_ALL:
944         {
945             uint32_t sid = CMD_SID(&cmd);
946             IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
947             SMMUDevice *sdev;
948 
949             if (CMD_SSEC(&cmd)) {
950                 cmd_error = SMMU_CERROR_ILL;
951                 break;
952             }
953 
954             if (!mr) {
955                 break;
956             }
957 
958             trace_smmuv3_cmdq_cfgi_cd(sid);
959             sdev = container_of(mr, SMMUDevice, iommu);
960             smmuv3_flush_config(sdev);
961             break;
962         }
963         case SMMU_CMD_TLBI_NH_ASID:
964         {
965             uint16_t asid = CMD_ASID(&cmd);
966 
967             trace_smmuv3_cmdq_tlbi_nh_asid(asid);
968             smmu_inv_notifiers_all(&s->smmu_state);
969             smmu_iotlb_inv_asid(bs, asid);
970             break;
971         }
972         case SMMU_CMD_TLBI_NH_ALL:
973         case SMMU_CMD_TLBI_NSNH_ALL:
974             trace_smmuv3_cmdq_tlbi_nh();
975             smmu_inv_notifiers_all(&s->smmu_state);
976             smmu_iotlb_inv_all(bs);
977             break;
978         case SMMU_CMD_TLBI_NH_VAA:
979         {
980             dma_addr_t addr = CMD_ADDR(&cmd);
981             uint16_t vmid = CMD_VMID(&cmd);
982 
983             trace_smmuv3_cmdq_tlbi_nh_vaa(vmid, addr);
984             smmuv3_inv_notifiers_iova(bs, -1, addr);
985             smmu_iotlb_inv_all(bs);
986             break;
987         }
988         case SMMU_CMD_TLBI_NH_VA:
989         {
990             uint16_t asid = CMD_ASID(&cmd);
991             uint16_t vmid = CMD_VMID(&cmd);
992             dma_addr_t addr = CMD_ADDR(&cmd);
993             bool leaf = CMD_LEAF(&cmd);
994 
995             trace_smmuv3_cmdq_tlbi_nh_va(vmid, asid, addr, leaf);
996             smmuv3_inv_notifiers_iova(bs, asid, addr);
997             smmu_iotlb_inv_iova(bs, asid, addr);
998             break;
999         }
1000         case SMMU_CMD_TLBI_EL3_ALL:
1001         case SMMU_CMD_TLBI_EL3_VA:
1002         case SMMU_CMD_TLBI_EL2_ALL:
1003         case SMMU_CMD_TLBI_EL2_ASID:
1004         case SMMU_CMD_TLBI_EL2_VA:
1005         case SMMU_CMD_TLBI_EL2_VAA:
1006         case SMMU_CMD_TLBI_S12_VMALL:
1007         case SMMU_CMD_TLBI_S2_IPA:
1008         case SMMU_CMD_ATC_INV:
1009         case SMMU_CMD_PRI_RESP:
1010         case SMMU_CMD_RESUME:
1011         case SMMU_CMD_STALL_TERM:
1012             trace_smmuv3_unhandled_cmd(type);
1013             break;
1014         default:
1015             cmd_error = SMMU_CERROR_ILL;
1016             qemu_log_mask(LOG_GUEST_ERROR,
1017                           "Illegal command type: %d\n", CMD_TYPE(&cmd));
1018             break;
1019         }
1020         qemu_mutex_unlock(&s->mutex);
1021         if (cmd_error) {
1022             break;
1023         }
1024         /*
1025          * We only increment the cons index after the completion of
1026          * the command. We do that because the SYNC returns immediately
1027          * and does not check the completion of previous commands
1028          */
1029         queue_cons_incr(q);
1030     }
1031 
1032     if (cmd_error) {
1033         trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error);
1034         smmu_write_cmdq_err(s, cmd_error);
1035         smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK);
1036     }
1037 
1038     trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q),
1039                                   Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1040 
1041     return 0;
1042 }
1043 
1044 static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset,
1045                                uint64_t data, MemTxAttrs attrs)
1046 {
1047     switch (offset) {
1048     case A_GERROR_IRQ_CFG0:
1049         s->gerror_irq_cfg0 = data;
1050         return MEMTX_OK;
1051     case A_STRTAB_BASE:
1052         s->strtab_base = data;
1053         return MEMTX_OK;
1054     case A_CMDQ_BASE:
1055         s->cmdq.base = data;
1056         s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1057         if (s->cmdq.log2size > SMMU_CMDQS) {
1058             s->cmdq.log2size = SMMU_CMDQS;
1059         }
1060         return MEMTX_OK;
1061     case A_EVENTQ_BASE:
1062         s->eventq.base = data;
1063         s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1064         if (s->eventq.log2size > SMMU_EVENTQS) {
1065             s->eventq.log2size = SMMU_EVENTQS;
1066         }
1067         return MEMTX_OK;
1068     case A_EVENTQ_IRQ_CFG0:
1069         s->eventq_irq_cfg0 = data;
1070         return MEMTX_OK;
1071     default:
1072         qemu_log_mask(LOG_UNIMP,
1073                       "%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n",
1074                       __func__, offset);
1075         return MEMTX_OK;
1076     }
1077 }
1078 
1079 static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset,
1080                                uint64_t data, MemTxAttrs attrs)
1081 {
1082     switch (offset) {
1083     case A_CR0:
1084         s->cr[0] = data;
1085         s->cr0ack = data & ~SMMU_CR0_RESERVED;
1086         /* in case the command queue has been enabled */
1087         smmuv3_cmdq_consume(s);
1088         return MEMTX_OK;
1089     case A_CR1:
1090         s->cr[1] = data;
1091         return MEMTX_OK;
1092     case A_CR2:
1093         s->cr[2] = data;
1094         return MEMTX_OK;
1095     case A_IRQ_CTRL:
1096         s->irq_ctrl = data;
1097         return MEMTX_OK;
1098     case A_GERRORN:
1099         smmuv3_write_gerrorn(s, data);
1100         /*
1101          * By acknowledging the CMDQ_ERR, SW may notify cmds can
1102          * be processed again
1103          */
1104         smmuv3_cmdq_consume(s);
1105         return MEMTX_OK;
1106     case A_GERROR_IRQ_CFG0: /* 64b */
1107         s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data);
1108         return MEMTX_OK;
1109     case A_GERROR_IRQ_CFG0 + 4:
1110         s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data);
1111         return MEMTX_OK;
1112     case A_GERROR_IRQ_CFG1:
1113         s->gerror_irq_cfg1 = data;
1114         return MEMTX_OK;
1115     case A_GERROR_IRQ_CFG2:
1116         s->gerror_irq_cfg2 = data;
1117         return MEMTX_OK;
1118     case A_STRTAB_BASE: /* 64b */
1119         s->strtab_base = deposit64(s->strtab_base, 0, 32, data);
1120         return MEMTX_OK;
1121     case A_STRTAB_BASE + 4:
1122         s->strtab_base = deposit64(s->strtab_base, 32, 32, data);
1123         return MEMTX_OK;
1124     case A_STRTAB_BASE_CFG:
1125         s->strtab_base_cfg = data;
1126         if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) {
1127             s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT);
1128             s->features |= SMMU_FEATURE_2LVL_STE;
1129         }
1130         return MEMTX_OK;
1131     case A_CMDQ_BASE: /* 64b */
1132         s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data);
1133         s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1134         if (s->cmdq.log2size > SMMU_CMDQS) {
1135             s->cmdq.log2size = SMMU_CMDQS;
1136         }
1137         return MEMTX_OK;
1138     case A_CMDQ_BASE + 4: /* 64b */
1139         s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data);
1140         return MEMTX_OK;
1141     case A_CMDQ_PROD:
1142         s->cmdq.prod = data;
1143         smmuv3_cmdq_consume(s);
1144         return MEMTX_OK;
1145     case A_CMDQ_CONS:
1146         s->cmdq.cons = data;
1147         return MEMTX_OK;
1148     case A_EVENTQ_BASE: /* 64b */
1149         s->eventq.base = deposit64(s->eventq.base, 0, 32, data);
1150         s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1151         if (s->eventq.log2size > SMMU_EVENTQS) {
1152             s->eventq.log2size = SMMU_EVENTQS;
1153         }
1154         return MEMTX_OK;
1155     case A_EVENTQ_BASE + 4:
1156         s->eventq.base = deposit64(s->eventq.base, 32, 32, data);
1157         return MEMTX_OK;
1158     case A_EVENTQ_PROD:
1159         s->eventq.prod = data;
1160         return MEMTX_OK;
1161     case A_EVENTQ_CONS:
1162         s->eventq.cons = data;
1163         return MEMTX_OK;
1164     case A_EVENTQ_IRQ_CFG0: /* 64b */
1165         s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data);
1166         return MEMTX_OK;
1167     case A_EVENTQ_IRQ_CFG0 + 4:
1168         s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data);
1169         return MEMTX_OK;
1170     case A_EVENTQ_IRQ_CFG1:
1171         s->eventq_irq_cfg1 = data;
1172         return MEMTX_OK;
1173     case A_EVENTQ_IRQ_CFG2:
1174         s->eventq_irq_cfg2 = data;
1175         return MEMTX_OK;
1176     default:
1177         qemu_log_mask(LOG_UNIMP,
1178                       "%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n",
1179                       __func__, offset);
1180         return MEMTX_OK;
1181     }
1182 }
1183 
1184 static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data,
1185                                    unsigned size, MemTxAttrs attrs)
1186 {
1187     SMMUState *sys = opaque;
1188     SMMUv3State *s = ARM_SMMUV3(sys);
1189     MemTxResult r;
1190 
1191     /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1192     offset &= ~0x10000;
1193 
1194     switch (size) {
1195     case 8:
1196         r = smmu_writell(s, offset, data, attrs);
1197         break;
1198     case 4:
1199         r = smmu_writel(s, offset, data, attrs);
1200         break;
1201     default:
1202         r = MEMTX_ERROR;
1203         break;
1204     }
1205 
1206     trace_smmuv3_write_mmio(offset, data, size, r);
1207     return r;
1208 }
1209 
1210 static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset,
1211                                uint64_t *data, MemTxAttrs attrs)
1212 {
1213     switch (offset) {
1214     case A_GERROR_IRQ_CFG0:
1215         *data = s->gerror_irq_cfg0;
1216         return MEMTX_OK;
1217     case A_STRTAB_BASE:
1218         *data = s->strtab_base;
1219         return MEMTX_OK;
1220     case A_CMDQ_BASE:
1221         *data = s->cmdq.base;
1222         return MEMTX_OK;
1223     case A_EVENTQ_BASE:
1224         *data = s->eventq.base;
1225         return MEMTX_OK;
1226     default:
1227         *data = 0;
1228         qemu_log_mask(LOG_UNIMP,
1229                       "%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n",
1230                       __func__, offset);
1231         return MEMTX_OK;
1232     }
1233 }
1234 
1235 static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset,
1236                               uint64_t *data, MemTxAttrs attrs)
1237 {
1238     switch (offset) {
1239     case A_IDREGS ... A_IDREGS + 0x2f:
1240         *data = smmuv3_idreg(offset - A_IDREGS);
1241         return MEMTX_OK;
1242     case A_IDR0 ... A_IDR5:
1243         *data = s->idr[(offset - A_IDR0) / 4];
1244         return MEMTX_OK;
1245     case A_IIDR:
1246         *data = s->iidr;
1247         return MEMTX_OK;
1248     case A_CR0:
1249         *data = s->cr[0];
1250         return MEMTX_OK;
1251     case A_CR0ACK:
1252         *data = s->cr0ack;
1253         return MEMTX_OK;
1254     case A_CR1:
1255         *data = s->cr[1];
1256         return MEMTX_OK;
1257     case A_CR2:
1258         *data = s->cr[2];
1259         return MEMTX_OK;
1260     case A_STATUSR:
1261         *data = s->statusr;
1262         return MEMTX_OK;
1263     case A_IRQ_CTRL:
1264     case A_IRQ_CTRL_ACK:
1265         *data = s->irq_ctrl;
1266         return MEMTX_OK;
1267     case A_GERROR:
1268         *data = s->gerror;
1269         return MEMTX_OK;
1270     case A_GERRORN:
1271         *data = s->gerrorn;
1272         return MEMTX_OK;
1273     case A_GERROR_IRQ_CFG0: /* 64b */
1274         *data = extract64(s->gerror_irq_cfg0, 0, 32);
1275         return MEMTX_OK;
1276     case A_GERROR_IRQ_CFG0 + 4:
1277         *data = extract64(s->gerror_irq_cfg0, 32, 32);
1278         return MEMTX_OK;
1279     case A_GERROR_IRQ_CFG1:
1280         *data = s->gerror_irq_cfg1;
1281         return MEMTX_OK;
1282     case A_GERROR_IRQ_CFG2:
1283         *data = s->gerror_irq_cfg2;
1284         return MEMTX_OK;
1285     case A_STRTAB_BASE: /* 64b */
1286         *data = extract64(s->strtab_base, 0, 32);
1287         return MEMTX_OK;
1288     case A_STRTAB_BASE + 4: /* 64b */
1289         *data = extract64(s->strtab_base, 32, 32);
1290         return MEMTX_OK;
1291     case A_STRTAB_BASE_CFG:
1292         *data = s->strtab_base_cfg;
1293         return MEMTX_OK;
1294     case A_CMDQ_BASE: /* 64b */
1295         *data = extract64(s->cmdq.base, 0, 32);
1296         return MEMTX_OK;
1297     case A_CMDQ_BASE + 4:
1298         *data = extract64(s->cmdq.base, 32, 32);
1299         return MEMTX_OK;
1300     case A_CMDQ_PROD:
1301         *data = s->cmdq.prod;
1302         return MEMTX_OK;
1303     case A_CMDQ_CONS:
1304         *data = s->cmdq.cons;
1305         return MEMTX_OK;
1306     case A_EVENTQ_BASE: /* 64b */
1307         *data = extract64(s->eventq.base, 0, 32);
1308         return MEMTX_OK;
1309     case A_EVENTQ_BASE + 4: /* 64b */
1310         *data = extract64(s->eventq.base, 32, 32);
1311         return MEMTX_OK;
1312     case A_EVENTQ_PROD:
1313         *data = s->eventq.prod;
1314         return MEMTX_OK;
1315     case A_EVENTQ_CONS:
1316         *data = s->eventq.cons;
1317         return MEMTX_OK;
1318     default:
1319         *data = 0;
1320         qemu_log_mask(LOG_UNIMP,
1321                       "%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n",
1322                       __func__, offset);
1323         return MEMTX_OK;
1324     }
1325 }
1326 
1327 static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data,
1328                                   unsigned size, MemTxAttrs attrs)
1329 {
1330     SMMUState *sys = opaque;
1331     SMMUv3State *s = ARM_SMMUV3(sys);
1332     MemTxResult r;
1333 
1334     /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1335     offset &= ~0x10000;
1336 
1337     switch (size) {
1338     case 8:
1339         r = smmu_readll(s, offset, data, attrs);
1340         break;
1341     case 4:
1342         r = smmu_readl(s, offset, data, attrs);
1343         break;
1344     default:
1345         r = MEMTX_ERROR;
1346         break;
1347     }
1348 
1349     trace_smmuv3_read_mmio(offset, *data, size, r);
1350     return r;
1351 }
1352 
1353 static const MemoryRegionOps smmu_mem_ops = {
1354     .read_with_attrs = smmu_read_mmio,
1355     .write_with_attrs = smmu_write_mmio,
1356     .endianness = DEVICE_LITTLE_ENDIAN,
1357     .valid = {
1358         .min_access_size = 4,
1359         .max_access_size = 8,
1360     },
1361     .impl = {
1362         .min_access_size = 4,
1363         .max_access_size = 8,
1364     },
1365 };
1366 
1367 static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev)
1368 {
1369     int i;
1370 
1371     for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
1372         sysbus_init_irq(dev, &s->irq[i]);
1373     }
1374 }
1375 
1376 static void smmu_reset(DeviceState *dev)
1377 {
1378     SMMUv3State *s = ARM_SMMUV3(dev);
1379     SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1380 
1381     c->parent_reset(dev);
1382 
1383     smmuv3_init_regs(s);
1384 }
1385 
1386 static void smmu_realize(DeviceState *d, Error **errp)
1387 {
1388     SMMUState *sys = ARM_SMMU(d);
1389     SMMUv3State *s = ARM_SMMUV3(sys);
1390     SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1391     SysBusDevice *dev = SYS_BUS_DEVICE(d);
1392     Error *local_err = NULL;
1393 
1394     c->parent_realize(d, &local_err);
1395     if (local_err) {
1396         error_propagate(errp, local_err);
1397         return;
1398     }
1399 
1400     qemu_mutex_init(&s->mutex);
1401 
1402     memory_region_init_io(&sys->iomem, OBJECT(s),
1403                           &smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000);
1404 
1405     sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION;
1406 
1407     sysbus_init_mmio(dev, &sys->iomem);
1408 
1409     smmu_init_irq(s, dev);
1410 }
1411 
1412 static const VMStateDescription vmstate_smmuv3_queue = {
1413     .name = "smmuv3_queue",
1414     .version_id = 1,
1415     .minimum_version_id = 1,
1416     .fields = (VMStateField[]) {
1417         VMSTATE_UINT64(base, SMMUQueue),
1418         VMSTATE_UINT32(prod, SMMUQueue),
1419         VMSTATE_UINT32(cons, SMMUQueue),
1420         VMSTATE_UINT8(log2size, SMMUQueue),
1421         VMSTATE_END_OF_LIST(),
1422     },
1423 };
1424 
1425 static const VMStateDescription vmstate_smmuv3 = {
1426     .name = "smmuv3",
1427     .version_id = 1,
1428     .minimum_version_id = 1,
1429     .fields = (VMStateField[]) {
1430         VMSTATE_UINT32(features, SMMUv3State),
1431         VMSTATE_UINT8(sid_size, SMMUv3State),
1432         VMSTATE_UINT8(sid_split, SMMUv3State),
1433 
1434         VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3),
1435         VMSTATE_UINT32(cr0ack, SMMUv3State),
1436         VMSTATE_UINT32(statusr, SMMUv3State),
1437         VMSTATE_UINT32(irq_ctrl, SMMUv3State),
1438         VMSTATE_UINT32(gerror, SMMUv3State),
1439         VMSTATE_UINT32(gerrorn, SMMUv3State),
1440         VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State),
1441         VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State),
1442         VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State),
1443         VMSTATE_UINT64(strtab_base, SMMUv3State),
1444         VMSTATE_UINT32(strtab_base_cfg, SMMUv3State),
1445         VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State),
1446         VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State),
1447         VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State),
1448 
1449         VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1450         VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1451 
1452         VMSTATE_END_OF_LIST(),
1453     },
1454 };
1455 
1456 static void smmuv3_instance_init(Object *obj)
1457 {
1458     /* Nothing much to do here as of now */
1459 }
1460 
1461 static void smmuv3_class_init(ObjectClass *klass, void *data)
1462 {
1463     DeviceClass *dc = DEVICE_CLASS(klass);
1464     SMMUv3Class *c = ARM_SMMUV3_CLASS(klass);
1465 
1466     dc->vmsd = &vmstate_smmuv3;
1467     device_class_set_parent_reset(dc, smmu_reset, &c->parent_reset);
1468     c->parent_realize = dc->realize;
1469     dc->realize = smmu_realize;
1470 }
1471 
1472 static int smmuv3_notify_flag_changed(IOMMUMemoryRegion *iommu,
1473                                       IOMMUNotifierFlag old,
1474                                       IOMMUNotifierFlag new,
1475                                       Error **errp)
1476 {
1477     SMMUDevice *sdev = container_of(iommu, SMMUDevice, iommu);
1478     SMMUv3State *s3 = sdev->smmu;
1479     SMMUState *s = &(s3->smmu_state);
1480 
1481     if (new & IOMMU_NOTIFIER_MAP) {
1482         error_setg(errp,
1483                    "device %02x.%02x.%x requires iommu MAP notifier which is "
1484                    "not currently supported", pci_bus_num(sdev->bus),
1485                    PCI_SLOT(sdev->devfn), PCI_FUNC(sdev->devfn));
1486         return -EINVAL;
1487     }
1488 
1489     if (old == IOMMU_NOTIFIER_NONE) {
1490         trace_smmuv3_notify_flag_add(iommu->parent_obj.name);
1491         QLIST_INSERT_HEAD(&s->devices_with_notifiers, sdev, next);
1492     } else if (new == IOMMU_NOTIFIER_NONE) {
1493         trace_smmuv3_notify_flag_del(iommu->parent_obj.name);
1494         QLIST_REMOVE(sdev, next);
1495     }
1496     return 0;
1497 }
1498 
1499 static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass,
1500                                                   void *data)
1501 {
1502     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1503 
1504     imrc->translate = smmuv3_translate;
1505     imrc->notify_flag_changed = smmuv3_notify_flag_changed;
1506 }
1507 
1508 static const TypeInfo smmuv3_type_info = {
1509     .name          = TYPE_ARM_SMMUV3,
1510     .parent        = TYPE_ARM_SMMU,
1511     .instance_size = sizeof(SMMUv3State),
1512     .instance_init = smmuv3_instance_init,
1513     .class_size    = sizeof(SMMUv3Class),
1514     .class_init    = smmuv3_class_init,
1515 };
1516 
1517 static const TypeInfo smmuv3_iommu_memory_region_info = {
1518     .parent = TYPE_IOMMU_MEMORY_REGION,
1519     .name = TYPE_SMMUV3_IOMMU_MEMORY_REGION,
1520     .class_init = smmuv3_iommu_memory_region_class_init,
1521 };
1522 
1523 static void smmuv3_register_types(void)
1524 {
1525     type_register(&smmuv3_type_info);
1526     type_register(&smmuv3_iommu_memory_region_info);
1527 }
1528 
1529 type_init(smmuv3_register_types)
1530 
1531