xref: /openbmc/qemu/hw/arm/sbsa-ref.c (revision ec150c7e)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/units.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/sysemu.h"
28 #include "exec/address-spaces.h"
29 #include "exec/hwaddr.h"
30 #include "kvm_arm.h"
31 #include "hw/arm/boot.h"
32 #include "hw/block/flash.h"
33 #include "hw/boards.h"
34 #include "hw/ide/internal.h"
35 #include "hw/ide/ahci_internal.h"
36 #include "hw/intc/arm_gicv3_common.h"
37 #include "hw/loader.h"
38 #include "hw/pci-host/gpex.h"
39 #include "hw/usb.h"
40 #include "net/net.h"
41 
42 #define RAMLIMIT_GB 8192
43 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
44 
45 #define NUM_IRQS        256
46 #define NUM_SMMU_IRQS   4
47 #define NUM_SATA_PORTS  6
48 
49 #define VIRTUAL_PMU_IRQ        7
50 #define ARCH_GIC_MAINT_IRQ     9
51 #define ARCH_TIMER_VIRT_IRQ    11
52 #define ARCH_TIMER_S_EL1_IRQ   13
53 #define ARCH_TIMER_NS_EL1_IRQ  14
54 #define ARCH_TIMER_NS_EL2_IRQ  10
55 
56 enum {
57     SBSA_FLASH,
58     SBSA_MEM,
59     SBSA_CPUPERIPHS,
60     SBSA_GIC_DIST,
61     SBSA_GIC_REDIST,
62     SBSA_SMMU,
63     SBSA_UART,
64     SBSA_RTC,
65     SBSA_PCIE,
66     SBSA_PCIE_MMIO,
67     SBSA_PCIE_MMIO_HIGH,
68     SBSA_PCIE_PIO,
69     SBSA_PCIE_ECAM,
70     SBSA_GPIO,
71     SBSA_SECURE_UART,
72     SBSA_SECURE_UART_MM,
73     SBSA_SECURE_MEM,
74     SBSA_AHCI,
75     SBSA_EHCI,
76 };
77 
78 typedef struct MemMapEntry {
79     hwaddr base;
80     hwaddr size;
81 } MemMapEntry;
82 
83 typedef struct {
84     MachineState parent;
85     struct arm_boot_info bootinfo;
86     int smp_cpus;
87     void *fdt;
88     int fdt_size;
89     int psci_conduit;
90     PFlashCFI01 *flash[2];
91 } SBSAMachineState;
92 
93 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
94 #define SBSA_MACHINE(obj) \
95     OBJECT_CHECK(SBSAMachineState, (obj), TYPE_SBSA_MACHINE)
96 
97 static const MemMapEntry sbsa_ref_memmap[] = {
98     /* 512M boot ROM */
99     [SBSA_FLASH] =              {          0, 0x20000000 },
100     /* 512M secure memory */
101     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
102     /* Space reserved for CPU peripheral devices */
103     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
104     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
105     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
106     [SBSA_UART] =               { 0x60000000, 0x00001000 },
107     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
108     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
109     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
110     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
111     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
112     /* Space here reserved for more SMMUs */
113     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
114     [SBSA_EHCI] =               { 0x60110000, 0x00010000 },
115     /* Space here reserved for other devices */
116     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
117     /* 32-bit address PCIE MMIO space */
118     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
119     /* 256M PCIE ECAM space */
120     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
121     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
122     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
123     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
124 };
125 
126 static const int sbsa_ref_irqmap[] = {
127     [SBSA_UART] = 1,
128     [SBSA_RTC] = 2,
129     [SBSA_PCIE] = 3, /* ... to 6 */
130     [SBSA_GPIO] = 7,
131     [SBSA_SECURE_UART] = 8,
132     [SBSA_SECURE_UART_MM] = 9,
133     [SBSA_AHCI] = 10,
134     [SBSA_EHCI] = 11,
135 };
136 
137 /*
138  * Firmware on this machine only uses ACPI table to load OS, these limited
139  * device tree nodes are just to let firmware know the info which varies from
140  * command line parameters, so it is not necessary to be fully compatible
141  * with the kernel CPU and NUMA binding rules.
142  */
143 static void create_fdt(SBSAMachineState *sms)
144 {
145     void *fdt = create_device_tree(&sms->fdt_size);
146     const MachineState *ms = MACHINE(sms);
147     int cpu;
148 
149     if (!fdt) {
150         error_report("create_device_tree() failed");
151         exit(1);
152     }
153 
154     sms->fdt = fdt;
155 
156     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
157     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
158     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
159 
160     if (have_numa_distance) {
161         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
162         uint32_t *matrix = g_malloc0(size);
163         int idx, i, j;
164 
165         for (i = 0; i < nb_numa_nodes; i++) {
166             for (j = 0; j < nb_numa_nodes; j++) {
167                 idx = (i * nb_numa_nodes + j) * 3;
168                 matrix[idx + 0] = cpu_to_be32(i);
169                 matrix[idx + 1] = cpu_to_be32(j);
170                 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
171             }
172         }
173 
174         qemu_fdt_add_subnode(fdt, "/distance-map");
175         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
176                          matrix, size);
177         g_free(matrix);
178     }
179 
180     qemu_fdt_add_subnode(sms->fdt, "/cpus");
181 
182     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
183         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
184         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
185         CPUState *cs = CPU(armcpu);
186 
187         qemu_fdt_add_subnode(sms->fdt, nodename);
188 
189         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
190             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
191                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
192         }
193 
194         g_free(nodename);
195     }
196 }
197 
198 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
199 
200 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
201                                         const char *name,
202                                         const char *alias_prop_name)
203 {
204     /*
205      * Create a single flash device.  We use the same parameters as
206      * the flash devices on the Versatile Express board.
207      */
208     DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
209 
210     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
211     qdev_prop_set_uint8(dev, "width", 4);
212     qdev_prop_set_uint8(dev, "device-width", 2);
213     qdev_prop_set_bit(dev, "big-endian", false);
214     qdev_prop_set_uint16(dev, "id0", 0x89);
215     qdev_prop_set_uint16(dev, "id1", 0x18);
216     qdev_prop_set_uint16(dev, "id2", 0x00);
217     qdev_prop_set_uint16(dev, "id3", 0x00);
218     qdev_prop_set_string(dev, "name", name);
219     object_property_add_child(OBJECT(sms), name, OBJECT(dev),
220                               &error_abort);
221     object_property_add_alias(OBJECT(sms), alias_prop_name,
222                               OBJECT(dev), "drive", &error_abort);
223     return PFLASH_CFI01(dev);
224 }
225 
226 static void sbsa_flash_create(SBSAMachineState *sms)
227 {
228     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
229     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
230 }
231 
232 static void sbsa_flash_map1(PFlashCFI01 *flash,
233                             hwaddr base, hwaddr size,
234                             MemoryRegion *sysmem)
235 {
236     DeviceState *dev = DEVICE(flash);
237 
238     assert(size % SBSA_FLASH_SECTOR_SIZE == 0);
239     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
240     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
241     qdev_init_nofail(dev);
242 
243     memory_region_add_subregion(sysmem, base,
244                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
245                                                        0));
246 }
247 
248 static void sbsa_flash_map(SBSAMachineState *sms,
249                            MemoryRegion *sysmem,
250                            MemoryRegion *secure_sysmem)
251 {
252     /*
253      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
254      * sysmem is the system memory space. secure_sysmem is the secure view
255      * of the system, and the first flash device should be made visible only
256      * there. The second flash device is visible to both secure and nonsecure.
257      */
258     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
259     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
260 
261     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
262                     secure_sysmem);
263     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
264                     sysmem);
265 }
266 
267 static bool sbsa_firmware_init(SBSAMachineState *sms,
268                                MemoryRegion *sysmem,
269                                MemoryRegion *secure_sysmem)
270 {
271     int i;
272     BlockBackend *pflash_blk0;
273 
274     /* Map legacy -drive if=pflash to machine properties */
275     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
276         pflash_cfi01_legacy_drive(sms->flash[i],
277                                   drive_get(IF_PFLASH, 0, i));
278     }
279 
280     sbsa_flash_map(sms, sysmem, secure_sysmem);
281 
282     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
283 
284     if (bios_name) {
285         char *fname;
286         MemoryRegion *mr;
287         int image_size;
288 
289         if (pflash_blk0) {
290             error_report("The contents of the first flash device may be "
291                          "specified with -bios or with -drive if=pflash... "
292                          "but you cannot use both options at once");
293             exit(1);
294         }
295 
296         /* Fall back to -bios */
297 
298         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
299         if (!fname) {
300             error_report("Could not find ROM image '%s'", bios_name);
301             exit(1);
302         }
303         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
304         image_size = load_image_mr(fname, mr);
305         g_free(fname);
306         if (image_size < 0) {
307             error_report("Could not load ROM image '%s'", bios_name);
308             exit(1);
309         }
310     }
311 
312     return pflash_blk0 || bios_name;
313 }
314 
315 static void create_secure_ram(SBSAMachineState *sms,
316                               MemoryRegion *secure_sysmem)
317 {
318     MemoryRegion *secram = g_new(MemoryRegion, 1);
319     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
320     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
321 
322     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
323                            &error_fatal);
324     memory_region_add_subregion(secure_sysmem, base, secram);
325 }
326 
327 static void create_gic(SBSAMachineState *sms, qemu_irq *pic)
328 {
329     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
330     DeviceState *gicdev;
331     SysBusDevice *gicbusdev;
332     const char *gictype;
333     uint32_t redist0_capacity, redist0_count;
334     int i;
335 
336     gictype = gicv3_class_name();
337 
338     gicdev = qdev_create(NULL, gictype);
339     qdev_prop_set_uint32(gicdev, "revision", 3);
340     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
341     /*
342      * Note that the num-irq property counts both internal and external
343      * interrupts; there are always 32 of the former (mandated by GIC spec).
344      */
345     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
346     qdev_prop_set_bit(gicdev, "has-security-extensions", true);
347 
348     redist0_capacity =
349                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
350     redist0_count = MIN(smp_cpus, redist0_capacity);
351 
352     qdev_prop_set_uint32(gicdev, "len-redist-region-count", 1);
353     qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
354 
355     qdev_init_nofail(gicdev);
356     gicbusdev = SYS_BUS_DEVICE(gicdev);
357     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
358     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
359 
360     /*
361      * Wire the outputs from each CPU's generic timer and the GICv3
362      * maintenance interrupt signal to the appropriate GIC PPI inputs,
363      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
364      */
365     for (i = 0; i < smp_cpus; i++) {
366         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
367         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
368         int irq;
369         /*
370          * Mapping from the output timer irq lines from the CPU to the
371          * GIC PPI inputs used for this board.
372          */
373         const int timer_irq[] = {
374             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
375             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
376             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
377             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
378         };
379 
380         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
381             qdev_connect_gpio_out(cpudev, irq,
382                                   qdev_get_gpio_in(gicdev,
383                                                    ppibase + timer_irq[irq]));
384         }
385 
386         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
387                                     qdev_get_gpio_in(gicdev, ppibase
388                                                      + ARCH_GIC_MAINT_IRQ));
389         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
390                                     qdev_get_gpio_in(gicdev, ppibase
391                                                      + VIRTUAL_PMU_IRQ));
392 
393         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
394         sysbus_connect_irq(gicbusdev, i + smp_cpus,
395                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
396         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
397                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
398         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
399                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
400     }
401 
402     for (i = 0; i < NUM_IRQS; i++) {
403         pic[i] = qdev_get_gpio_in(gicdev, i);
404     }
405 }
406 
407 static void create_uart(const SBSAMachineState *sms, qemu_irq *pic, int uart,
408                         MemoryRegion *mem, Chardev *chr)
409 {
410     hwaddr base = sbsa_ref_memmap[uart].base;
411     int irq = sbsa_ref_irqmap[uart];
412     DeviceState *dev = qdev_create(NULL, "pl011");
413     SysBusDevice *s = SYS_BUS_DEVICE(dev);
414 
415     qdev_prop_set_chr(dev, "chardev", chr);
416     qdev_init_nofail(dev);
417     memory_region_add_subregion(mem, base,
418                                 sysbus_mmio_get_region(s, 0));
419     sysbus_connect_irq(s, 0, pic[irq]);
420 }
421 
422 static void create_rtc(const SBSAMachineState *sms, qemu_irq *pic)
423 {
424     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
425     int irq = sbsa_ref_irqmap[SBSA_RTC];
426 
427     sysbus_create_simple("pl031", base, pic[irq]);
428 }
429 
430 static DeviceState *gpio_key_dev;
431 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
432 {
433     /* use gpio Pin 3 for power button event */
434     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
435 }
436 
437 static Notifier sbsa_ref_powerdown_notifier = {
438     .notify = sbsa_ref_powerdown_req
439 };
440 
441 static void create_gpio(const SBSAMachineState *sms, qemu_irq *pic)
442 {
443     DeviceState *pl061_dev;
444     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
445     int irq = sbsa_ref_irqmap[SBSA_GPIO];
446 
447     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
448 
449     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
450                                         qdev_get_gpio_in(pl061_dev, 3));
451 
452     /* connect powerdown request */
453     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
454 }
455 
456 static void create_ahci(const SBSAMachineState *sms, qemu_irq *pic)
457 {
458     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
459     int irq = sbsa_ref_irqmap[SBSA_AHCI];
460     DeviceState *dev;
461     DriveInfo *hd[NUM_SATA_PORTS];
462     SysbusAHCIState *sysahci;
463     AHCIState *ahci;
464     int i;
465 
466     dev = qdev_create(NULL, "sysbus-ahci");
467     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
468     qdev_init_nofail(dev);
469     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
470     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic[irq]);
471 
472     sysahci = SYSBUS_AHCI(dev);
473     ahci = &sysahci->ahci;
474     ide_drive_get(hd, ARRAY_SIZE(hd));
475     for (i = 0; i < ahci->ports; i++) {
476         if (hd[i] == NULL) {
477             continue;
478         }
479         ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
480     }
481 }
482 
483 static void create_ehci(const SBSAMachineState *sms, qemu_irq *pic)
484 {
485     hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
486     int irq = sbsa_ref_irqmap[SBSA_EHCI];
487 
488     sysbus_create_simple("platform-ehci-usb", base, pic[irq]);
489 }
490 
491 static void create_smmu(const SBSAMachineState *sms, qemu_irq *pic,
492                         PCIBus *bus)
493 {
494     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
495     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
496     DeviceState *dev;
497     int i;
498 
499     dev = qdev_create(NULL, "arm-smmuv3");
500 
501     object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
502                              &error_abort);
503     qdev_init_nofail(dev);
504     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
505     for (i = 0; i < NUM_SMMU_IRQS; i++) {
506         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
507     }
508 }
509 
510 static void create_pcie(SBSAMachineState *sms, qemu_irq *pic)
511 {
512     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
513     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
514     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
515     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
516     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
517     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
518     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
519     int irq = sbsa_ref_irqmap[SBSA_PCIE];
520     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
521     MemoryRegion *ecam_alias, *ecam_reg;
522     DeviceState *dev;
523     PCIHostState *pci;
524     int i;
525 
526     dev = qdev_create(NULL, TYPE_GPEX_HOST);
527     qdev_init_nofail(dev);
528 
529     /* Map ECAM space */
530     ecam_alias = g_new0(MemoryRegion, 1);
531     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
532     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
533                              ecam_reg, 0, size_ecam);
534     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
535 
536     /* Map the MMIO space */
537     mmio_alias = g_new0(MemoryRegion, 1);
538     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
539     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
540                              mmio_reg, base_mmio, size_mmio);
541     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
542 
543     /* Map the MMIO_HIGH space */
544     mmio_alias_high = g_new0(MemoryRegion, 1);
545     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
546                              mmio_reg, base_mmio_high, size_mmio_high);
547     memory_region_add_subregion(get_system_memory(), base_mmio_high,
548                                 mmio_alias_high);
549 
550     /* Map IO port space */
551     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
552 
553     for (i = 0; i < GPEX_NUM_IRQS; i++) {
554         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
555         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
556     }
557 
558     pci = PCI_HOST_BRIDGE(dev);
559     if (pci->bus) {
560         for (i = 0; i < nb_nics; i++) {
561             NICInfo *nd = &nd_table[i];
562 
563             if (!nd->model) {
564                 nd->model = g_strdup("e1000e");
565             }
566 
567             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
568         }
569     }
570 
571     pci_create_simple(pci->bus, -1, "VGA");
572 
573     create_smmu(sms, pic, pci->bus);
574 }
575 
576 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
577 {
578     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
579                                                  bootinfo);
580 
581     *fdt_size = board->fdt_size;
582     return board->fdt;
583 }
584 
585 static void sbsa_ref_init(MachineState *machine)
586 {
587     unsigned int smp_cpus = machine->smp.cpus;
588     unsigned int max_cpus = machine->smp.max_cpus;
589     SBSAMachineState *sms = SBSA_MACHINE(machine);
590     MachineClass *mc = MACHINE_GET_CLASS(machine);
591     MemoryRegion *sysmem = get_system_memory();
592     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
593     MemoryRegion *ram = g_new(MemoryRegion, 1);
594     bool firmware_loaded;
595     const CPUArchIdList *possible_cpus;
596     int n, sbsa_max_cpus;
597     qemu_irq pic[NUM_IRQS];
598 
599     if (strcmp(machine->cpu_type, ARM_CPU_TYPE_NAME("cortex-a57"))) {
600         error_report("sbsa-ref: CPU type other than the built-in "
601                      "cortex-a57 not supported");
602         exit(1);
603     }
604 
605     if (kvm_enabled()) {
606         error_report("sbsa-ref: KVM is not supported for this machine");
607         exit(1);
608     }
609 
610     /*
611      * The Secure view of the world is the same as the NonSecure,
612      * but with a few extra devices. Create it as a container region
613      * containing the system memory at low priority; any secure-only
614      * devices go in at higher priority and take precedence.
615      */
616     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
617                        UINT64_MAX);
618     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
619 
620     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
621 
622     if (machine->kernel_filename && firmware_loaded) {
623         error_report("sbsa-ref: No fw_cfg device on this machine, "
624                      "so -kernel option is not supported when firmware loaded, "
625                      "please load OS from hard disk instead");
626         exit(1);
627     }
628 
629     /*
630      * This machine has EL3 enabled, external firmware should supply PSCI
631      * implementation, so the QEMU's internal PSCI is disabled.
632      */
633     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
634 
635     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
636 
637     if (max_cpus > sbsa_max_cpus) {
638         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
639                      "supported by machine 'sbsa-ref' (%d)",
640                      max_cpus, sbsa_max_cpus);
641         exit(1);
642     }
643 
644     sms->smp_cpus = smp_cpus;
645 
646     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
647         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
648         exit(1);
649     }
650 
651     possible_cpus = mc->possible_cpu_arch_ids(machine);
652     for (n = 0; n < possible_cpus->len; n++) {
653         Object *cpuobj;
654         CPUState *cs;
655 
656         if (n >= smp_cpus) {
657             break;
658         }
659 
660         cpuobj = object_new(possible_cpus->cpus[n].type);
661         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
662                                 "mp-affinity", NULL);
663 
664         cs = CPU(cpuobj);
665         cs->cpu_index = n;
666 
667         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
668                           &error_fatal);
669 
670         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
671             object_property_set_int(cpuobj,
672                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
673                                     "reset-cbar", &error_abort);
674         }
675 
676         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
677                                  &error_abort);
678 
679         object_property_set_link(cpuobj, OBJECT(secure_sysmem),
680                                  "secure-memory", &error_abort);
681 
682         object_property_set_bool(cpuobj, true, "realized", &error_fatal);
683         object_unref(cpuobj);
684     }
685 
686     memory_region_allocate_system_memory(ram, NULL, "sbsa-ref.ram",
687                                          machine->ram_size);
688     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base, ram);
689 
690     create_fdt(sms);
691 
692     create_secure_ram(sms, secure_sysmem);
693 
694     create_gic(sms, pic);
695 
696     create_uart(sms, pic, SBSA_UART, sysmem, serial_hd(0));
697     create_uart(sms, pic, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
698     /* Second secure UART for RAS and MM from EL0 */
699     create_uart(sms, pic, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
700 
701     create_rtc(sms, pic);
702 
703     create_gpio(sms, pic);
704 
705     create_ahci(sms, pic);
706 
707     create_ehci(sms, pic);
708 
709     create_pcie(sms, pic);
710 
711     sms->bootinfo.ram_size = machine->ram_size;
712     sms->bootinfo.kernel_filename = machine->kernel_filename;
713     sms->bootinfo.nb_cpus = smp_cpus;
714     sms->bootinfo.board_id = -1;
715     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
716     sms->bootinfo.get_dtb = sbsa_ref_dtb;
717     sms->bootinfo.firmware_loaded = firmware_loaded;
718     arm_load_kernel(ARM_CPU(first_cpu), &sms->bootinfo);
719 }
720 
721 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
722 {
723     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
724     return arm_cpu_mp_affinity(idx, clustersz);
725 }
726 
727 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
728 {
729     unsigned int max_cpus = ms->smp.max_cpus;
730     SBSAMachineState *sms = SBSA_MACHINE(ms);
731     int n;
732 
733     if (ms->possible_cpus) {
734         assert(ms->possible_cpus->len == max_cpus);
735         return ms->possible_cpus;
736     }
737 
738     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
739                                   sizeof(CPUArchId) * max_cpus);
740     ms->possible_cpus->len = max_cpus;
741     for (n = 0; n < ms->possible_cpus->len; n++) {
742         ms->possible_cpus->cpus[n].type = ms->cpu_type;
743         ms->possible_cpus->cpus[n].arch_id =
744             sbsa_ref_cpu_mp_affinity(sms, n);
745         ms->possible_cpus->cpus[n].props.has_thread_id = true;
746         ms->possible_cpus->cpus[n].props.thread_id = n;
747     }
748     return ms->possible_cpus;
749 }
750 
751 static CpuInstanceProperties
752 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
753 {
754     MachineClass *mc = MACHINE_GET_CLASS(ms);
755     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
756 
757     assert(cpu_index < possible_cpus->len);
758     return possible_cpus->cpus[cpu_index].props;
759 }
760 
761 static int64_t
762 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
763 {
764     return idx % nb_numa_nodes;
765 }
766 
767 static void sbsa_ref_instance_init(Object *obj)
768 {
769     SBSAMachineState *sms = SBSA_MACHINE(obj);
770 
771     sbsa_flash_create(sms);
772 }
773 
774 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
775 {
776     MachineClass *mc = MACHINE_CLASS(oc);
777 
778     mc->init = sbsa_ref_init;
779     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
780     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
781     mc->max_cpus = 512;
782     mc->pci_allow_0_address = true;
783     mc->minimum_page_bits = 12;
784     mc->block_default_type = IF_IDE;
785     mc->no_cdrom = 1;
786     mc->default_ram_size = 1 * GiB;
787     mc->default_cpus = 4;
788     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
789     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
790     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
791 }
792 
793 static const TypeInfo sbsa_ref_info = {
794     .name          = TYPE_SBSA_MACHINE,
795     .parent        = TYPE_MACHINE,
796     .instance_init = sbsa_ref_instance_init,
797     .class_init    = sbsa_ref_class_init,
798     .instance_size = sizeof(SBSAMachineState),
799 };
800 
801 static void sbsa_ref_machine_init(void)
802 {
803     type_register_static(&sbsa_ref_info);
804 }
805 
806 type_init(sbsa_ref_machine_init);
807