xref: /openbmc/qemu/hw/arm/sbsa-ref.c (revision d2dfe0b5)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/units.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/sysemu.h"
29 #include "exec/hwaddr.h"
30 #include "kvm_arm.h"
31 #include "hw/arm/boot.h"
32 #include "hw/arm/fdt.h"
33 #include "hw/arm/smmuv3.h"
34 #include "hw/block/flash.h"
35 #include "hw/boards.h"
36 #include "hw/ide/internal.h"
37 #include "hw/ide/ahci_internal.h"
38 #include "hw/intc/arm_gicv3_common.h"
39 #include "hw/loader.h"
40 #include "hw/pci-host/gpex.h"
41 #include "hw/qdev-properties.h"
42 #include "hw/usb.h"
43 #include "hw/char/pl011.h"
44 #include "hw/watchdog/sbsa_gwdt.h"
45 #include "net/net.h"
46 #include "qom/object.h"
47 
48 #define RAMLIMIT_GB 8192
49 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
50 
51 #define NUM_IRQS        256
52 #define NUM_SMMU_IRQS   4
53 #define NUM_SATA_PORTS  6
54 
55 #define VIRTUAL_PMU_IRQ        7
56 #define ARCH_GIC_MAINT_IRQ     9
57 #define ARCH_TIMER_VIRT_IRQ    11
58 #define ARCH_TIMER_S_EL1_IRQ   13
59 #define ARCH_TIMER_NS_EL1_IRQ  14
60 #define ARCH_TIMER_NS_EL2_IRQ  10
61 
62 enum {
63     SBSA_FLASH,
64     SBSA_MEM,
65     SBSA_CPUPERIPHS,
66     SBSA_GIC_DIST,
67     SBSA_GIC_REDIST,
68     SBSA_SECURE_EC,
69     SBSA_GWDT_WS0,
70     SBSA_GWDT_REFRESH,
71     SBSA_GWDT_CONTROL,
72     SBSA_SMMU,
73     SBSA_UART,
74     SBSA_RTC,
75     SBSA_PCIE,
76     SBSA_PCIE_MMIO,
77     SBSA_PCIE_MMIO_HIGH,
78     SBSA_PCIE_PIO,
79     SBSA_PCIE_ECAM,
80     SBSA_GPIO,
81     SBSA_SECURE_UART,
82     SBSA_SECURE_UART_MM,
83     SBSA_SECURE_MEM,
84     SBSA_AHCI,
85     SBSA_EHCI,
86 };
87 
88 struct SBSAMachineState {
89     MachineState parent;
90     struct arm_boot_info bootinfo;
91     int smp_cpus;
92     void *fdt;
93     int fdt_size;
94     int psci_conduit;
95     DeviceState *gic;
96     PFlashCFI01 *flash[2];
97 };
98 
99 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
100 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
101 
102 static const MemMapEntry sbsa_ref_memmap[] = {
103     /* 512M boot ROM */
104     [SBSA_FLASH] =              {          0, 0x20000000 },
105     /* 512M secure memory */
106     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
107     /* Space reserved for CPU peripheral devices */
108     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
109     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
110     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
111     [SBSA_SECURE_EC] =          { 0x50000000, 0x00001000 },
112     [SBSA_GWDT_REFRESH] =       { 0x50010000, 0x00001000 },
113     [SBSA_GWDT_CONTROL] =       { 0x50011000, 0x00001000 },
114     [SBSA_UART] =               { 0x60000000, 0x00001000 },
115     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
116     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
117     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
118     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
119     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
120     /* Space here reserved for more SMMUs */
121     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
122     [SBSA_EHCI] =               { 0x60110000, 0x00010000 },
123     /* Space here reserved for other devices */
124     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
125     /* 32-bit address PCIE MMIO space */
126     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
127     /* 256M PCIE ECAM space */
128     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
129     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
130     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
131     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
132 };
133 
134 static const int sbsa_ref_irqmap[] = {
135     [SBSA_UART] = 1,
136     [SBSA_RTC] = 2,
137     [SBSA_PCIE] = 3, /* ... to 6 */
138     [SBSA_GPIO] = 7,
139     [SBSA_SECURE_UART] = 8,
140     [SBSA_SECURE_UART_MM] = 9,
141     [SBSA_AHCI] = 10,
142     [SBSA_EHCI] = 11,
143     [SBSA_SMMU] = 12, /* ... to 15 */
144     [SBSA_GWDT_WS0] = 16,
145 };
146 
147 static const char * const valid_cpus[] = {
148     ARM_CPU_TYPE_NAME("cortex-a57"),
149     ARM_CPU_TYPE_NAME("cortex-a72"),
150     ARM_CPU_TYPE_NAME("neoverse-n1"),
151     ARM_CPU_TYPE_NAME("max"),
152 };
153 
154 static bool cpu_type_valid(const char *cpu)
155 {
156     int i;
157 
158     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
159         if (strcmp(cpu, valid_cpus[i]) == 0) {
160             return true;
161         }
162     }
163     return false;
164 }
165 
166 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
167 {
168     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
169     return arm_cpu_mp_affinity(idx, clustersz);
170 }
171 
172 static void sbsa_fdt_add_gic_node(SBSAMachineState *sms)
173 {
174     char *nodename;
175 
176     nodename = g_strdup_printf("/intc");
177     qemu_fdt_add_subnode(sms->fdt, nodename);
178     qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
179                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].base,
180                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].size,
181                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].base,
182                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].size);
183 
184     g_free(nodename);
185 }
186 /*
187  * Firmware on this machine only uses ACPI table to load OS, these limited
188  * device tree nodes are just to let firmware know the info which varies from
189  * command line parameters, so it is not necessary to be fully compatible
190  * with the kernel CPU and NUMA binding rules.
191  */
192 static void create_fdt(SBSAMachineState *sms)
193 {
194     void *fdt = create_device_tree(&sms->fdt_size);
195     const MachineState *ms = MACHINE(sms);
196     int nb_numa_nodes = ms->numa_state->num_nodes;
197     int cpu;
198 
199     if (!fdt) {
200         error_report("create_device_tree() failed");
201         exit(1);
202     }
203 
204     sms->fdt = fdt;
205 
206     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
207     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
208     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
209 
210     /*
211      * This versioning scheme is for informing platform fw only. It is neither:
212      * - A QEMU versioned machine type; a given version of QEMU will emulate
213      *   a given version of the platform.
214      * - A reflection of level of SBSA (now SystemReady SR) support provided.
215      *
216      * machine-version-major: updated when changes breaking fw compatibility
217      *                        are introduced.
218      * machine-version-minor: updated when features are added that don't break
219      *                        fw compatibility.
220      */
221     qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
222     qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 1);
223 
224     if (ms->numa_state->have_numa_distance) {
225         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
226         uint32_t *matrix = g_malloc0(size);
227         int idx, i, j;
228 
229         for (i = 0; i < nb_numa_nodes; i++) {
230             for (j = 0; j < nb_numa_nodes; j++) {
231                 idx = (i * nb_numa_nodes + j) * 3;
232                 matrix[idx + 0] = cpu_to_be32(i);
233                 matrix[idx + 1] = cpu_to_be32(j);
234                 matrix[idx + 2] =
235                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
236             }
237         }
238 
239         qemu_fdt_add_subnode(fdt, "/distance-map");
240         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
241                          matrix, size);
242         g_free(matrix);
243     }
244 
245     /*
246      * From Documentation/devicetree/bindings/arm/cpus.yaml
247      *  On ARM v8 64-bit systems this property is required
248      *    and matches the MPIDR_EL1 register affinity bits.
249      *
250      *    * If cpus node's #address-cells property is set to 2
251      *
252      *      The first reg cell bits [7:0] must be set to
253      *      bits [39:32] of MPIDR_EL1.
254      *
255      *      The second reg cell bits [23:0] must be set to
256      *      bits [23:0] of MPIDR_EL1.
257      */
258     qemu_fdt_add_subnode(sms->fdt, "/cpus");
259     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
260     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
261 
262     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
263         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
264         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
265         CPUState *cs = CPU(armcpu);
266         uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
267 
268         qemu_fdt_add_subnode(sms->fdt, nodename);
269         qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
270 
271         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
272             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
273                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
274         }
275 
276         g_free(nodename);
277     }
278 
279     sbsa_fdt_add_gic_node(sms);
280 }
281 
282 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
283 
284 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
285                                         const char *name,
286                                         const char *alias_prop_name)
287 {
288     /*
289      * Create a single flash device.  We use the same parameters as
290      * the flash devices on the Versatile Express board.
291      */
292     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
293 
294     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
295     qdev_prop_set_uint8(dev, "width", 4);
296     qdev_prop_set_uint8(dev, "device-width", 2);
297     qdev_prop_set_bit(dev, "big-endian", false);
298     qdev_prop_set_uint16(dev, "id0", 0x89);
299     qdev_prop_set_uint16(dev, "id1", 0x18);
300     qdev_prop_set_uint16(dev, "id2", 0x00);
301     qdev_prop_set_uint16(dev, "id3", 0x00);
302     qdev_prop_set_string(dev, "name", name);
303     object_property_add_child(OBJECT(sms), name, OBJECT(dev));
304     object_property_add_alias(OBJECT(sms), alias_prop_name,
305                               OBJECT(dev), "drive");
306     return PFLASH_CFI01(dev);
307 }
308 
309 static void sbsa_flash_create(SBSAMachineState *sms)
310 {
311     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
312     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
313 }
314 
315 static void sbsa_flash_map1(PFlashCFI01 *flash,
316                             hwaddr base, hwaddr size,
317                             MemoryRegion *sysmem)
318 {
319     DeviceState *dev = DEVICE(flash);
320 
321     assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
322     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
323     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
324     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
325 
326     memory_region_add_subregion(sysmem, base,
327                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
328                                                        0));
329 }
330 
331 static void sbsa_flash_map(SBSAMachineState *sms,
332                            MemoryRegion *sysmem,
333                            MemoryRegion *secure_sysmem)
334 {
335     /*
336      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
337      * sysmem is the system memory space. secure_sysmem is the secure view
338      * of the system, and the first flash device should be made visible only
339      * there. The second flash device is visible to both secure and nonsecure.
340      */
341     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
342     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
343 
344     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
345                     secure_sysmem);
346     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
347                     sysmem);
348 }
349 
350 static bool sbsa_firmware_init(SBSAMachineState *sms,
351                                MemoryRegion *sysmem,
352                                MemoryRegion *secure_sysmem)
353 {
354     const char *bios_name;
355     int i;
356     BlockBackend *pflash_blk0;
357 
358     /* Map legacy -drive if=pflash to machine properties */
359     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
360         pflash_cfi01_legacy_drive(sms->flash[i],
361                                   drive_get(IF_PFLASH, 0, i));
362     }
363 
364     sbsa_flash_map(sms, sysmem, secure_sysmem);
365 
366     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
367 
368     bios_name = MACHINE(sms)->firmware;
369     if (bios_name) {
370         char *fname;
371         MemoryRegion *mr;
372         int image_size;
373 
374         if (pflash_blk0) {
375             error_report("The contents of the first flash device may be "
376                          "specified with -bios or with -drive if=pflash... "
377                          "but you cannot use both options at once");
378             exit(1);
379         }
380 
381         /* Fall back to -bios */
382 
383         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
384         if (!fname) {
385             error_report("Could not find ROM image '%s'", bios_name);
386             exit(1);
387         }
388         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
389         image_size = load_image_mr(fname, mr);
390         g_free(fname);
391         if (image_size < 0) {
392             error_report("Could not load ROM image '%s'", bios_name);
393             exit(1);
394         }
395     }
396 
397     return pflash_blk0 || bios_name;
398 }
399 
400 static void create_secure_ram(SBSAMachineState *sms,
401                               MemoryRegion *secure_sysmem)
402 {
403     MemoryRegion *secram = g_new(MemoryRegion, 1);
404     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
405     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
406 
407     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
408                            &error_fatal);
409     memory_region_add_subregion(secure_sysmem, base, secram);
410 }
411 
412 static void create_gic(SBSAMachineState *sms)
413 {
414     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
415     SysBusDevice *gicbusdev;
416     const char *gictype;
417     uint32_t redist0_capacity, redist0_count;
418     int i;
419 
420     gictype = gicv3_class_name();
421 
422     sms->gic = qdev_new(gictype);
423     qdev_prop_set_uint32(sms->gic, "revision", 3);
424     qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
425     /*
426      * Note that the num-irq property counts both internal and external
427      * interrupts; there are always 32 of the former (mandated by GIC spec).
428      */
429     qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
430     qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
431 
432     redist0_capacity =
433                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
434     redist0_count = MIN(smp_cpus, redist0_capacity);
435 
436     qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
437     qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
438 
439     gicbusdev = SYS_BUS_DEVICE(sms->gic);
440     sysbus_realize_and_unref(gicbusdev, &error_fatal);
441     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
442     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
443 
444     /*
445      * Wire the outputs from each CPU's generic timer and the GICv3
446      * maintenance interrupt signal to the appropriate GIC PPI inputs,
447      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
448      */
449     for (i = 0; i < smp_cpus; i++) {
450         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
451         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
452         int irq;
453         /*
454          * Mapping from the output timer irq lines from the CPU to the
455          * GIC PPI inputs used for this board.
456          */
457         const int timer_irq[] = {
458             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
459             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
460             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
461             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
462         };
463 
464         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
465             qdev_connect_gpio_out(cpudev, irq,
466                                   qdev_get_gpio_in(sms->gic,
467                                                    ppibase + timer_irq[irq]));
468         }
469 
470         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
471                                     qdev_get_gpio_in(sms->gic, ppibase
472                                                      + ARCH_GIC_MAINT_IRQ));
473         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
474                                     qdev_get_gpio_in(sms->gic, ppibase
475                                                      + VIRTUAL_PMU_IRQ));
476 
477         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
478         sysbus_connect_irq(gicbusdev, i + smp_cpus,
479                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
480         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
481                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
482         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
483                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
484     }
485 }
486 
487 static void create_uart(const SBSAMachineState *sms, int uart,
488                         MemoryRegion *mem, Chardev *chr)
489 {
490     hwaddr base = sbsa_ref_memmap[uart].base;
491     int irq = sbsa_ref_irqmap[uart];
492     DeviceState *dev = qdev_new(TYPE_PL011);
493     SysBusDevice *s = SYS_BUS_DEVICE(dev);
494 
495     qdev_prop_set_chr(dev, "chardev", chr);
496     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
497     memory_region_add_subregion(mem, base,
498                                 sysbus_mmio_get_region(s, 0));
499     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
500 }
501 
502 static void create_rtc(const SBSAMachineState *sms)
503 {
504     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
505     int irq = sbsa_ref_irqmap[SBSA_RTC];
506 
507     sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
508 }
509 
510 static void create_wdt(const SBSAMachineState *sms)
511 {
512     hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
513     hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
514     DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
515     SysBusDevice *s = SYS_BUS_DEVICE(dev);
516     int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
517 
518     sysbus_realize_and_unref(s, &error_fatal);
519     sysbus_mmio_map(s, 0, rbase);
520     sysbus_mmio_map(s, 1, cbase);
521     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
522 }
523 
524 static DeviceState *gpio_key_dev;
525 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
526 {
527     /* use gpio Pin 3 for power button event */
528     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
529 }
530 
531 static Notifier sbsa_ref_powerdown_notifier = {
532     .notify = sbsa_ref_powerdown_req
533 };
534 
535 static void create_gpio(const SBSAMachineState *sms)
536 {
537     DeviceState *pl061_dev;
538     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
539     int irq = sbsa_ref_irqmap[SBSA_GPIO];
540 
541     pl061_dev = sysbus_create_simple("pl061", base,
542                                      qdev_get_gpio_in(sms->gic, irq));
543 
544     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
545                                         qdev_get_gpio_in(pl061_dev, 3));
546 
547     /* connect powerdown request */
548     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
549 }
550 
551 static void create_ahci(const SBSAMachineState *sms)
552 {
553     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
554     int irq = sbsa_ref_irqmap[SBSA_AHCI];
555     DeviceState *dev;
556     DriveInfo *hd[NUM_SATA_PORTS];
557     SysbusAHCIState *sysahci;
558     AHCIState *ahci;
559     int i;
560 
561     dev = qdev_new("sysbus-ahci");
562     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
563     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
564     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
565     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
566 
567     sysahci = SYSBUS_AHCI(dev);
568     ahci = &sysahci->ahci;
569     ide_drive_get(hd, ARRAY_SIZE(hd));
570     for (i = 0; i < ahci->ports; i++) {
571         if (hd[i] == NULL) {
572             continue;
573         }
574         ide_bus_create_drive(&ahci->dev[i].port, 0, hd[i]);
575     }
576 }
577 
578 static void create_ehci(const SBSAMachineState *sms)
579 {
580     hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
581     int irq = sbsa_ref_irqmap[SBSA_EHCI];
582 
583     sysbus_create_simple("platform-ehci-usb", base,
584                          qdev_get_gpio_in(sms->gic, irq));
585 }
586 
587 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
588 {
589     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
590     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
591     DeviceState *dev;
592     int i;
593 
594     dev = qdev_new(TYPE_ARM_SMMUV3);
595 
596     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
597                              &error_abort);
598     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
599     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
600     for (i = 0; i < NUM_SMMU_IRQS; i++) {
601         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
602                            qdev_get_gpio_in(sms->gic, irq + i));
603     }
604 }
605 
606 static void create_pcie(SBSAMachineState *sms)
607 {
608     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
609     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
610     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
611     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
612     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
613     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
614     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
615     int irq = sbsa_ref_irqmap[SBSA_PCIE];
616     MachineClass *mc = MACHINE_GET_CLASS(sms);
617     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
618     MemoryRegion *ecam_alias, *ecam_reg;
619     DeviceState *dev;
620     PCIHostState *pci;
621     int i;
622 
623     dev = qdev_new(TYPE_GPEX_HOST);
624     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
625 
626     /* Map ECAM space */
627     ecam_alias = g_new0(MemoryRegion, 1);
628     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
629     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
630                              ecam_reg, 0, size_ecam);
631     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
632 
633     /* Map the MMIO space */
634     mmio_alias = g_new0(MemoryRegion, 1);
635     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
636     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
637                              mmio_reg, base_mmio, size_mmio);
638     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
639 
640     /* Map the MMIO_HIGH space */
641     mmio_alias_high = g_new0(MemoryRegion, 1);
642     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
643                              mmio_reg, base_mmio_high, size_mmio_high);
644     memory_region_add_subregion(get_system_memory(), base_mmio_high,
645                                 mmio_alias_high);
646 
647     /* Map IO port space */
648     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
649 
650     for (i = 0; i < GPEX_NUM_IRQS; i++) {
651         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
652                            qdev_get_gpio_in(sms->gic, irq + i));
653         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
654     }
655 
656     pci = PCI_HOST_BRIDGE(dev);
657     if (pci->bus) {
658         for (i = 0; i < nb_nics; i++) {
659             NICInfo *nd = &nd_table[i];
660 
661             if (!nd->model) {
662                 nd->model = g_strdup(mc->default_nic);
663             }
664 
665             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
666         }
667     }
668 
669     pci_create_simple(pci->bus, -1, "bochs-display");
670 
671     create_smmu(sms, pci->bus);
672 }
673 
674 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
675 {
676     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
677                                                  bootinfo);
678 
679     *fdt_size = board->fdt_size;
680     return board->fdt;
681 }
682 
683 static void create_secure_ec(MemoryRegion *mem)
684 {
685     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
686     DeviceState *dev = qdev_new("sbsa-ec");
687     SysBusDevice *s = SYS_BUS_DEVICE(dev);
688 
689     memory_region_add_subregion(mem, base,
690                                 sysbus_mmio_get_region(s, 0));
691 }
692 
693 static void sbsa_ref_init(MachineState *machine)
694 {
695     unsigned int smp_cpus = machine->smp.cpus;
696     unsigned int max_cpus = machine->smp.max_cpus;
697     SBSAMachineState *sms = SBSA_MACHINE(machine);
698     MachineClass *mc = MACHINE_GET_CLASS(machine);
699     MemoryRegion *sysmem = get_system_memory();
700     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
701     bool firmware_loaded;
702     const CPUArchIdList *possible_cpus;
703     int n, sbsa_max_cpus;
704 
705     if (!cpu_type_valid(machine->cpu_type)) {
706         error_report("sbsa-ref: CPU type %s not supported", machine->cpu_type);
707         exit(1);
708     }
709 
710     if (kvm_enabled()) {
711         error_report("sbsa-ref: KVM is not supported for this machine");
712         exit(1);
713     }
714 
715     /*
716      * The Secure view of the world is the same as the NonSecure,
717      * but with a few extra devices. Create it as a container region
718      * containing the system memory at low priority; any secure-only
719      * devices go in at higher priority and take precedence.
720      */
721     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
722                        UINT64_MAX);
723     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
724 
725     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
726 
727     /*
728      * This machine has EL3 enabled, external firmware should supply PSCI
729      * implementation, so the QEMU's internal PSCI is disabled.
730      */
731     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
732 
733     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
734 
735     if (max_cpus > sbsa_max_cpus) {
736         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
737                      "supported by machine 'sbsa-ref' (%d)",
738                      max_cpus, sbsa_max_cpus);
739         exit(1);
740     }
741 
742     sms->smp_cpus = smp_cpus;
743 
744     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
745         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
746         exit(1);
747     }
748 
749     possible_cpus = mc->possible_cpu_arch_ids(machine);
750     for (n = 0; n < possible_cpus->len; n++) {
751         Object *cpuobj;
752         CPUState *cs;
753 
754         if (n >= smp_cpus) {
755             break;
756         }
757 
758         cpuobj = object_new(possible_cpus->cpus[n].type);
759         object_property_set_int(cpuobj, "mp-affinity",
760                                 possible_cpus->cpus[n].arch_id, NULL);
761 
762         cs = CPU(cpuobj);
763         cs->cpu_index = n;
764 
765         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
766                           &error_fatal);
767 
768         if (object_property_find(cpuobj, "reset-cbar")) {
769             object_property_set_int(cpuobj, "reset-cbar",
770                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
771                                     &error_abort);
772         }
773 
774         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
775                                  &error_abort);
776 
777         object_property_set_link(cpuobj, "secure-memory",
778                                  OBJECT(secure_sysmem), &error_abort);
779 
780         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
781         object_unref(cpuobj);
782     }
783 
784     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
785                                 machine->ram);
786 
787     create_fdt(sms);
788 
789     create_secure_ram(sms, secure_sysmem);
790 
791     create_gic(sms);
792 
793     create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
794     create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
795     /* Second secure UART for RAS and MM from EL0 */
796     create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
797 
798     create_rtc(sms);
799 
800     create_wdt(sms);
801 
802     create_gpio(sms);
803 
804     create_ahci(sms);
805 
806     create_ehci(sms);
807 
808     create_pcie(sms);
809 
810     create_secure_ec(secure_sysmem);
811 
812     sms->bootinfo.ram_size = machine->ram_size;
813     sms->bootinfo.board_id = -1;
814     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
815     sms->bootinfo.get_dtb = sbsa_ref_dtb;
816     sms->bootinfo.firmware_loaded = firmware_loaded;
817     arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
818 }
819 
820 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
821 {
822     unsigned int max_cpus = ms->smp.max_cpus;
823     SBSAMachineState *sms = SBSA_MACHINE(ms);
824     int n;
825 
826     if (ms->possible_cpus) {
827         assert(ms->possible_cpus->len == max_cpus);
828         return ms->possible_cpus;
829     }
830 
831     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
832                                   sizeof(CPUArchId) * max_cpus);
833     ms->possible_cpus->len = max_cpus;
834     for (n = 0; n < ms->possible_cpus->len; n++) {
835         ms->possible_cpus->cpus[n].type = ms->cpu_type;
836         ms->possible_cpus->cpus[n].arch_id =
837             sbsa_ref_cpu_mp_affinity(sms, n);
838         ms->possible_cpus->cpus[n].props.has_thread_id = true;
839         ms->possible_cpus->cpus[n].props.thread_id = n;
840     }
841     return ms->possible_cpus;
842 }
843 
844 static CpuInstanceProperties
845 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
846 {
847     MachineClass *mc = MACHINE_GET_CLASS(ms);
848     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
849 
850     assert(cpu_index < possible_cpus->len);
851     return possible_cpus->cpus[cpu_index].props;
852 }
853 
854 static int64_t
855 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
856 {
857     return idx % ms->numa_state->num_nodes;
858 }
859 
860 static void sbsa_ref_instance_init(Object *obj)
861 {
862     SBSAMachineState *sms = SBSA_MACHINE(obj);
863 
864     sbsa_flash_create(sms);
865 }
866 
867 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
868 {
869     MachineClass *mc = MACHINE_CLASS(oc);
870 
871     mc->init = sbsa_ref_init;
872     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
873     mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n1");
874     mc->max_cpus = 512;
875     mc->pci_allow_0_address = true;
876     mc->minimum_page_bits = 12;
877     mc->block_default_type = IF_IDE;
878     mc->no_cdrom = 1;
879     mc->default_nic = "e1000e";
880     mc->default_ram_size = 1 * GiB;
881     mc->default_ram_id = "sbsa-ref.ram";
882     mc->default_cpus = 4;
883     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
884     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
885     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
886 }
887 
888 static const TypeInfo sbsa_ref_info = {
889     .name          = TYPE_SBSA_MACHINE,
890     .parent        = TYPE_MACHINE,
891     .instance_init = sbsa_ref_instance_init,
892     .class_init    = sbsa_ref_class_init,
893     .instance_size = sizeof(SBSAMachineState),
894 };
895 
896 static void sbsa_ref_machine_init(void)
897 {
898     type_register_static(&sbsa_ref_info);
899 }
900 
901 type_init(sbsa_ref_machine_init);
902