xref: /openbmc/qemu/hw/arm/sbsa-ref.c (revision abf7ba31)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/units.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/kvm.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/runstate.h"
29 #include "sysemu/sysemu.h"
30 #include "exec/hwaddr.h"
31 #include "kvm_arm.h"
32 #include "hw/arm/boot.h"
33 #include "hw/arm/fdt.h"
34 #include "hw/arm/smmuv3.h"
35 #include "hw/block/flash.h"
36 #include "hw/boards.h"
37 #include "hw/ide/internal.h"
38 #include "hw/ide/ahci_internal.h"
39 #include "hw/intc/arm_gicv3_common.h"
40 #include "hw/intc/arm_gicv3_its_common.h"
41 #include "hw/loader.h"
42 #include "hw/pci-host/gpex.h"
43 #include "hw/qdev-properties.h"
44 #include "hw/usb.h"
45 #include "hw/char/pl011.h"
46 #include "hw/watchdog/sbsa_gwdt.h"
47 #include "net/net.h"
48 #include "qom/object.h"
49 
50 #define RAMLIMIT_GB 8192
51 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
52 
53 #define NUM_IRQS        256
54 #define NUM_SMMU_IRQS   4
55 #define NUM_SATA_PORTS  6
56 
57 #define VIRTUAL_PMU_IRQ        7
58 #define ARCH_GIC_MAINT_IRQ     9
59 #define ARCH_TIMER_VIRT_IRQ    11
60 #define ARCH_TIMER_S_EL1_IRQ   13
61 #define ARCH_TIMER_NS_EL1_IRQ  14
62 #define ARCH_TIMER_NS_EL2_IRQ  10
63 
64 enum {
65     SBSA_FLASH,
66     SBSA_MEM,
67     SBSA_CPUPERIPHS,
68     SBSA_GIC_DIST,
69     SBSA_GIC_REDIST,
70     SBSA_GIC_ITS,
71     SBSA_SECURE_EC,
72     SBSA_GWDT_WS0,
73     SBSA_GWDT_REFRESH,
74     SBSA_GWDT_CONTROL,
75     SBSA_SMMU,
76     SBSA_UART,
77     SBSA_RTC,
78     SBSA_PCIE,
79     SBSA_PCIE_MMIO,
80     SBSA_PCIE_MMIO_HIGH,
81     SBSA_PCIE_PIO,
82     SBSA_PCIE_ECAM,
83     SBSA_GPIO,
84     SBSA_SECURE_UART,
85     SBSA_SECURE_UART_MM,
86     SBSA_SECURE_MEM,
87     SBSA_AHCI,
88     SBSA_EHCI,
89 };
90 
91 struct SBSAMachineState {
92     MachineState parent;
93     struct arm_boot_info bootinfo;
94     int smp_cpus;
95     void *fdt;
96     int fdt_size;
97     int psci_conduit;
98     DeviceState *gic;
99     PFlashCFI01 *flash[2];
100 };
101 
102 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
103 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
104 
105 static const MemMapEntry sbsa_ref_memmap[] = {
106     /* 512M boot ROM */
107     [SBSA_FLASH] =              {          0, 0x20000000 },
108     /* 512M secure memory */
109     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
110     /* Space reserved for CPU peripheral devices */
111     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
112     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
113     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
114     [SBSA_GIC_ITS] =            { 0x44081000, 0x00020000 },
115     [SBSA_SECURE_EC] =          { 0x50000000, 0x00001000 },
116     [SBSA_GWDT_REFRESH] =       { 0x50010000, 0x00001000 },
117     [SBSA_GWDT_CONTROL] =       { 0x50011000, 0x00001000 },
118     [SBSA_UART] =               { 0x60000000, 0x00001000 },
119     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
120     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
121     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
122     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
123     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
124     /* Space here reserved for more SMMUs */
125     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
126     [SBSA_EHCI] =               { 0x60110000, 0x00010000 },
127     /* Space here reserved for other devices */
128     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
129     /* 32-bit address PCIE MMIO space */
130     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
131     /* 256M PCIE ECAM space */
132     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
133     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
134     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
135     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
136 };
137 
138 static const int sbsa_ref_irqmap[] = {
139     [SBSA_UART] = 1,
140     [SBSA_RTC] = 2,
141     [SBSA_PCIE] = 3, /* ... to 6 */
142     [SBSA_GPIO] = 7,
143     [SBSA_SECURE_UART] = 8,
144     [SBSA_SECURE_UART_MM] = 9,
145     [SBSA_AHCI] = 10,
146     [SBSA_EHCI] = 11,
147     [SBSA_SMMU] = 12, /* ... to 15 */
148     [SBSA_GWDT_WS0] = 16,
149 };
150 
151 static const char * const valid_cpus[] = {
152     ARM_CPU_TYPE_NAME("cortex-a57"),
153     ARM_CPU_TYPE_NAME("cortex-a72"),
154     ARM_CPU_TYPE_NAME("neoverse-n1"),
155     ARM_CPU_TYPE_NAME("max"),
156 };
157 
158 static bool cpu_type_valid(const char *cpu)
159 {
160     int i;
161 
162     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
163         if (strcmp(cpu, valid_cpus[i]) == 0) {
164             return true;
165         }
166     }
167     return false;
168 }
169 
170 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
171 {
172     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
173     return arm_cpu_mp_affinity(idx, clustersz);
174 }
175 
176 static void sbsa_fdt_add_gic_node(SBSAMachineState *sms)
177 {
178     char *nodename;
179 
180     nodename = g_strdup_printf("/intc");
181     qemu_fdt_add_subnode(sms->fdt, nodename);
182     qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
183                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].base,
184                                  2, sbsa_ref_memmap[SBSA_GIC_DIST].size,
185                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].base,
186                                  2, sbsa_ref_memmap[SBSA_GIC_REDIST].size);
187 
188     nodename = g_strdup_printf("/intc/its");
189     qemu_fdt_add_subnode(sms->fdt, nodename);
190     qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
191                                  2, sbsa_ref_memmap[SBSA_GIC_ITS].base,
192                                  2, sbsa_ref_memmap[SBSA_GIC_ITS].size);
193 
194     g_free(nodename);
195 }
196 
197 /*
198  * Firmware on this machine only uses ACPI table to load OS, these limited
199  * device tree nodes are just to let firmware know the info which varies from
200  * command line parameters, so it is not necessary to be fully compatible
201  * with the kernel CPU and NUMA binding rules.
202  */
203 static void create_fdt(SBSAMachineState *sms)
204 {
205     void *fdt = create_device_tree(&sms->fdt_size);
206     const MachineState *ms = MACHINE(sms);
207     int nb_numa_nodes = ms->numa_state->num_nodes;
208     int cpu;
209 
210     if (!fdt) {
211         error_report("create_device_tree() failed");
212         exit(1);
213     }
214 
215     sms->fdt = fdt;
216 
217     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
218     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
219     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
220 
221     /*
222      * This versioning scheme is for informing platform fw only. It is neither:
223      * - A QEMU versioned machine type; a given version of QEMU will emulate
224      *   a given version of the platform.
225      * - A reflection of level of SBSA (now SystemReady SR) support provided.
226      *
227      * machine-version-major: updated when changes breaking fw compatibility
228      *                        are introduced.
229      * machine-version-minor: updated when features are added that don't break
230      *                        fw compatibility.
231      */
232     qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
233     qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 2);
234 
235     if (ms->numa_state->have_numa_distance) {
236         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
237         uint32_t *matrix = g_malloc0(size);
238         int idx, i, j;
239 
240         for (i = 0; i < nb_numa_nodes; i++) {
241             for (j = 0; j < nb_numa_nodes; j++) {
242                 idx = (i * nb_numa_nodes + j) * 3;
243                 matrix[idx + 0] = cpu_to_be32(i);
244                 matrix[idx + 1] = cpu_to_be32(j);
245                 matrix[idx + 2] =
246                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
247             }
248         }
249 
250         qemu_fdt_add_subnode(fdt, "/distance-map");
251         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
252                          matrix, size);
253         g_free(matrix);
254     }
255 
256     /*
257      * From Documentation/devicetree/bindings/arm/cpus.yaml
258      *  On ARM v8 64-bit systems this property is required
259      *    and matches the MPIDR_EL1 register affinity bits.
260      *
261      *    * If cpus node's #address-cells property is set to 2
262      *
263      *      The first reg cell bits [7:0] must be set to
264      *      bits [39:32] of MPIDR_EL1.
265      *
266      *      The second reg cell bits [23:0] must be set to
267      *      bits [23:0] of MPIDR_EL1.
268      */
269     qemu_fdt_add_subnode(sms->fdt, "/cpus");
270     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
271     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
272 
273     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
274         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
275         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
276         CPUState *cs = CPU(armcpu);
277         uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
278 
279         qemu_fdt_add_subnode(sms->fdt, nodename);
280         qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
281 
282         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
283             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
284                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
285         }
286 
287         g_free(nodename);
288     }
289 
290     sbsa_fdt_add_gic_node(sms);
291 }
292 
293 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
294 
295 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
296                                         const char *name,
297                                         const char *alias_prop_name)
298 {
299     /*
300      * Create a single flash device.  We use the same parameters as
301      * the flash devices on the Versatile Express board.
302      */
303     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
304 
305     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
306     qdev_prop_set_uint8(dev, "width", 4);
307     qdev_prop_set_uint8(dev, "device-width", 2);
308     qdev_prop_set_bit(dev, "big-endian", false);
309     qdev_prop_set_uint16(dev, "id0", 0x89);
310     qdev_prop_set_uint16(dev, "id1", 0x18);
311     qdev_prop_set_uint16(dev, "id2", 0x00);
312     qdev_prop_set_uint16(dev, "id3", 0x00);
313     qdev_prop_set_string(dev, "name", name);
314     object_property_add_child(OBJECT(sms), name, OBJECT(dev));
315     object_property_add_alias(OBJECT(sms), alias_prop_name,
316                               OBJECT(dev), "drive");
317     return PFLASH_CFI01(dev);
318 }
319 
320 static void sbsa_flash_create(SBSAMachineState *sms)
321 {
322     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
323     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
324 }
325 
326 static void sbsa_flash_map1(PFlashCFI01 *flash,
327                             hwaddr base, hwaddr size,
328                             MemoryRegion *sysmem)
329 {
330     DeviceState *dev = DEVICE(flash);
331 
332     assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
333     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
334     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
335     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
336 
337     memory_region_add_subregion(sysmem, base,
338                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
339                                                        0));
340 }
341 
342 static void sbsa_flash_map(SBSAMachineState *sms,
343                            MemoryRegion *sysmem,
344                            MemoryRegion *secure_sysmem)
345 {
346     /*
347      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
348      * sysmem is the system memory space. secure_sysmem is the secure view
349      * of the system, and the first flash device should be made visible only
350      * there. The second flash device is visible to both secure and nonsecure.
351      */
352     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
353     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
354 
355     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
356                     secure_sysmem);
357     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
358                     sysmem);
359 }
360 
361 static bool sbsa_firmware_init(SBSAMachineState *sms,
362                                MemoryRegion *sysmem,
363                                MemoryRegion *secure_sysmem)
364 {
365     const char *bios_name;
366     int i;
367     BlockBackend *pflash_blk0;
368 
369     /* Map legacy -drive if=pflash to machine properties */
370     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
371         pflash_cfi01_legacy_drive(sms->flash[i],
372                                   drive_get(IF_PFLASH, 0, i));
373     }
374 
375     sbsa_flash_map(sms, sysmem, secure_sysmem);
376 
377     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
378 
379     bios_name = MACHINE(sms)->firmware;
380     if (bios_name) {
381         char *fname;
382         MemoryRegion *mr;
383         int image_size;
384 
385         if (pflash_blk0) {
386             error_report("The contents of the first flash device may be "
387                          "specified with -bios or with -drive if=pflash... "
388                          "but you cannot use both options at once");
389             exit(1);
390         }
391 
392         /* Fall back to -bios */
393 
394         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
395         if (!fname) {
396             error_report("Could not find ROM image '%s'", bios_name);
397             exit(1);
398         }
399         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
400         image_size = load_image_mr(fname, mr);
401         g_free(fname);
402         if (image_size < 0) {
403             error_report("Could not load ROM image '%s'", bios_name);
404             exit(1);
405         }
406     }
407 
408     return pflash_blk0 || bios_name;
409 }
410 
411 static void create_secure_ram(SBSAMachineState *sms,
412                               MemoryRegion *secure_sysmem)
413 {
414     MemoryRegion *secram = g_new(MemoryRegion, 1);
415     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
416     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
417 
418     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
419                            &error_fatal);
420     memory_region_add_subregion(secure_sysmem, base, secram);
421 }
422 
423 static void create_its(SBSAMachineState *sms)
424 {
425     const char *itsclass = its_class_name();
426     DeviceState *dev;
427 
428     dev = qdev_new(itsclass);
429 
430     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic),
431                              &error_abort);
432     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
433     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base);
434 }
435 
436 static void create_gic(SBSAMachineState *sms, MemoryRegion *mem)
437 {
438     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
439     SysBusDevice *gicbusdev;
440     const char *gictype;
441     uint32_t redist0_capacity, redist0_count;
442     int i;
443 
444     gictype = gicv3_class_name();
445 
446     sms->gic = qdev_new(gictype);
447     qdev_prop_set_uint32(sms->gic, "revision", 3);
448     qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
449     /*
450      * Note that the num-irq property counts both internal and external
451      * interrupts; there are always 32 of the former (mandated by GIC spec).
452      */
453     qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
454     qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
455 
456     redist0_capacity =
457                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
458     redist0_count = MIN(smp_cpus, redist0_capacity);
459 
460     qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
461     qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
462 
463     object_property_set_link(OBJECT(sms->gic), "sysmem",
464                              OBJECT(mem), &error_fatal);
465     qdev_prop_set_bit(sms->gic, "has-lpi", true);
466 
467     gicbusdev = SYS_BUS_DEVICE(sms->gic);
468     sysbus_realize_and_unref(gicbusdev, &error_fatal);
469     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
470     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
471 
472     /*
473      * Wire the outputs from each CPU's generic timer and the GICv3
474      * maintenance interrupt signal to the appropriate GIC PPI inputs,
475      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
476      */
477     for (i = 0; i < smp_cpus; i++) {
478         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
479         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
480         int irq;
481         /*
482          * Mapping from the output timer irq lines from the CPU to the
483          * GIC PPI inputs used for this board.
484          */
485         const int timer_irq[] = {
486             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
487             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
488             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
489             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
490         };
491 
492         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
493             qdev_connect_gpio_out(cpudev, irq,
494                                   qdev_get_gpio_in(sms->gic,
495                                                    ppibase + timer_irq[irq]));
496         }
497 
498         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
499                                     qdev_get_gpio_in(sms->gic, ppibase
500                                                      + ARCH_GIC_MAINT_IRQ));
501         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
502                                     qdev_get_gpio_in(sms->gic, ppibase
503                                                      + VIRTUAL_PMU_IRQ));
504 
505         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
506         sysbus_connect_irq(gicbusdev, i + smp_cpus,
507                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
508         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
509                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
510         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
511                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
512     }
513     create_its(sms);
514 }
515 
516 static void create_uart(const SBSAMachineState *sms, int uart,
517                         MemoryRegion *mem, Chardev *chr)
518 {
519     hwaddr base = sbsa_ref_memmap[uart].base;
520     int irq = sbsa_ref_irqmap[uart];
521     DeviceState *dev = qdev_new(TYPE_PL011);
522     SysBusDevice *s = SYS_BUS_DEVICE(dev);
523 
524     qdev_prop_set_chr(dev, "chardev", chr);
525     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
526     memory_region_add_subregion(mem, base,
527                                 sysbus_mmio_get_region(s, 0));
528     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
529 }
530 
531 static void create_rtc(const SBSAMachineState *sms)
532 {
533     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
534     int irq = sbsa_ref_irqmap[SBSA_RTC];
535 
536     sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
537 }
538 
539 static void create_wdt(const SBSAMachineState *sms)
540 {
541     hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
542     hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
543     DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
544     SysBusDevice *s = SYS_BUS_DEVICE(dev);
545     int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
546 
547     sysbus_realize_and_unref(s, &error_fatal);
548     sysbus_mmio_map(s, 0, rbase);
549     sysbus_mmio_map(s, 1, cbase);
550     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
551 }
552 
553 static DeviceState *gpio_key_dev;
554 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
555 {
556     /* use gpio Pin 3 for power button event */
557     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
558 }
559 
560 static Notifier sbsa_ref_powerdown_notifier = {
561     .notify = sbsa_ref_powerdown_req
562 };
563 
564 static void create_gpio(const SBSAMachineState *sms)
565 {
566     DeviceState *pl061_dev;
567     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
568     int irq = sbsa_ref_irqmap[SBSA_GPIO];
569 
570     pl061_dev = sysbus_create_simple("pl061", base,
571                                      qdev_get_gpio_in(sms->gic, irq));
572 
573     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
574                                         qdev_get_gpio_in(pl061_dev, 3));
575 
576     /* connect powerdown request */
577     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
578 }
579 
580 static void create_ahci(const SBSAMachineState *sms)
581 {
582     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
583     int irq = sbsa_ref_irqmap[SBSA_AHCI];
584     DeviceState *dev;
585     DriveInfo *hd[NUM_SATA_PORTS];
586     SysbusAHCIState *sysahci;
587     AHCIState *ahci;
588     int i;
589 
590     dev = qdev_new("sysbus-ahci");
591     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
592     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
593     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
594     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
595 
596     sysahci = SYSBUS_AHCI(dev);
597     ahci = &sysahci->ahci;
598     ide_drive_get(hd, ARRAY_SIZE(hd));
599     for (i = 0; i < ahci->ports; i++) {
600         if (hd[i] == NULL) {
601             continue;
602         }
603         ide_bus_create_drive(&ahci->dev[i].port, 0, hd[i]);
604     }
605 }
606 
607 static void create_ehci(const SBSAMachineState *sms)
608 {
609     hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
610     int irq = sbsa_ref_irqmap[SBSA_EHCI];
611 
612     sysbus_create_simple("platform-ehci-usb", base,
613                          qdev_get_gpio_in(sms->gic, irq));
614 }
615 
616 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
617 {
618     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
619     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
620     DeviceState *dev;
621     int i;
622 
623     dev = qdev_new(TYPE_ARM_SMMUV3);
624 
625     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
626                              &error_abort);
627     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
628     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
629     for (i = 0; i < NUM_SMMU_IRQS; i++) {
630         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
631                            qdev_get_gpio_in(sms->gic, irq + i));
632     }
633 }
634 
635 static void create_pcie(SBSAMachineState *sms)
636 {
637     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
638     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
639     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
640     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
641     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
642     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
643     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
644     int irq = sbsa_ref_irqmap[SBSA_PCIE];
645     MachineClass *mc = MACHINE_GET_CLASS(sms);
646     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
647     MemoryRegion *ecam_alias, *ecam_reg;
648     DeviceState *dev;
649     PCIHostState *pci;
650     int i;
651 
652     dev = qdev_new(TYPE_GPEX_HOST);
653     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
654 
655     /* Map ECAM space */
656     ecam_alias = g_new0(MemoryRegion, 1);
657     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
658     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
659                              ecam_reg, 0, size_ecam);
660     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
661 
662     /* Map the MMIO space */
663     mmio_alias = g_new0(MemoryRegion, 1);
664     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
665     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
666                              mmio_reg, base_mmio, size_mmio);
667     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
668 
669     /* Map the MMIO_HIGH space */
670     mmio_alias_high = g_new0(MemoryRegion, 1);
671     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
672                              mmio_reg, base_mmio_high, size_mmio_high);
673     memory_region_add_subregion(get_system_memory(), base_mmio_high,
674                                 mmio_alias_high);
675 
676     /* Map IO port space */
677     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
678 
679     for (i = 0; i < GPEX_NUM_IRQS; i++) {
680         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
681                            qdev_get_gpio_in(sms->gic, irq + i));
682         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
683     }
684 
685     pci = PCI_HOST_BRIDGE(dev);
686     if (pci->bus) {
687         for (i = 0; i < nb_nics; i++) {
688             NICInfo *nd = &nd_table[i];
689 
690             if (!nd->model) {
691                 nd->model = g_strdup(mc->default_nic);
692             }
693 
694             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
695         }
696     }
697 
698     pci_create_simple(pci->bus, -1, "bochs-display");
699 
700     create_smmu(sms, pci->bus);
701 }
702 
703 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
704 {
705     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
706                                                  bootinfo);
707 
708     *fdt_size = board->fdt_size;
709     return board->fdt;
710 }
711 
712 static void create_secure_ec(MemoryRegion *mem)
713 {
714     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
715     DeviceState *dev = qdev_new("sbsa-ec");
716     SysBusDevice *s = SYS_BUS_DEVICE(dev);
717 
718     memory_region_add_subregion(mem, base,
719                                 sysbus_mmio_get_region(s, 0));
720 }
721 
722 static void sbsa_ref_init(MachineState *machine)
723 {
724     unsigned int smp_cpus = machine->smp.cpus;
725     unsigned int max_cpus = machine->smp.max_cpus;
726     SBSAMachineState *sms = SBSA_MACHINE(machine);
727     MachineClass *mc = MACHINE_GET_CLASS(machine);
728     MemoryRegion *sysmem = get_system_memory();
729     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
730     bool firmware_loaded;
731     const CPUArchIdList *possible_cpus;
732     int n, sbsa_max_cpus;
733 
734     if (!cpu_type_valid(machine->cpu_type)) {
735         error_report("sbsa-ref: CPU type %s not supported", machine->cpu_type);
736         exit(1);
737     }
738 
739     if (kvm_enabled()) {
740         error_report("sbsa-ref: KVM is not supported for this machine");
741         exit(1);
742     }
743 
744     /*
745      * The Secure view of the world is the same as the NonSecure,
746      * but with a few extra devices. Create it as a container region
747      * containing the system memory at low priority; any secure-only
748      * devices go in at higher priority and take precedence.
749      */
750     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
751                        UINT64_MAX);
752     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
753 
754     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
755 
756     /*
757      * This machine has EL3 enabled, external firmware should supply PSCI
758      * implementation, so the QEMU's internal PSCI is disabled.
759      */
760     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
761 
762     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
763 
764     if (max_cpus > sbsa_max_cpus) {
765         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
766                      "supported by machine 'sbsa-ref' (%d)",
767                      max_cpus, sbsa_max_cpus);
768         exit(1);
769     }
770 
771     sms->smp_cpus = smp_cpus;
772 
773     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
774         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
775         exit(1);
776     }
777 
778     possible_cpus = mc->possible_cpu_arch_ids(machine);
779     for (n = 0; n < possible_cpus->len; n++) {
780         Object *cpuobj;
781         CPUState *cs;
782 
783         if (n >= smp_cpus) {
784             break;
785         }
786 
787         cpuobj = object_new(possible_cpus->cpus[n].type);
788         object_property_set_int(cpuobj, "mp-affinity",
789                                 possible_cpus->cpus[n].arch_id, NULL);
790 
791         cs = CPU(cpuobj);
792         cs->cpu_index = n;
793 
794         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
795                           &error_fatal);
796 
797         if (object_property_find(cpuobj, "reset-cbar")) {
798             object_property_set_int(cpuobj, "reset-cbar",
799                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
800                                     &error_abort);
801         }
802 
803         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
804                                  &error_abort);
805 
806         object_property_set_link(cpuobj, "secure-memory",
807                                  OBJECT(secure_sysmem), &error_abort);
808 
809         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
810         object_unref(cpuobj);
811     }
812 
813     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
814                                 machine->ram);
815 
816     create_fdt(sms);
817 
818     create_secure_ram(sms, secure_sysmem);
819 
820     create_gic(sms, sysmem);
821 
822     create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
823     create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
824     /* Second secure UART for RAS and MM from EL0 */
825     create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
826 
827     create_rtc(sms);
828 
829     create_wdt(sms);
830 
831     create_gpio(sms);
832 
833     create_ahci(sms);
834 
835     create_ehci(sms);
836 
837     create_pcie(sms);
838 
839     create_secure_ec(secure_sysmem);
840 
841     sms->bootinfo.ram_size = machine->ram_size;
842     sms->bootinfo.board_id = -1;
843     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
844     sms->bootinfo.get_dtb = sbsa_ref_dtb;
845     sms->bootinfo.firmware_loaded = firmware_loaded;
846     arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
847 }
848 
849 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
850 {
851     unsigned int max_cpus = ms->smp.max_cpus;
852     SBSAMachineState *sms = SBSA_MACHINE(ms);
853     int n;
854 
855     if (ms->possible_cpus) {
856         assert(ms->possible_cpus->len == max_cpus);
857         return ms->possible_cpus;
858     }
859 
860     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
861                                   sizeof(CPUArchId) * max_cpus);
862     ms->possible_cpus->len = max_cpus;
863     for (n = 0; n < ms->possible_cpus->len; n++) {
864         ms->possible_cpus->cpus[n].type = ms->cpu_type;
865         ms->possible_cpus->cpus[n].arch_id =
866             sbsa_ref_cpu_mp_affinity(sms, n);
867         ms->possible_cpus->cpus[n].props.has_thread_id = true;
868         ms->possible_cpus->cpus[n].props.thread_id = n;
869     }
870     return ms->possible_cpus;
871 }
872 
873 static CpuInstanceProperties
874 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
875 {
876     MachineClass *mc = MACHINE_GET_CLASS(ms);
877     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
878 
879     assert(cpu_index < possible_cpus->len);
880     return possible_cpus->cpus[cpu_index].props;
881 }
882 
883 static int64_t
884 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
885 {
886     return idx % ms->numa_state->num_nodes;
887 }
888 
889 static void sbsa_ref_instance_init(Object *obj)
890 {
891     SBSAMachineState *sms = SBSA_MACHINE(obj);
892 
893     sbsa_flash_create(sms);
894 }
895 
896 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
897 {
898     MachineClass *mc = MACHINE_CLASS(oc);
899 
900     mc->init = sbsa_ref_init;
901     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
902     mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n1");
903     mc->max_cpus = 512;
904     mc->pci_allow_0_address = true;
905     mc->minimum_page_bits = 12;
906     mc->block_default_type = IF_IDE;
907     mc->no_cdrom = 1;
908     mc->default_nic = "e1000e";
909     mc->default_ram_size = 1 * GiB;
910     mc->default_ram_id = "sbsa-ref.ram";
911     mc->default_cpus = 4;
912     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
913     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
914     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
915     /* platform instead of architectural choice */
916     mc->cpu_cluster_has_numa_boundary = true;
917 }
918 
919 static const TypeInfo sbsa_ref_info = {
920     .name          = TYPE_SBSA_MACHINE,
921     .parent        = TYPE_MACHINE,
922     .instance_init = sbsa_ref_instance_init,
923     .class_init    = sbsa_ref_class_init,
924     .instance_size = sizeof(SBSAMachineState),
925 };
926 
927 static void sbsa_ref_machine_init(void)
928 {
929     type_register_static(&sbsa_ref_info);
930 }
931 
932 type_init(sbsa_ref_machine_init);
933