xref: /openbmc/qemu/hw/arm/sbsa-ref.c (revision f0984d40)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/units.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/sysemu.h"
29 #include "exec/hwaddr.h"
30 #include "kvm_arm.h"
31 #include "hw/arm/boot.h"
32 #include "hw/arm/smmuv3.h"
33 #include "hw/block/flash.h"
34 #include "hw/boards.h"
35 #include "hw/ide/internal.h"
36 #include "hw/ide/ahci_internal.h"
37 #include "hw/intc/arm_gicv3_common.h"
38 #include "hw/loader.h"
39 #include "hw/pci-host/gpex.h"
40 #include "hw/qdev-properties.h"
41 #include "hw/usb.h"
42 #include "hw/char/pl011.h"
43 #include "hw/watchdog/sbsa_gwdt.h"
44 #include "net/net.h"
45 #include "qom/object.h"
46 
47 #define RAMLIMIT_GB 8192
48 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
49 
50 #define NUM_IRQS        256
51 #define NUM_SMMU_IRQS   4
52 #define NUM_SATA_PORTS  6
53 
54 #define VIRTUAL_PMU_IRQ        7
55 #define ARCH_GIC_MAINT_IRQ     9
56 #define ARCH_TIMER_VIRT_IRQ    11
57 #define ARCH_TIMER_S_EL1_IRQ   13
58 #define ARCH_TIMER_NS_EL1_IRQ  14
59 #define ARCH_TIMER_NS_EL2_IRQ  10
60 
61 enum {
62     SBSA_FLASH,
63     SBSA_MEM,
64     SBSA_CPUPERIPHS,
65     SBSA_GIC_DIST,
66     SBSA_GIC_REDIST,
67     SBSA_SECURE_EC,
68     SBSA_GWDT_WS0,
69     SBSA_GWDT_REFRESH,
70     SBSA_GWDT_CONTROL,
71     SBSA_SMMU,
72     SBSA_UART,
73     SBSA_RTC,
74     SBSA_PCIE,
75     SBSA_PCIE_MMIO,
76     SBSA_PCIE_MMIO_HIGH,
77     SBSA_PCIE_PIO,
78     SBSA_PCIE_ECAM,
79     SBSA_GPIO,
80     SBSA_SECURE_UART,
81     SBSA_SECURE_UART_MM,
82     SBSA_SECURE_MEM,
83     SBSA_AHCI,
84     SBSA_EHCI,
85 };
86 
87 struct SBSAMachineState {
88     MachineState parent;
89     struct arm_boot_info bootinfo;
90     int smp_cpus;
91     void *fdt;
92     int fdt_size;
93     int psci_conduit;
94     DeviceState *gic;
95     PFlashCFI01 *flash[2];
96 };
97 
98 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
99 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
100 
101 static const MemMapEntry sbsa_ref_memmap[] = {
102     /* 512M boot ROM */
103     [SBSA_FLASH] =              {          0, 0x20000000 },
104     /* 512M secure memory */
105     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
106     /* Space reserved for CPU peripheral devices */
107     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
108     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
109     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
110     [SBSA_SECURE_EC] =          { 0x50000000, 0x00001000 },
111     [SBSA_GWDT_REFRESH] =       { 0x50010000, 0x00001000 },
112     [SBSA_GWDT_CONTROL] =       { 0x50011000, 0x00001000 },
113     [SBSA_UART] =               { 0x60000000, 0x00001000 },
114     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
115     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
116     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
117     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
118     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
119     /* Space here reserved for more SMMUs */
120     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
121     [SBSA_EHCI] =               { 0x60110000, 0x00010000 },
122     /* Space here reserved for other devices */
123     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
124     /* 32-bit address PCIE MMIO space */
125     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
126     /* 256M PCIE ECAM space */
127     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
128     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
129     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
130     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
131 };
132 
133 static const int sbsa_ref_irqmap[] = {
134     [SBSA_UART] = 1,
135     [SBSA_RTC] = 2,
136     [SBSA_PCIE] = 3, /* ... to 6 */
137     [SBSA_GPIO] = 7,
138     [SBSA_SECURE_UART] = 8,
139     [SBSA_SECURE_UART_MM] = 9,
140     [SBSA_AHCI] = 10,
141     [SBSA_EHCI] = 11,
142     [SBSA_SMMU] = 12, /* ... to 15 */
143     [SBSA_GWDT_WS0] = 16,
144 };
145 
146 static const char * const valid_cpus[] = {
147     ARM_CPU_TYPE_NAME("cortex-a57"),
148     ARM_CPU_TYPE_NAME("cortex-a72"),
149     ARM_CPU_TYPE_NAME("neoverse-n1"),
150     ARM_CPU_TYPE_NAME("max"),
151 };
152 
153 static bool cpu_type_valid(const char *cpu)
154 {
155     int i;
156 
157     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
158         if (strcmp(cpu, valid_cpus[i]) == 0) {
159             return true;
160         }
161     }
162     return false;
163 }
164 
165 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
166 {
167     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
168     return arm_cpu_mp_affinity(idx, clustersz);
169 }
170 
171 /*
172  * Firmware on this machine only uses ACPI table to load OS, these limited
173  * device tree nodes are just to let firmware know the info which varies from
174  * command line parameters, so it is not necessary to be fully compatible
175  * with the kernel CPU and NUMA binding rules.
176  */
177 static void create_fdt(SBSAMachineState *sms)
178 {
179     void *fdt = create_device_tree(&sms->fdt_size);
180     const MachineState *ms = MACHINE(sms);
181     int nb_numa_nodes = ms->numa_state->num_nodes;
182     int cpu;
183 
184     if (!fdt) {
185         error_report("create_device_tree() failed");
186         exit(1);
187     }
188 
189     sms->fdt = fdt;
190 
191     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
192     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
193     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
194 
195     /*
196      * This versioning scheme is for informing platform fw only. It is neither:
197      * - A QEMU versioned machine type; a given version of QEMU will emulate
198      *   a given version of the platform.
199      * - A reflection of level of SBSA (now SystemReady SR) support provided.
200      *
201      * machine-version-major: updated when changes breaking fw compatibility
202      *                        are introduced.
203      * machine-version-minor: updated when features are added that don't break
204      *                        fw compatibility.
205      */
206     qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
207     qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 0);
208 
209     if (ms->numa_state->have_numa_distance) {
210         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
211         uint32_t *matrix = g_malloc0(size);
212         int idx, i, j;
213 
214         for (i = 0; i < nb_numa_nodes; i++) {
215             for (j = 0; j < nb_numa_nodes; j++) {
216                 idx = (i * nb_numa_nodes + j) * 3;
217                 matrix[idx + 0] = cpu_to_be32(i);
218                 matrix[idx + 1] = cpu_to_be32(j);
219                 matrix[idx + 2] =
220                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
221             }
222         }
223 
224         qemu_fdt_add_subnode(fdt, "/distance-map");
225         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
226                          matrix, size);
227         g_free(matrix);
228     }
229 
230     /*
231      * From Documentation/devicetree/bindings/arm/cpus.yaml
232      *  On ARM v8 64-bit systems this property is required
233      *    and matches the MPIDR_EL1 register affinity bits.
234      *
235      *    * If cpus node's #address-cells property is set to 2
236      *
237      *      The first reg cell bits [7:0] must be set to
238      *      bits [39:32] of MPIDR_EL1.
239      *
240      *      The second reg cell bits [23:0] must be set to
241      *      bits [23:0] of MPIDR_EL1.
242      */
243     qemu_fdt_add_subnode(sms->fdt, "/cpus");
244     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
245     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
246 
247     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
248         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
249         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
250         CPUState *cs = CPU(armcpu);
251         uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
252 
253         qemu_fdt_add_subnode(sms->fdt, nodename);
254         qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
255 
256         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
257             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
258                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
259         }
260 
261         g_free(nodename);
262     }
263 }
264 
265 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
266 
267 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
268                                         const char *name,
269                                         const char *alias_prop_name)
270 {
271     /*
272      * Create a single flash device.  We use the same parameters as
273      * the flash devices on the Versatile Express board.
274      */
275     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
276 
277     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
278     qdev_prop_set_uint8(dev, "width", 4);
279     qdev_prop_set_uint8(dev, "device-width", 2);
280     qdev_prop_set_bit(dev, "big-endian", false);
281     qdev_prop_set_uint16(dev, "id0", 0x89);
282     qdev_prop_set_uint16(dev, "id1", 0x18);
283     qdev_prop_set_uint16(dev, "id2", 0x00);
284     qdev_prop_set_uint16(dev, "id3", 0x00);
285     qdev_prop_set_string(dev, "name", name);
286     object_property_add_child(OBJECT(sms), name, OBJECT(dev));
287     object_property_add_alias(OBJECT(sms), alias_prop_name,
288                               OBJECT(dev), "drive");
289     return PFLASH_CFI01(dev);
290 }
291 
292 static void sbsa_flash_create(SBSAMachineState *sms)
293 {
294     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
295     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
296 }
297 
298 static void sbsa_flash_map1(PFlashCFI01 *flash,
299                             hwaddr base, hwaddr size,
300                             MemoryRegion *sysmem)
301 {
302     DeviceState *dev = DEVICE(flash);
303 
304     assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
305     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
306     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
307     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
308 
309     memory_region_add_subregion(sysmem, base,
310                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
311                                                        0));
312 }
313 
314 static void sbsa_flash_map(SBSAMachineState *sms,
315                            MemoryRegion *sysmem,
316                            MemoryRegion *secure_sysmem)
317 {
318     /*
319      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
320      * sysmem is the system memory space. secure_sysmem is the secure view
321      * of the system, and the first flash device should be made visible only
322      * there. The second flash device is visible to both secure and nonsecure.
323      */
324     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
325     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
326 
327     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
328                     secure_sysmem);
329     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
330                     sysmem);
331 }
332 
333 static bool sbsa_firmware_init(SBSAMachineState *sms,
334                                MemoryRegion *sysmem,
335                                MemoryRegion *secure_sysmem)
336 {
337     const char *bios_name;
338     int i;
339     BlockBackend *pflash_blk0;
340 
341     /* Map legacy -drive if=pflash to machine properties */
342     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
343         pflash_cfi01_legacy_drive(sms->flash[i],
344                                   drive_get(IF_PFLASH, 0, i));
345     }
346 
347     sbsa_flash_map(sms, sysmem, secure_sysmem);
348 
349     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
350 
351     bios_name = MACHINE(sms)->firmware;
352     if (bios_name) {
353         char *fname;
354         MemoryRegion *mr;
355         int image_size;
356 
357         if (pflash_blk0) {
358             error_report("The contents of the first flash device may be "
359                          "specified with -bios or with -drive if=pflash... "
360                          "but you cannot use both options at once");
361             exit(1);
362         }
363 
364         /* Fall back to -bios */
365 
366         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
367         if (!fname) {
368             error_report("Could not find ROM image '%s'", bios_name);
369             exit(1);
370         }
371         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
372         image_size = load_image_mr(fname, mr);
373         g_free(fname);
374         if (image_size < 0) {
375             error_report("Could not load ROM image '%s'", bios_name);
376             exit(1);
377         }
378     }
379 
380     return pflash_blk0 || bios_name;
381 }
382 
383 static void create_secure_ram(SBSAMachineState *sms,
384                               MemoryRegion *secure_sysmem)
385 {
386     MemoryRegion *secram = g_new(MemoryRegion, 1);
387     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
388     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
389 
390     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
391                            &error_fatal);
392     memory_region_add_subregion(secure_sysmem, base, secram);
393 }
394 
395 static void create_gic(SBSAMachineState *sms)
396 {
397     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
398     SysBusDevice *gicbusdev;
399     const char *gictype;
400     uint32_t redist0_capacity, redist0_count;
401     int i;
402 
403     gictype = gicv3_class_name();
404 
405     sms->gic = qdev_new(gictype);
406     qdev_prop_set_uint32(sms->gic, "revision", 3);
407     qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
408     /*
409      * Note that the num-irq property counts both internal and external
410      * interrupts; there are always 32 of the former (mandated by GIC spec).
411      */
412     qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
413     qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
414 
415     redist0_capacity =
416                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
417     redist0_count = MIN(smp_cpus, redist0_capacity);
418 
419     qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
420     qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
421 
422     gicbusdev = SYS_BUS_DEVICE(sms->gic);
423     sysbus_realize_and_unref(gicbusdev, &error_fatal);
424     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
425     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
426 
427     /*
428      * Wire the outputs from each CPU's generic timer and the GICv3
429      * maintenance interrupt signal to the appropriate GIC PPI inputs,
430      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
431      */
432     for (i = 0; i < smp_cpus; i++) {
433         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
434         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
435         int irq;
436         /*
437          * Mapping from the output timer irq lines from the CPU to the
438          * GIC PPI inputs used for this board.
439          */
440         const int timer_irq[] = {
441             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
442             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
443             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
444             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
445         };
446 
447         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
448             qdev_connect_gpio_out(cpudev, irq,
449                                   qdev_get_gpio_in(sms->gic,
450                                                    ppibase + timer_irq[irq]));
451         }
452 
453         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
454                                     qdev_get_gpio_in(sms->gic, ppibase
455                                                      + ARCH_GIC_MAINT_IRQ));
456         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
457                                     qdev_get_gpio_in(sms->gic, ppibase
458                                                      + VIRTUAL_PMU_IRQ));
459 
460         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
461         sysbus_connect_irq(gicbusdev, i + smp_cpus,
462                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
463         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
464                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
465         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
466                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
467     }
468 }
469 
470 static void create_uart(const SBSAMachineState *sms, int uart,
471                         MemoryRegion *mem, Chardev *chr)
472 {
473     hwaddr base = sbsa_ref_memmap[uart].base;
474     int irq = sbsa_ref_irqmap[uart];
475     DeviceState *dev = qdev_new(TYPE_PL011);
476     SysBusDevice *s = SYS_BUS_DEVICE(dev);
477 
478     qdev_prop_set_chr(dev, "chardev", chr);
479     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
480     memory_region_add_subregion(mem, base,
481                                 sysbus_mmio_get_region(s, 0));
482     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
483 }
484 
485 static void create_rtc(const SBSAMachineState *sms)
486 {
487     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
488     int irq = sbsa_ref_irqmap[SBSA_RTC];
489 
490     sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
491 }
492 
493 static void create_wdt(const SBSAMachineState *sms)
494 {
495     hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
496     hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
497     DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
498     SysBusDevice *s = SYS_BUS_DEVICE(dev);
499     int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
500 
501     sysbus_realize_and_unref(s, &error_fatal);
502     sysbus_mmio_map(s, 0, rbase);
503     sysbus_mmio_map(s, 1, cbase);
504     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
505 }
506 
507 static DeviceState *gpio_key_dev;
508 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
509 {
510     /* use gpio Pin 3 for power button event */
511     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
512 }
513 
514 static Notifier sbsa_ref_powerdown_notifier = {
515     .notify = sbsa_ref_powerdown_req
516 };
517 
518 static void create_gpio(const SBSAMachineState *sms)
519 {
520     DeviceState *pl061_dev;
521     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
522     int irq = sbsa_ref_irqmap[SBSA_GPIO];
523 
524     pl061_dev = sysbus_create_simple("pl061", base,
525                                      qdev_get_gpio_in(sms->gic, irq));
526 
527     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
528                                         qdev_get_gpio_in(pl061_dev, 3));
529 
530     /* connect powerdown request */
531     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
532 }
533 
534 static void create_ahci(const SBSAMachineState *sms)
535 {
536     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
537     int irq = sbsa_ref_irqmap[SBSA_AHCI];
538     DeviceState *dev;
539     DriveInfo *hd[NUM_SATA_PORTS];
540     SysbusAHCIState *sysahci;
541     AHCIState *ahci;
542     int i;
543 
544     dev = qdev_new("sysbus-ahci");
545     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
546     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
547     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
548     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
549 
550     sysahci = SYSBUS_AHCI(dev);
551     ahci = &sysahci->ahci;
552     ide_drive_get(hd, ARRAY_SIZE(hd));
553     for (i = 0; i < ahci->ports; i++) {
554         if (hd[i] == NULL) {
555             continue;
556         }
557         ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
558     }
559 }
560 
561 static void create_ehci(const SBSAMachineState *sms)
562 {
563     hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
564     int irq = sbsa_ref_irqmap[SBSA_EHCI];
565 
566     sysbus_create_simple("platform-ehci-usb", base,
567                          qdev_get_gpio_in(sms->gic, irq));
568 }
569 
570 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
571 {
572     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
573     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
574     DeviceState *dev;
575     int i;
576 
577     dev = qdev_new(TYPE_ARM_SMMUV3);
578 
579     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
580                              &error_abort);
581     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
582     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
583     for (i = 0; i < NUM_SMMU_IRQS; i++) {
584         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
585                            qdev_get_gpio_in(sms->gic, irq + i));
586     }
587 }
588 
589 static void create_pcie(SBSAMachineState *sms)
590 {
591     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
592     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
593     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
594     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
595     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
596     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
597     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
598     int irq = sbsa_ref_irqmap[SBSA_PCIE];
599     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
600     MemoryRegion *ecam_alias, *ecam_reg;
601     DeviceState *dev;
602     PCIHostState *pci;
603     int i;
604 
605     dev = qdev_new(TYPE_GPEX_HOST);
606     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
607 
608     /* Map ECAM space */
609     ecam_alias = g_new0(MemoryRegion, 1);
610     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
611     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
612                              ecam_reg, 0, size_ecam);
613     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
614 
615     /* Map the MMIO space */
616     mmio_alias = g_new0(MemoryRegion, 1);
617     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
618     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
619                              mmio_reg, base_mmio, size_mmio);
620     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
621 
622     /* Map the MMIO_HIGH space */
623     mmio_alias_high = g_new0(MemoryRegion, 1);
624     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
625                              mmio_reg, base_mmio_high, size_mmio_high);
626     memory_region_add_subregion(get_system_memory(), base_mmio_high,
627                                 mmio_alias_high);
628 
629     /* Map IO port space */
630     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
631 
632     for (i = 0; i < GPEX_NUM_IRQS; i++) {
633         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
634                            qdev_get_gpio_in(sms->gic, irq + i));
635         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
636     }
637 
638     pci = PCI_HOST_BRIDGE(dev);
639     if (pci->bus) {
640         for (i = 0; i < nb_nics; i++) {
641             NICInfo *nd = &nd_table[i];
642 
643             if (!nd->model) {
644                 nd->model = g_strdup("e1000e");
645             }
646 
647             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
648         }
649     }
650 
651     pci_create_simple(pci->bus, -1, "VGA");
652 
653     create_smmu(sms, pci->bus);
654 }
655 
656 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
657 {
658     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
659                                                  bootinfo);
660 
661     *fdt_size = board->fdt_size;
662     return board->fdt;
663 }
664 
665 static void create_secure_ec(MemoryRegion *mem)
666 {
667     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
668     DeviceState *dev = qdev_new("sbsa-ec");
669     SysBusDevice *s = SYS_BUS_DEVICE(dev);
670 
671     memory_region_add_subregion(mem, base,
672                                 sysbus_mmio_get_region(s, 0));
673 }
674 
675 static void sbsa_ref_init(MachineState *machine)
676 {
677     unsigned int smp_cpus = machine->smp.cpus;
678     unsigned int max_cpus = machine->smp.max_cpus;
679     SBSAMachineState *sms = SBSA_MACHINE(machine);
680     MachineClass *mc = MACHINE_GET_CLASS(machine);
681     MemoryRegion *sysmem = get_system_memory();
682     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
683     bool firmware_loaded;
684     const CPUArchIdList *possible_cpus;
685     int n, sbsa_max_cpus;
686 
687     if (!cpu_type_valid(machine->cpu_type)) {
688         error_report("sbsa-ref: CPU type %s not supported", machine->cpu_type);
689         exit(1);
690     }
691 
692     if (kvm_enabled()) {
693         error_report("sbsa-ref: KVM is not supported for this machine");
694         exit(1);
695     }
696 
697     /*
698      * The Secure view of the world is the same as the NonSecure,
699      * but with a few extra devices. Create it as a container region
700      * containing the system memory at low priority; any secure-only
701      * devices go in at higher priority and take precedence.
702      */
703     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
704                        UINT64_MAX);
705     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
706 
707     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
708 
709     /*
710      * This machine has EL3 enabled, external firmware should supply PSCI
711      * implementation, so the QEMU's internal PSCI is disabled.
712      */
713     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
714 
715     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
716 
717     if (max_cpus > sbsa_max_cpus) {
718         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
719                      "supported by machine 'sbsa-ref' (%d)",
720                      max_cpus, sbsa_max_cpus);
721         exit(1);
722     }
723 
724     sms->smp_cpus = smp_cpus;
725 
726     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
727         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
728         exit(1);
729     }
730 
731     possible_cpus = mc->possible_cpu_arch_ids(machine);
732     for (n = 0; n < possible_cpus->len; n++) {
733         Object *cpuobj;
734         CPUState *cs;
735 
736         if (n >= smp_cpus) {
737             break;
738         }
739 
740         cpuobj = object_new(possible_cpus->cpus[n].type);
741         object_property_set_int(cpuobj, "mp-affinity",
742                                 possible_cpus->cpus[n].arch_id, NULL);
743 
744         cs = CPU(cpuobj);
745         cs->cpu_index = n;
746 
747         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
748                           &error_fatal);
749 
750         if (object_property_find(cpuobj, "reset-cbar")) {
751             object_property_set_int(cpuobj, "reset-cbar",
752                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
753                                     &error_abort);
754         }
755 
756         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
757                                  &error_abort);
758 
759         object_property_set_link(cpuobj, "secure-memory",
760                                  OBJECT(secure_sysmem), &error_abort);
761 
762         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
763         object_unref(cpuobj);
764     }
765 
766     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
767                                 machine->ram);
768 
769     create_fdt(sms);
770 
771     create_secure_ram(sms, secure_sysmem);
772 
773     create_gic(sms);
774 
775     create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
776     create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
777     /* Second secure UART for RAS and MM from EL0 */
778     create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
779 
780     create_rtc(sms);
781 
782     create_wdt(sms);
783 
784     create_gpio(sms);
785 
786     create_ahci(sms);
787 
788     create_ehci(sms);
789 
790     create_pcie(sms);
791 
792     create_secure_ec(secure_sysmem);
793 
794     sms->bootinfo.ram_size = machine->ram_size;
795     sms->bootinfo.board_id = -1;
796     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
797     sms->bootinfo.get_dtb = sbsa_ref_dtb;
798     sms->bootinfo.firmware_loaded = firmware_loaded;
799     arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
800 }
801 
802 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
803 {
804     unsigned int max_cpus = ms->smp.max_cpus;
805     SBSAMachineState *sms = SBSA_MACHINE(ms);
806     int n;
807 
808     if (ms->possible_cpus) {
809         assert(ms->possible_cpus->len == max_cpus);
810         return ms->possible_cpus;
811     }
812 
813     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
814                                   sizeof(CPUArchId) * max_cpus);
815     ms->possible_cpus->len = max_cpus;
816     for (n = 0; n < ms->possible_cpus->len; n++) {
817         ms->possible_cpus->cpus[n].type = ms->cpu_type;
818         ms->possible_cpus->cpus[n].arch_id =
819             sbsa_ref_cpu_mp_affinity(sms, n);
820         ms->possible_cpus->cpus[n].props.has_thread_id = true;
821         ms->possible_cpus->cpus[n].props.thread_id = n;
822     }
823     return ms->possible_cpus;
824 }
825 
826 static CpuInstanceProperties
827 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
828 {
829     MachineClass *mc = MACHINE_GET_CLASS(ms);
830     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
831 
832     assert(cpu_index < possible_cpus->len);
833     return possible_cpus->cpus[cpu_index].props;
834 }
835 
836 static int64_t
837 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
838 {
839     return idx % ms->numa_state->num_nodes;
840 }
841 
842 static void sbsa_ref_instance_init(Object *obj)
843 {
844     SBSAMachineState *sms = SBSA_MACHINE(obj);
845 
846     sbsa_flash_create(sms);
847 }
848 
849 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
850 {
851     MachineClass *mc = MACHINE_CLASS(oc);
852 
853     mc->init = sbsa_ref_init;
854     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
855     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
856     mc->max_cpus = 512;
857     mc->pci_allow_0_address = true;
858     mc->minimum_page_bits = 12;
859     mc->block_default_type = IF_IDE;
860     mc->no_cdrom = 1;
861     mc->default_ram_size = 1 * GiB;
862     mc->default_ram_id = "sbsa-ref.ram";
863     mc->default_cpus = 4;
864     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
865     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
866     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
867 }
868 
869 static const TypeInfo sbsa_ref_info = {
870     .name          = TYPE_SBSA_MACHINE,
871     .parent        = TYPE_MACHINE,
872     .instance_init = sbsa_ref_instance_init,
873     .class_init    = sbsa_ref_class_init,
874     .instance_size = sizeof(SBSAMachineState),
875 };
876 
877 static void sbsa_ref_machine_init(void)
878 {
879     type_register_static(&sbsa_ref_info);
880 }
881 
882 type_init(sbsa_ref_machine_init);
883