xref: /openbmc/qemu/hw/arm/sbsa-ref.c (revision afb81fe8)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/units.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/kvm.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/runstate.h"
29 #include "sysemu/sysemu.h"
30 #include "exec/hwaddr.h"
31 #include "kvm_arm.h"
32 #include "hw/arm/boot.h"
33 #include "hw/arm/fdt.h"
34 #include "hw/arm/smmuv3.h"
35 #include "hw/block/flash.h"
36 #include "hw/boards.h"
37 #include "hw/ide/internal.h"
38 #include "hw/ide/ahci_internal.h"
39 #include "hw/intc/arm_gicv3_common.h"
40 #include "hw/intc/arm_gicv3_its_common.h"
41 #include "hw/loader.h"
42 #include "hw/pci-host/gpex.h"
43 #include "hw/qdev-properties.h"
44 #include "hw/usb.h"
45 #include "hw/usb/xhci.h"
46 #include "hw/char/pl011.h"
47 #include "hw/watchdog/sbsa_gwdt.h"
48 #include "net/net.h"
49 #include "qom/object.h"
50 
51 #define RAMLIMIT_GB 8192
52 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
53 
54 #define NUM_IRQS        256
55 #define NUM_SMMU_IRQS   4
56 #define NUM_SATA_PORTS  6
57 
58 #define VIRTUAL_PMU_IRQ        7
59 #define ARCH_GIC_MAINT_IRQ     9
60 #define ARCH_TIMER_VIRT_IRQ    11
61 #define ARCH_TIMER_S_EL1_IRQ   13
62 #define ARCH_TIMER_NS_EL1_IRQ  14
63 #define ARCH_TIMER_NS_EL2_IRQ  10
64 #define ARCH_TIMER_NS_EL2_VIRT_IRQ  12
65 
66 enum {
67     SBSA_FLASH,
68     SBSA_MEM,
69     SBSA_CPUPERIPHS,
70     SBSA_GIC_DIST,
71     SBSA_GIC_REDIST,
72     SBSA_GIC_ITS,
73     SBSA_SECURE_EC,
74     SBSA_GWDT_WS0,
75     SBSA_GWDT_REFRESH,
76     SBSA_GWDT_CONTROL,
77     SBSA_SMMU,
78     SBSA_UART,
79     SBSA_RTC,
80     SBSA_PCIE,
81     SBSA_PCIE_MMIO,
82     SBSA_PCIE_MMIO_HIGH,
83     SBSA_PCIE_PIO,
84     SBSA_PCIE_ECAM,
85     SBSA_GPIO,
86     SBSA_SECURE_UART,
87     SBSA_SECURE_UART_MM,
88     SBSA_SECURE_MEM,
89     SBSA_AHCI,
90     SBSA_XHCI,
91 };
92 
93 struct SBSAMachineState {
94     MachineState parent;
95     struct arm_boot_info bootinfo;
96     int smp_cpus;
97     void *fdt;
98     int fdt_size;
99     int psci_conduit;
100     DeviceState *gic;
101     PFlashCFI01 *flash[2];
102 };
103 
104 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
105 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
106 
107 static const MemMapEntry sbsa_ref_memmap[] = {
108     /* 512M boot ROM */
109     [SBSA_FLASH] =              {          0, 0x20000000 },
110     /* 512M secure memory */
111     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
112     /* Space reserved for CPU peripheral devices */
113     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
114     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
115     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
116     [SBSA_GIC_ITS] =            { 0x44081000, 0x00020000 },
117     [SBSA_SECURE_EC] =          { 0x50000000, 0x00001000 },
118     [SBSA_GWDT_REFRESH] =       { 0x50010000, 0x00001000 },
119     [SBSA_GWDT_CONTROL] =       { 0x50011000, 0x00001000 },
120     [SBSA_UART] =               { 0x60000000, 0x00001000 },
121     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
122     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
123     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
124     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
125     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
126     /* Space here reserved for more SMMUs */
127     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
128     [SBSA_XHCI] =               { 0x60110000, 0x00010000 },
129     /* Space here reserved for other devices */
130     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
131     /* 32-bit address PCIE MMIO space */
132     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
133     /* 256M PCIE ECAM space */
134     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
135     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
136     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
137     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
138 };
139 
140 static const int sbsa_ref_irqmap[] = {
141     [SBSA_UART] = 1,
142     [SBSA_RTC] = 2,
143     [SBSA_PCIE] = 3, /* ... to 6 */
144     [SBSA_GPIO] = 7,
145     [SBSA_SECURE_UART] = 8,
146     [SBSA_SECURE_UART_MM] = 9,
147     [SBSA_AHCI] = 10,
148     [SBSA_XHCI] = 11,
149     [SBSA_SMMU] = 12, /* ... to 15 */
150     [SBSA_GWDT_WS0] = 16,
151 };
152 
153 static const char * const valid_cpus[] = {
154     ARM_CPU_TYPE_NAME("cortex-a57"),
155     ARM_CPU_TYPE_NAME("cortex-a72"),
156     ARM_CPU_TYPE_NAME("neoverse-n1"),
157     ARM_CPU_TYPE_NAME("neoverse-v1"),
158     ARM_CPU_TYPE_NAME("max"),
159 };
160 
161 static bool cpu_type_valid(const char *cpu)
162 {
163     int i;
164 
165     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
166         if (strcmp(cpu, valid_cpus[i]) == 0) {
167             return true;
168         }
169     }
170     return false;
171 }
172 
173 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
174 {
175     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
176     return arm_cpu_mp_affinity(idx, clustersz);
177 }
178 
179 static void sbsa_fdt_add_gic_node(SBSAMachineState *sms)
180 {
181     char *nodename;
182 
183     nodename = g_strdup_printf("/intc");
184     qemu_fdt_add_subnode(sms->fdt, nodename);
185     qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
186                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].base,
187                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].size,
188                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].base,
189                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].size);
190 
191     nodename = g_strdup_printf("/intc/its");
192     qemu_fdt_add_subnode(sms->fdt, nodename);
193     qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
194                                  2, sbsa_ref_memmap[SBSA_GIC_ITS].base,
195                                  2, sbsa_ref_memmap[SBSA_GIC_ITS].size);
196 
197     g_free(nodename);
198 }
199 
200 /*
201  * Firmware on this machine only uses ACPI table to load OS, these limited
202  * device tree nodes are just to let firmware know the info which varies from
203  * command line parameters, so it is not necessary to be fully compatible
204  * with the kernel CPU and NUMA binding rules.
205  */
206 static void create_fdt(SBSAMachineState *sms)
207 {
208     void *fdt = create_device_tree(&sms->fdt_size);
209     const MachineState *ms = MACHINE(sms);
210     int nb_numa_nodes = ms->numa_state->num_nodes;
211     int cpu;
212 
213     if (!fdt) {
214         error_report("create_device_tree() failed");
215         exit(1);
216     }
217 
218     sms->fdt = fdt;
219 
220     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
221     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
222     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
223 
224     /*
225      * This versioning scheme is for informing platform fw only. It is neither:
226      * - A QEMU versioned machine type; a given version of QEMU will emulate
227      *   a given version of the platform.
228      * - A reflection of level of SBSA (now SystemReady SR) support provided.
229      *
230      * machine-version-major: updated when changes breaking fw compatibility
231      *                        are introduced.
232      * machine-version-minor: updated when features are added that don't break
233      *                        fw compatibility.
234      */
235     qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
236     qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 3);
237 
238     if (ms->numa_state->have_numa_distance) {
239         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
240         uint32_t *matrix = g_malloc0(size);
241         int idx, i, j;
242 
243         for (i = 0; i < nb_numa_nodes; i++) {
244             for (j = 0; j < nb_numa_nodes; j++) {
245                 idx = (i * nb_numa_nodes + j) * 3;
246                 matrix[idx + 0] = cpu_to_be32(i);
247                 matrix[idx + 1] = cpu_to_be32(j);
248                 matrix[idx + 2] =
249                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
250             }
251         }
252 
253         qemu_fdt_add_subnode(fdt, "/distance-map");
254         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
255                          matrix, size);
256         g_free(matrix);
257     }
258 
259     /*
260      * From Documentation/devicetree/bindings/arm/cpus.yaml
261      *  On ARM v8 64-bit systems this property is required
262      *    and matches the MPIDR_EL1 register affinity bits.
263      *
264      *    * If cpus node's #address-cells property is set to 2
265      *
266      *      The first reg cell bits [7:0] must be set to
267      *      bits [39:32] of MPIDR_EL1.
268      *
269      *      The second reg cell bits [23:0] must be set to
270      *      bits [23:0] of MPIDR_EL1.
271      */
272     qemu_fdt_add_subnode(sms->fdt, "/cpus");
273     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
274     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
275 
276     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
277         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
278         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
279         CPUState *cs = CPU(armcpu);
280         uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
281 
282         qemu_fdt_add_subnode(sms->fdt, nodename);
283         qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
284 
285         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
286             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
287                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
288         }
289 
290         g_free(nodename);
291     }
292 
293     sbsa_fdt_add_gic_node(sms);
294 }
295 
296 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
297 
298 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
299                                         const char *name,
300                                         const char *alias_prop_name)
301 {
302     /*
303      * Create a single flash device.  We use the same parameters as
304      * the flash devices on the Versatile Express board.
305      */
306     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
307 
308     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
309     qdev_prop_set_uint8(dev, "width", 4);
310     qdev_prop_set_uint8(dev, "device-width", 2);
311     qdev_prop_set_bit(dev, "big-endian", false);
312     qdev_prop_set_uint16(dev, "id0", 0x89);
313     qdev_prop_set_uint16(dev, "id1", 0x18);
314     qdev_prop_set_uint16(dev, "id2", 0x00);
315     qdev_prop_set_uint16(dev, "id3", 0x00);
316     qdev_prop_set_string(dev, "name", name);
317     object_property_add_child(OBJECT(sms), name, OBJECT(dev));
318     object_property_add_alias(OBJECT(sms), alias_prop_name,
319                               OBJECT(dev), "drive");
320     return PFLASH_CFI01(dev);
321 }
322 
323 static void sbsa_flash_create(SBSAMachineState *sms)
324 {
325     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
326     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
327 }
328 
329 static void sbsa_flash_map1(PFlashCFI01 *flash,
330                             hwaddr base, hwaddr size,
331                             MemoryRegion *sysmem)
332 {
333     DeviceState *dev = DEVICE(flash);
334 
335     assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
336     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
337     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
338     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
339 
340     memory_region_add_subregion(sysmem, base,
341                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
342                                                        0));
343 }
344 
345 static void sbsa_flash_map(SBSAMachineState *sms,
346                            MemoryRegion *sysmem,
347                            MemoryRegion *secure_sysmem)
348 {
349     /*
350      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
351      * sysmem is the system memory space. secure_sysmem is the secure view
352      * of the system, and the first flash device should be made visible only
353      * there. The second flash device is visible to both secure and nonsecure.
354      */
355     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
356     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
357 
358     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
359                     secure_sysmem);
360     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
361                     sysmem);
362 }
363 
364 static bool sbsa_firmware_init(SBSAMachineState *sms,
365                                MemoryRegion *sysmem,
366                                MemoryRegion *secure_sysmem)
367 {
368     const char *bios_name;
369     int i;
370     BlockBackend *pflash_blk0;
371 
372     /* Map legacy -drive if=pflash to machine properties */
373     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
374         pflash_cfi01_legacy_drive(sms->flash[i],
375                                   drive_get(IF_PFLASH, 0, i));
376     }
377 
378     sbsa_flash_map(sms, sysmem, secure_sysmem);
379 
380     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
381 
382     bios_name = MACHINE(sms)->firmware;
383     if (bios_name) {
384         char *fname;
385         MemoryRegion *mr;
386         int image_size;
387 
388         if (pflash_blk0) {
389             error_report("The contents of the first flash device may be "
390                          "specified with -bios or with -drive if=pflash... "
391                          "but you cannot use both options at once");
392             exit(1);
393         }
394 
395         /* Fall back to -bios */
396 
397         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
398         if (!fname) {
399             error_report("Could not find ROM image '%s'", bios_name);
400             exit(1);
401         }
402         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
403         image_size = load_image_mr(fname, mr);
404         g_free(fname);
405         if (image_size < 0) {
406             error_report("Could not load ROM image '%s'", bios_name);
407             exit(1);
408         }
409     }
410 
411     return pflash_blk0 || bios_name;
412 }
413 
414 static void create_secure_ram(SBSAMachineState *sms,
415                               MemoryRegion *secure_sysmem)
416 {
417     MemoryRegion *secram = g_new(MemoryRegion, 1);
418     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
419     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
420 
421     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
422                            &error_fatal);
423     memory_region_add_subregion(secure_sysmem, base, secram);
424 }
425 
426 static void create_its(SBSAMachineState *sms)
427 {
428     const char *itsclass = its_class_name();
429     DeviceState *dev;
430 
431     dev = qdev_new(itsclass);
432 
433     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic),
434                              &error_abort);
435     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
436     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base);
437 }
438 
439 static void create_gic(SBSAMachineState *sms, MemoryRegion *mem)
440 {
441     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
442     SysBusDevice *gicbusdev;
443     const char *gictype;
444     uint32_t redist0_capacity, redist0_count;
445     int i;
446 
447     gictype = gicv3_class_name();
448 
449     sms->gic = qdev_new(gictype);
450     qdev_prop_set_uint32(sms->gic, "revision", 3);
451     qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
452     /*
453      * Note that the num-irq property counts both internal and external
454      * interrupts; there are always 32 of the former (mandated by GIC spec).
455      */
456     qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
457     qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
458 
459     redist0_capacity =
460                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
461     redist0_count = MIN(smp_cpus, redist0_capacity);
462 
463     qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
464     qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
465 
466     object_property_set_link(OBJECT(sms->gic), "sysmem",
467                              OBJECT(mem), &error_fatal);
468     qdev_prop_set_bit(sms->gic, "has-lpi", true);
469 
470     gicbusdev = SYS_BUS_DEVICE(sms->gic);
471     sysbus_realize_and_unref(gicbusdev, &error_fatal);
472     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
473     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
474 
475     /*
476      * Wire the outputs from each CPU's generic timer and the GICv3
477      * maintenance interrupt signal to the appropriate GIC PPI inputs,
478      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
479      */
480     for (i = 0; i < smp_cpus; i++) {
481         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
482         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
483         int irq;
484         /*
485          * Mapping from the output timer irq lines from the CPU to the
486          * GIC PPI inputs used for this board.
487          */
488         const int timer_irq[] = {
489             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
490             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
491             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
492             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
493             [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
494         };
495 
496         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
497             qdev_connect_gpio_out(cpudev, irq,
498                                   qdev_get_gpio_in(sms->gic,
499                                                    ppibase + timer_irq[irq]));
500         }
501 
502         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
503                                     qdev_get_gpio_in(sms->gic, ppibase
504                                                      + ARCH_GIC_MAINT_IRQ));
505         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
506                                     qdev_get_gpio_in(sms->gic, ppibase
507                                                      + VIRTUAL_PMU_IRQ));
508 
509         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
510         sysbus_connect_irq(gicbusdev, i + smp_cpus,
511                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
512         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
513                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
514         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
515                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
516     }
517     create_its(sms);
518 }
519 
520 static void create_uart(const SBSAMachineState *sms, int uart,
521                         MemoryRegion *mem, Chardev *chr)
522 {
523     hwaddr base = sbsa_ref_memmap[uart].base;
524     int irq = sbsa_ref_irqmap[uart];
525     DeviceState *dev = qdev_new(TYPE_PL011);
526     SysBusDevice *s = SYS_BUS_DEVICE(dev);
527 
528     qdev_prop_set_chr(dev, "chardev", chr);
529     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
530     memory_region_add_subregion(mem, base,
531                                 sysbus_mmio_get_region(s, 0));
532     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
533 }
534 
535 static void create_rtc(const SBSAMachineState *sms)
536 {
537     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
538     int irq = sbsa_ref_irqmap[SBSA_RTC];
539 
540     sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
541 }
542 
543 static void create_wdt(const SBSAMachineState *sms)
544 {
545     hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
546     hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
547     DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
548     SysBusDevice *s = SYS_BUS_DEVICE(dev);
549     int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
550 
551     sysbus_realize_and_unref(s, &error_fatal);
552     sysbus_mmio_map(s, 0, rbase);
553     sysbus_mmio_map(s, 1, cbase);
554     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
555 }
556 
557 static DeviceState *gpio_key_dev;
558 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
559 {
560     /* use gpio Pin 3 for power button event */
561     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
562 }
563 
564 static Notifier sbsa_ref_powerdown_notifier = {
565     .notify = sbsa_ref_powerdown_req
566 };
567 
568 static void create_gpio(const SBSAMachineState *sms)
569 {
570     DeviceState *pl061_dev;
571     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
572     int irq = sbsa_ref_irqmap[SBSA_GPIO];
573 
574     pl061_dev = sysbus_create_simple("pl061", base,
575                                      qdev_get_gpio_in(sms->gic, irq));
576 
577     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
578                                         qdev_get_gpio_in(pl061_dev, 3));
579 
580     /* connect powerdown request */
581     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
582 }
583 
584 static void create_ahci(const SBSAMachineState *sms)
585 {
586     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
587     int irq = sbsa_ref_irqmap[SBSA_AHCI];
588     DeviceState *dev;
589     DriveInfo *hd[NUM_SATA_PORTS];
590     SysbusAHCIState *sysahci;
591     AHCIState *ahci;
592     int i;
593 
594     dev = qdev_new("sysbus-ahci");
595     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
596     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
597     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
598     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
599 
600     sysahci = SYSBUS_AHCI(dev);
601     ahci = &sysahci->ahci;
602     ide_drive_get(hd, ARRAY_SIZE(hd));
603     for (i = 0; i < ahci->ports; i++) {
604         if (hd[i] == NULL) {
605             continue;
606         }
607         ide_bus_create_drive(&ahci->dev[i].port, 0, hd[i]);
608     }
609 }
610 
611 static void create_xhci(const SBSAMachineState *sms)
612 {
613     hwaddr base = sbsa_ref_memmap[SBSA_XHCI].base;
614     int irq = sbsa_ref_irqmap[SBSA_XHCI];
615     DeviceState *dev = qdev_new(TYPE_XHCI_SYSBUS);
616     qdev_prop_set_uint32(dev, "slots", XHCI_MAXSLOTS);
617 
618     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
619     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
620     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
621 }
622 
623 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
624 {
625     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
626     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
627     DeviceState *dev;
628     int i;
629 
630     dev = qdev_new(TYPE_ARM_SMMUV3);
631 
632     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
633                              &error_abort);
634     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
635     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
636     for (i = 0; i < NUM_SMMU_IRQS; i++) {
637         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
638                            qdev_get_gpio_in(sms->gic, irq + i));
639     }
640 }
641 
642 static void create_pcie(SBSAMachineState *sms)
643 {
644     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
645     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
646     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
647     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
648     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
649     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
650     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
651     int irq = sbsa_ref_irqmap[SBSA_PCIE];
652     MachineClass *mc = MACHINE_GET_CLASS(sms);
653     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
654     MemoryRegion *ecam_alias, *ecam_reg;
655     DeviceState *dev;
656     PCIHostState *pci;
657     int i;
658 
659     dev = qdev_new(TYPE_GPEX_HOST);
660     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
661 
662     /* Map ECAM space */
663     ecam_alias = g_new0(MemoryRegion, 1);
664     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
665     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
666                              ecam_reg, 0, size_ecam);
667     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
668 
669     /* Map the MMIO space */
670     mmio_alias = g_new0(MemoryRegion, 1);
671     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
672     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
673                              mmio_reg, base_mmio, size_mmio);
674     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
675 
676     /* Map the MMIO_HIGH space */
677     mmio_alias_high = g_new0(MemoryRegion, 1);
678     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
679                              mmio_reg, base_mmio_high, size_mmio_high);
680     memory_region_add_subregion(get_system_memory(), base_mmio_high,
681                                 mmio_alias_high);
682 
683     /* Map IO port space */
684     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
685 
686     for (i = 0; i < GPEX_NUM_IRQS; i++) {
687         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
688                            qdev_get_gpio_in(sms->gic, irq + i));
689         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
690     }
691 
692     pci = PCI_HOST_BRIDGE(dev);
693     if (pci->bus) {
694         for (i = 0; i < nb_nics; i++) {
695             pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
696         }
697     }
698 
699     pci_create_simple(pci->bus, -1, "bochs-display");
700 
701     create_smmu(sms, pci->bus);
702 }
703 
704 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
705 {
706     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
707                                                  bootinfo);
708 
709     *fdt_size = board->fdt_size;
710     return board->fdt;
711 }
712 
713 static void create_secure_ec(MemoryRegion *mem)
714 {
715     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
716     DeviceState *dev = qdev_new("sbsa-ec");
717     SysBusDevice *s = SYS_BUS_DEVICE(dev);
718 
719     memory_region_add_subregion(mem, base,
720                                 sysbus_mmio_get_region(s, 0));
721 }
722 
723 static void sbsa_ref_init(MachineState *machine)
724 {
725     unsigned int smp_cpus = machine->smp.cpus;
726     unsigned int max_cpus = machine->smp.max_cpus;
727     SBSAMachineState *sms = SBSA_MACHINE(machine);
728     MachineClass *mc = MACHINE_GET_CLASS(machine);
729     MemoryRegion *sysmem = get_system_memory();
730     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
731     bool firmware_loaded;
732     const CPUArchIdList *possible_cpus;
733     int n, sbsa_max_cpus;
734 
735     if (!cpu_type_valid(machine->cpu_type)) {
736         error_report("sbsa-ref: CPU type %s not supported", machine->cpu_type);
737         exit(1);
738     }
739 
740     if (kvm_enabled()) {
741         error_report("sbsa-ref: KVM is not supported for this machine");
742         exit(1);
743     }
744 
745     /*
746      * The Secure view of the world is the same as the NonSecure,
747      * but with a few extra devices. Create it as a container region
748      * containing the system memory at low priority; any secure-only
749      * devices go in at higher priority and take precedence.
750      */
751     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
752                        UINT64_MAX);
753     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
754 
755     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
756 
757     /*
758      * This machine has EL3 enabled, external firmware should supply PSCI
759      * implementation, so the QEMU's internal PSCI is disabled.
760      */
761     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
762 
763     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
764 
765     if (max_cpus > sbsa_max_cpus) {
766         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
767                      "supported by machine 'sbsa-ref' (%d)",
768                      max_cpus, sbsa_max_cpus);
769         exit(1);
770     }
771 
772     sms->smp_cpus = smp_cpus;
773 
774     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
775         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
776         exit(1);
777     }
778 
779     possible_cpus = mc->possible_cpu_arch_ids(machine);
780     for (n = 0; n < possible_cpus->len; n++) {
781         Object *cpuobj;
782         CPUState *cs;
783 
784         if (n >= smp_cpus) {
785             break;
786         }
787 
788         cpuobj = object_new(possible_cpus->cpus[n].type);
789         object_property_set_int(cpuobj, "mp-affinity",
790                                 possible_cpus->cpus[n].arch_id, NULL);
791 
792         cs = CPU(cpuobj);
793         cs->cpu_index = n;
794 
795         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
796                           &error_fatal);
797 
798         if (object_property_find(cpuobj, "reset-cbar")) {
799             object_property_set_int(cpuobj, "reset-cbar",
800                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
801                                     &error_abort);
802         }
803 
804         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
805                                  &error_abort);
806 
807         object_property_set_link(cpuobj, "secure-memory",
808                                  OBJECT(secure_sysmem), &error_abort);
809 
810         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
811         object_unref(cpuobj);
812     }
813 
814     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
815                                 machine->ram);
816 
817     create_fdt(sms);
818 
819     create_secure_ram(sms, secure_sysmem);
820 
821     create_gic(sms, sysmem);
822 
823     create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
824     create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
825     /* Second secure UART for RAS and MM from EL0 */
826     create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
827 
828     create_rtc(sms);
829 
830     create_wdt(sms);
831 
832     create_gpio(sms);
833 
834     create_ahci(sms);
835 
836     create_xhci(sms);
837 
838     create_pcie(sms);
839 
840     create_secure_ec(secure_sysmem);
841 
842     sms->bootinfo.ram_size = machine->ram_size;
843     sms->bootinfo.board_id = -1;
844     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
845     sms->bootinfo.get_dtb = sbsa_ref_dtb;
846     sms->bootinfo.firmware_loaded = firmware_loaded;
847     arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
848 }
849 
850 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
851 {
852     unsigned int max_cpus = ms->smp.max_cpus;
853     SBSAMachineState *sms = SBSA_MACHINE(ms);
854     int n;
855 
856     if (ms->possible_cpus) {
857         assert(ms->possible_cpus->len == max_cpus);
858         return ms->possible_cpus;
859     }
860 
861     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
862                                   sizeof(CPUArchId) * max_cpus);
863     ms->possible_cpus->len = max_cpus;
864     for (n = 0; n < ms->possible_cpus->len; n++) {
865         ms->possible_cpus->cpus[n].type = ms->cpu_type;
866         ms->possible_cpus->cpus[n].arch_id =
867             sbsa_ref_cpu_mp_affinity(sms, n);
868         ms->possible_cpus->cpus[n].props.has_thread_id = true;
869         ms->possible_cpus->cpus[n].props.thread_id = n;
870     }
871     return ms->possible_cpus;
872 }
873 
874 static CpuInstanceProperties
875 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
876 {
877     MachineClass *mc = MACHINE_GET_CLASS(ms);
878     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
879 
880     assert(cpu_index < possible_cpus->len);
881     return possible_cpus->cpus[cpu_index].props;
882 }
883 
884 static int64_t
885 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
886 {
887     return idx % ms->numa_state->num_nodes;
888 }
889 
890 static void sbsa_ref_instance_init(Object *obj)
891 {
892     SBSAMachineState *sms = SBSA_MACHINE(obj);
893 
894     sbsa_flash_create(sms);
895 }
896 
897 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
898 {
899     MachineClass *mc = MACHINE_CLASS(oc);
900 
901     mc->init = sbsa_ref_init;
902     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
903     mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n1");
904     mc->max_cpus = 512;
905     mc->pci_allow_0_address = true;
906     mc->minimum_page_bits = 12;
907     mc->block_default_type = IF_IDE;
908     mc->no_cdrom = 1;
909     mc->default_nic = "e1000e";
910     mc->default_ram_size = 1 * GiB;
911     mc->default_ram_id = "sbsa-ref.ram";
912     mc->default_cpus = 4;
913     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
914     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
915     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
916     /* platform instead of architectural choice */
917     mc->cpu_cluster_has_numa_boundary = true;
918 }
919 
920 static const TypeInfo sbsa_ref_info = {
921     .name          = TYPE_SBSA_MACHINE,
922     .parent        = TYPE_MACHINE,
923     .instance_init = sbsa_ref_instance_init,
924     .class_init    = sbsa_ref_class_init,
925     .instance_size = sizeof(SBSAMachineState),
926 };
927 
928 static void sbsa_ref_machine_init(void)
929 {
930     type_register_static(&sbsa_ref_info);
931 }
932 
933 type_init(sbsa_ref_machine_init);
934