xref: /openbmc/qemu/hw/arm/sbsa-ref.c (revision fd990e86)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/units.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/sysemu.h"
29 #include "exec/address-spaces.h"
30 #include "exec/hwaddr.h"
31 #include "kvm_arm.h"
32 #include "hw/arm/boot.h"
33 #include "hw/block/flash.h"
34 #include "hw/boards.h"
35 #include "hw/ide/internal.h"
36 #include "hw/ide/ahci_internal.h"
37 #include "hw/intc/arm_gicv3_common.h"
38 #include "hw/loader.h"
39 #include "hw/pci-host/gpex.h"
40 #include "hw/qdev-properties.h"
41 #include "hw/usb.h"
42 #include "hw/char/pl011.h"
43 #include "net/net.h"
44 
45 #define RAMLIMIT_GB 8192
46 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
47 
48 #define NUM_IRQS        256
49 #define NUM_SMMU_IRQS   4
50 #define NUM_SATA_PORTS  6
51 
52 #define VIRTUAL_PMU_IRQ        7
53 #define ARCH_GIC_MAINT_IRQ     9
54 #define ARCH_TIMER_VIRT_IRQ    11
55 #define ARCH_TIMER_S_EL1_IRQ   13
56 #define ARCH_TIMER_NS_EL1_IRQ  14
57 #define ARCH_TIMER_NS_EL2_IRQ  10
58 
59 enum {
60     SBSA_FLASH,
61     SBSA_MEM,
62     SBSA_CPUPERIPHS,
63     SBSA_GIC_DIST,
64     SBSA_GIC_REDIST,
65     SBSA_SMMU,
66     SBSA_UART,
67     SBSA_RTC,
68     SBSA_PCIE,
69     SBSA_PCIE_MMIO,
70     SBSA_PCIE_MMIO_HIGH,
71     SBSA_PCIE_PIO,
72     SBSA_PCIE_ECAM,
73     SBSA_GPIO,
74     SBSA_SECURE_UART,
75     SBSA_SECURE_UART_MM,
76     SBSA_SECURE_MEM,
77     SBSA_AHCI,
78     SBSA_EHCI,
79 };
80 
81 typedef struct MemMapEntry {
82     hwaddr base;
83     hwaddr size;
84 } MemMapEntry;
85 
86 typedef struct {
87     MachineState parent;
88     struct arm_boot_info bootinfo;
89     int smp_cpus;
90     void *fdt;
91     int fdt_size;
92     int psci_conduit;
93     DeviceState *gic;
94     PFlashCFI01 *flash[2];
95 } SBSAMachineState;
96 
97 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
98 #define SBSA_MACHINE(obj) \
99     OBJECT_CHECK(SBSAMachineState, (obj), TYPE_SBSA_MACHINE)
100 
101 static const MemMapEntry sbsa_ref_memmap[] = {
102     /* 512M boot ROM */
103     [SBSA_FLASH] =              {          0, 0x20000000 },
104     /* 512M secure memory */
105     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
106     /* Space reserved for CPU peripheral devices */
107     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
108     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
109     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
110     [SBSA_UART] =               { 0x60000000, 0x00001000 },
111     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
112     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
113     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
114     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
115     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
116     /* Space here reserved for more SMMUs */
117     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
118     [SBSA_EHCI] =               { 0x60110000, 0x00010000 },
119     /* Space here reserved for other devices */
120     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
121     /* 32-bit address PCIE MMIO space */
122     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
123     /* 256M PCIE ECAM space */
124     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
125     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
126     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
127     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
128 };
129 
130 static const int sbsa_ref_irqmap[] = {
131     [SBSA_UART] = 1,
132     [SBSA_RTC] = 2,
133     [SBSA_PCIE] = 3, /* ... to 6 */
134     [SBSA_GPIO] = 7,
135     [SBSA_SECURE_UART] = 8,
136     [SBSA_SECURE_UART_MM] = 9,
137     [SBSA_AHCI] = 10,
138     [SBSA_EHCI] = 11,
139 };
140 
141 /*
142  * Firmware on this machine only uses ACPI table to load OS, these limited
143  * device tree nodes are just to let firmware know the info which varies from
144  * command line parameters, so it is not necessary to be fully compatible
145  * with the kernel CPU and NUMA binding rules.
146  */
147 static void create_fdt(SBSAMachineState *sms)
148 {
149     void *fdt = create_device_tree(&sms->fdt_size);
150     const MachineState *ms = MACHINE(sms);
151     int nb_numa_nodes = ms->numa_state->num_nodes;
152     int cpu;
153 
154     if (!fdt) {
155         error_report("create_device_tree() failed");
156         exit(1);
157     }
158 
159     sms->fdt = fdt;
160 
161     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
162     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
163     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
164 
165     if (ms->numa_state->have_numa_distance) {
166         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
167         uint32_t *matrix = g_malloc0(size);
168         int idx, i, j;
169 
170         for (i = 0; i < nb_numa_nodes; i++) {
171             for (j = 0; j < nb_numa_nodes; j++) {
172                 idx = (i * nb_numa_nodes + j) * 3;
173                 matrix[idx + 0] = cpu_to_be32(i);
174                 matrix[idx + 1] = cpu_to_be32(j);
175                 matrix[idx + 2] =
176                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
177             }
178         }
179 
180         qemu_fdt_add_subnode(fdt, "/distance-map");
181         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
182                          matrix, size);
183         g_free(matrix);
184     }
185 
186     qemu_fdt_add_subnode(sms->fdt, "/cpus");
187 
188     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
189         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
190         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
191         CPUState *cs = CPU(armcpu);
192 
193         qemu_fdt_add_subnode(sms->fdt, nodename);
194 
195         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
196             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
197                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
198         }
199 
200         g_free(nodename);
201     }
202 }
203 
204 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
205 
206 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
207                                         const char *name,
208                                         const char *alias_prop_name)
209 {
210     /*
211      * Create a single flash device.  We use the same parameters as
212      * the flash devices on the Versatile Express board.
213      */
214     DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
215 
216     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
217     qdev_prop_set_uint8(dev, "width", 4);
218     qdev_prop_set_uint8(dev, "device-width", 2);
219     qdev_prop_set_bit(dev, "big-endian", false);
220     qdev_prop_set_uint16(dev, "id0", 0x89);
221     qdev_prop_set_uint16(dev, "id1", 0x18);
222     qdev_prop_set_uint16(dev, "id2", 0x00);
223     qdev_prop_set_uint16(dev, "id3", 0x00);
224     qdev_prop_set_string(dev, "name", name);
225     object_property_add_child(OBJECT(sms), name, OBJECT(dev),
226                               &error_abort);
227     object_property_add_alias(OBJECT(sms), alias_prop_name,
228                               OBJECT(dev), "drive", &error_abort);
229     return PFLASH_CFI01(dev);
230 }
231 
232 static void sbsa_flash_create(SBSAMachineState *sms)
233 {
234     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
235     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
236 }
237 
238 static void sbsa_flash_map1(PFlashCFI01 *flash,
239                             hwaddr base, hwaddr size,
240                             MemoryRegion *sysmem)
241 {
242     DeviceState *dev = DEVICE(flash);
243 
244     assert(size % SBSA_FLASH_SECTOR_SIZE == 0);
245     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
246     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
247     qdev_init_nofail(dev);
248 
249     memory_region_add_subregion(sysmem, base,
250                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
251                                                        0));
252 }
253 
254 static void sbsa_flash_map(SBSAMachineState *sms,
255                            MemoryRegion *sysmem,
256                            MemoryRegion *secure_sysmem)
257 {
258     /*
259      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
260      * sysmem is the system memory space. secure_sysmem is the secure view
261      * of the system, and the first flash device should be made visible only
262      * there. The second flash device is visible to both secure and nonsecure.
263      */
264     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
265     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
266 
267     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
268                     secure_sysmem);
269     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
270                     sysmem);
271 }
272 
273 static bool sbsa_firmware_init(SBSAMachineState *sms,
274                                MemoryRegion *sysmem,
275                                MemoryRegion *secure_sysmem)
276 {
277     int i;
278     BlockBackend *pflash_blk0;
279 
280     /* Map legacy -drive if=pflash to machine properties */
281     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
282         pflash_cfi01_legacy_drive(sms->flash[i],
283                                   drive_get(IF_PFLASH, 0, i));
284     }
285 
286     sbsa_flash_map(sms, sysmem, secure_sysmem);
287 
288     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
289 
290     if (bios_name) {
291         char *fname;
292         MemoryRegion *mr;
293         int image_size;
294 
295         if (pflash_blk0) {
296             error_report("The contents of the first flash device may be "
297                          "specified with -bios or with -drive if=pflash... "
298                          "but you cannot use both options at once");
299             exit(1);
300         }
301 
302         /* Fall back to -bios */
303 
304         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
305         if (!fname) {
306             error_report("Could not find ROM image '%s'", bios_name);
307             exit(1);
308         }
309         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
310         image_size = load_image_mr(fname, mr);
311         g_free(fname);
312         if (image_size < 0) {
313             error_report("Could not load ROM image '%s'", bios_name);
314             exit(1);
315         }
316     }
317 
318     return pflash_blk0 || bios_name;
319 }
320 
321 static void create_secure_ram(SBSAMachineState *sms,
322                               MemoryRegion *secure_sysmem)
323 {
324     MemoryRegion *secram = g_new(MemoryRegion, 1);
325     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
326     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
327 
328     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
329                            &error_fatal);
330     memory_region_add_subregion(secure_sysmem, base, secram);
331 }
332 
333 static void create_gic(SBSAMachineState *sms)
334 {
335     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
336     SysBusDevice *gicbusdev;
337     const char *gictype;
338     uint32_t redist0_capacity, redist0_count;
339     int i;
340 
341     gictype = gicv3_class_name();
342 
343     sms->gic = qdev_create(NULL, gictype);
344     qdev_prop_set_uint32(sms->gic, "revision", 3);
345     qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
346     /*
347      * Note that the num-irq property counts both internal and external
348      * interrupts; there are always 32 of the former (mandated by GIC spec).
349      */
350     qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
351     qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
352 
353     redist0_capacity =
354                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
355     redist0_count = MIN(smp_cpus, redist0_capacity);
356 
357     qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
358     qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
359 
360     qdev_init_nofail(sms->gic);
361     gicbusdev = SYS_BUS_DEVICE(sms->gic);
362     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
363     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
364 
365     /*
366      * Wire the outputs from each CPU's generic timer and the GICv3
367      * maintenance interrupt signal to the appropriate GIC PPI inputs,
368      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
369      */
370     for (i = 0; i < smp_cpus; i++) {
371         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
372         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
373         int irq;
374         /*
375          * Mapping from the output timer irq lines from the CPU to the
376          * GIC PPI inputs used for this board.
377          */
378         const int timer_irq[] = {
379             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
380             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
381             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
382             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
383         };
384 
385         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
386             qdev_connect_gpio_out(cpudev, irq,
387                                   qdev_get_gpio_in(sms->gic,
388                                                    ppibase + timer_irq[irq]));
389         }
390 
391         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
392                                     qdev_get_gpio_in(sms->gic, ppibase
393                                                      + ARCH_GIC_MAINT_IRQ));
394         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
395                                     qdev_get_gpio_in(sms->gic, ppibase
396                                                      + VIRTUAL_PMU_IRQ));
397 
398         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
399         sysbus_connect_irq(gicbusdev, i + smp_cpus,
400                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
401         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
402                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
403         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
404                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
405     }
406 }
407 
408 static void create_uart(const SBSAMachineState *sms, int uart,
409                         MemoryRegion *mem, Chardev *chr)
410 {
411     hwaddr base = sbsa_ref_memmap[uart].base;
412     int irq = sbsa_ref_irqmap[uart];
413     DeviceState *dev = qdev_create(NULL, TYPE_PL011);
414     SysBusDevice *s = SYS_BUS_DEVICE(dev);
415 
416     qdev_prop_set_chr(dev, "chardev", chr);
417     qdev_init_nofail(dev);
418     memory_region_add_subregion(mem, base,
419                                 sysbus_mmio_get_region(s, 0));
420     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
421 }
422 
423 static void create_rtc(const SBSAMachineState *sms)
424 {
425     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
426     int irq = sbsa_ref_irqmap[SBSA_RTC];
427 
428     sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
429 }
430 
431 static DeviceState *gpio_key_dev;
432 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
433 {
434     /* use gpio Pin 3 for power button event */
435     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
436 }
437 
438 static Notifier sbsa_ref_powerdown_notifier = {
439     .notify = sbsa_ref_powerdown_req
440 };
441 
442 static void create_gpio(const SBSAMachineState *sms)
443 {
444     DeviceState *pl061_dev;
445     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
446     int irq = sbsa_ref_irqmap[SBSA_GPIO];
447 
448     pl061_dev = sysbus_create_simple("pl061", base,
449                                      qdev_get_gpio_in(sms->gic, irq));
450 
451     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
452                                         qdev_get_gpio_in(pl061_dev, 3));
453 
454     /* connect powerdown request */
455     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
456 }
457 
458 static void create_ahci(const SBSAMachineState *sms)
459 {
460     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
461     int irq = sbsa_ref_irqmap[SBSA_AHCI];
462     DeviceState *dev;
463     DriveInfo *hd[NUM_SATA_PORTS];
464     SysbusAHCIState *sysahci;
465     AHCIState *ahci;
466     int i;
467 
468     dev = qdev_create(NULL, "sysbus-ahci");
469     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
470     qdev_init_nofail(dev);
471     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
472     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
473 
474     sysahci = SYSBUS_AHCI(dev);
475     ahci = &sysahci->ahci;
476     ide_drive_get(hd, ARRAY_SIZE(hd));
477     for (i = 0; i < ahci->ports; i++) {
478         if (hd[i] == NULL) {
479             continue;
480         }
481         ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
482     }
483 }
484 
485 static void create_ehci(const SBSAMachineState *sms)
486 {
487     hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
488     int irq = sbsa_ref_irqmap[SBSA_EHCI];
489 
490     sysbus_create_simple("platform-ehci-usb", base,
491                          qdev_get_gpio_in(sms->gic, irq));
492 }
493 
494 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
495 {
496     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
497     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
498     DeviceState *dev;
499     int i;
500 
501     dev = qdev_create(NULL, "arm-smmuv3");
502 
503     object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
504                              &error_abort);
505     qdev_init_nofail(dev);
506     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
507     for (i = 0; i < NUM_SMMU_IRQS; i++) {
508         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
509                            qdev_get_gpio_in(sms->gic, irq + 1));
510     }
511 }
512 
513 static void create_pcie(SBSAMachineState *sms)
514 {
515     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
516     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
517     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
518     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
519     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
520     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
521     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
522     int irq = sbsa_ref_irqmap[SBSA_PCIE];
523     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
524     MemoryRegion *ecam_alias, *ecam_reg;
525     DeviceState *dev;
526     PCIHostState *pci;
527     int i;
528 
529     dev = qdev_create(NULL, TYPE_GPEX_HOST);
530     qdev_init_nofail(dev);
531 
532     /* Map ECAM space */
533     ecam_alias = g_new0(MemoryRegion, 1);
534     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
535     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
536                              ecam_reg, 0, size_ecam);
537     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
538 
539     /* Map the MMIO space */
540     mmio_alias = g_new0(MemoryRegion, 1);
541     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
542     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
543                              mmio_reg, base_mmio, size_mmio);
544     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
545 
546     /* Map the MMIO_HIGH space */
547     mmio_alias_high = g_new0(MemoryRegion, 1);
548     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
549                              mmio_reg, base_mmio_high, size_mmio_high);
550     memory_region_add_subregion(get_system_memory(), base_mmio_high,
551                                 mmio_alias_high);
552 
553     /* Map IO port space */
554     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
555 
556     for (i = 0; i < GPEX_NUM_IRQS; i++) {
557         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
558                            qdev_get_gpio_in(sms->gic, irq + 1));
559         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
560     }
561 
562     pci = PCI_HOST_BRIDGE(dev);
563     if (pci->bus) {
564         for (i = 0; i < nb_nics; i++) {
565             NICInfo *nd = &nd_table[i];
566 
567             if (!nd->model) {
568                 nd->model = g_strdup("e1000e");
569             }
570 
571             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
572         }
573     }
574 
575     pci_create_simple(pci->bus, -1, "VGA");
576 
577     create_smmu(sms, pci->bus);
578 }
579 
580 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
581 {
582     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
583                                                  bootinfo);
584 
585     *fdt_size = board->fdt_size;
586     return board->fdt;
587 }
588 
589 static void sbsa_ref_init(MachineState *machine)
590 {
591     unsigned int smp_cpus = machine->smp.cpus;
592     unsigned int max_cpus = machine->smp.max_cpus;
593     SBSAMachineState *sms = SBSA_MACHINE(machine);
594     MachineClass *mc = MACHINE_GET_CLASS(machine);
595     MemoryRegion *sysmem = get_system_memory();
596     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
597     bool firmware_loaded;
598     const CPUArchIdList *possible_cpus;
599     int n, sbsa_max_cpus;
600 
601     if (strcmp(machine->cpu_type, ARM_CPU_TYPE_NAME("cortex-a57"))) {
602         error_report("sbsa-ref: CPU type other than the built-in "
603                      "cortex-a57 not supported");
604         exit(1);
605     }
606 
607     if (kvm_enabled()) {
608         error_report("sbsa-ref: KVM is not supported for this machine");
609         exit(1);
610     }
611 
612     /*
613      * The Secure view of the world is the same as the NonSecure,
614      * but with a few extra devices. Create it as a container region
615      * containing the system memory at low priority; any secure-only
616      * devices go in at higher priority and take precedence.
617      */
618     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
619                        UINT64_MAX);
620     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
621 
622     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
623 
624     if (machine->kernel_filename && firmware_loaded) {
625         error_report("sbsa-ref: No fw_cfg device on this machine, "
626                      "so -kernel option is not supported when firmware loaded, "
627                      "please load OS from hard disk instead");
628         exit(1);
629     }
630 
631     /*
632      * This machine has EL3 enabled, external firmware should supply PSCI
633      * implementation, so the QEMU's internal PSCI is disabled.
634      */
635     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
636 
637     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
638 
639     if (max_cpus > sbsa_max_cpus) {
640         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
641                      "supported by machine 'sbsa-ref' (%d)",
642                      max_cpus, sbsa_max_cpus);
643         exit(1);
644     }
645 
646     sms->smp_cpus = smp_cpus;
647 
648     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
649         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
650         exit(1);
651     }
652 
653     possible_cpus = mc->possible_cpu_arch_ids(machine);
654     for (n = 0; n < possible_cpus->len; n++) {
655         Object *cpuobj;
656         CPUState *cs;
657 
658         if (n >= smp_cpus) {
659             break;
660         }
661 
662         cpuobj = object_new(possible_cpus->cpus[n].type);
663         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
664                                 "mp-affinity", NULL);
665 
666         cs = CPU(cpuobj);
667         cs->cpu_index = n;
668 
669         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
670                           &error_fatal);
671 
672         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
673             object_property_set_int(cpuobj,
674                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
675                                     "reset-cbar", &error_abort);
676         }
677 
678         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
679                                  &error_abort);
680 
681         object_property_set_link(cpuobj, OBJECT(secure_sysmem),
682                                  "secure-memory", &error_abort);
683 
684         object_property_set_bool(cpuobj, true, "realized", &error_fatal);
685         object_unref(cpuobj);
686     }
687 
688     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
689                                 machine->ram);
690 
691     create_fdt(sms);
692 
693     create_secure_ram(sms, secure_sysmem);
694 
695     create_gic(sms);
696 
697     create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
698     create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
699     /* Second secure UART for RAS and MM from EL0 */
700     create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
701 
702     create_rtc(sms);
703 
704     create_gpio(sms);
705 
706     create_ahci(sms);
707 
708     create_ehci(sms);
709 
710     create_pcie(sms);
711 
712     sms->bootinfo.ram_size = machine->ram_size;
713     sms->bootinfo.nb_cpus = smp_cpus;
714     sms->bootinfo.board_id = -1;
715     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
716     sms->bootinfo.get_dtb = sbsa_ref_dtb;
717     sms->bootinfo.firmware_loaded = firmware_loaded;
718     arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
719 }
720 
721 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
722 {
723     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
724     return arm_cpu_mp_affinity(idx, clustersz);
725 }
726 
727 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
728 {
729     unsigned int max_cpus = ms->smp.max_cpus;
730     SBSAMachineState *sms = SBSA_MACHINE(ms);
731     int n;
732 
733     if (ms->possible_cpus) {
734         assert(ms->possible_cpus->len == max_cpus);
735         return ms->possible_cpus;
736     }
737 
738     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
739                                   sizeof(CPUArchId) * max_cpus);
740     ms->possible_cpus->len = max_cpus;
741     for (n = 0; n < ms->possible_cpus->len; n++) {
742         ms->possible_cpus->cpus[n].type = ms->cpu_type;
743         ms->possible_cpus->cpus[n].arch_id =
744             sbsa_ref_cpu_mp_affinity(sms, n);
745         ms->possible_cpus->cpus[n].props.has_thread_id = true;
746         ms->possible_cpus->cpus[n].props.thread_id = n;
747     }
748     return ms->possible_cpus;
749 }
750 
751 static CpuInstanceProperties
752 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
753 {
754     MachineClass *mc = MACHINE_GET_CLASS(ms);
755     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
756 
757     assert(cpu_index < possible_cpus->len);
758     return possible_cpus->cpus[cpu_index].props;
759 }
760 
761 static int64_t
762 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
763 {
764     return idx % ms->numa_state->num_nodes;
765 }
766 
767 static void sbsa_ref_instance_init(Object *obj)
768 {
769     SBSAMachineState *sms = SBSA_MACHINE(obj);
770 
771     sbsa_flash_create(sms);
772 }
773 
774 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
775 {
776     MachineClass *mc = MACHINE_CLASS(oc);
777 
778     mc->init = sbsa_ref_init;
779     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
780     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
781     mc->max_cpus = 512;
782     mc->pci_allow_0_address = true;
783     mc->minimum_page_bits = 12;
784     mc->block_default_type = IF_IDE;
785     mc->no_cdrom = 1;
786     mc->default_ram_size = 1 * GiB;
787     mc->default_ram_id = "sbsa-ref.ram";
788     mc->default_cpus = 4;
789     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
790     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
791     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
792 }
793 
794 static const TypeInfo sbsa_ref_info = {
795     .name          = TYPE_SBSA_MACHINE,
796     .parent        = TYPE_MACHINE,
797     .instance_init = sbsa_ref_instance_init,
798     .class_init    = sbsa_ref_class_init,
799     .instance_size = sizeof(SBSAMachineState),
800 };
801 
802 static void sbsa_ref_machine_init(void)
803 {
804     type_register_static(&sbsa_ref_info);
805 }
806 
807 type_init(sbsa_ref_machine_init);
808