xref: /openbmc/qemu/hw/arm/sbsa-ref.c (revision a2260983c65539010310b7105da284026cfceba4)
1 /*
2  * ARM SBSA Reference Platform emulation
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/units.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/sysemu.h"
29 #include "exec/hwaddr.h"
30 #include "kvm_arm.h"
31 #include "hw/arm/boot.h"
32 #include "hw/arm/smmuv3.h"
33 #include "hw/block/flash.h"
34 #include "hw/boards.h"
35 #include "hw/ide/internal.h"
36 #include "hw/ide/ahci_internal.h"
37 #include "hw/intc/arm_gicv3_common.h"
38 #include "hw/loader.h"
39 #include "hw/pci-host/gpex.h"
40 #include "hw/qdev-properties.h"
41 #include "hw/usb.h"
42 #include "hw/char/pl011.h"
43 #include "hw/watchdog/sbsa_gwdt.h"
44 #include "net/net.h"
45 #include "qom/object.h"
46 
47 #define RAMLIMIT_GB 8192
48 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
49 
50 #define NUM_IRQS        256
51 #define NUM_SMMU_IRQS   4
52 #define NUM_SATA_PORTS  6
53 
54 #define VIRTUAL_PMU_IRQ        7
55 #define ARCH_GIC_MAINT_IRQ     9
56 #define ARCH_TIMER_VIRT_IRQ    11
57 #define ARCH_TIMER_S_EL1_IRQ   13
58 #define ARCH_TIMER_NS_EL1_IRQ  14
59 #define ARCH_TIMER_NS_EL2_IRQ  10
60 
61 enum {
62     SBSA_FLASH,
63     SBSA_MEM,
64     SBSA_CPUPERIPHS,
65     SBSA_GIC_DIST,
66     SBSA_GIC_REDIST,
67     SBSA_SECURE_EC,
68     SBSA_GWDT_WS0,
69     SBSA_GWDT_REFRESH,
70     SBSA_GWDT_CONTROL,
71     SBSA_SMMU,
72     SBSA_UART,
73     SBSA_RTC,
74     SBSA_PCIE,
75     SBSA_PCIE_MMIO,
76     SBSA_PCIE_MMIO_HIGH,
77     SBSA_PCIE_PIO,
78     SBSA_PCIE_ECAM,
79     SBSA_GPIO,
80     SBSA_SECURE_UART,
81     SBSA_SECURE_UART_MM,
82     SBSA_SECURE_MEM,
83     SBSA_AHCI,
84     SBSA_EHCI,
85 };
86 
87 struct SBSAMachineState {
88     MachineState parent;
89     struct arm_boot_info bootinfo;
90     int smp_cpus;
91     void *fdt;
92     int fdt_size;
93     int psci_conduit;
94     DeviceState *gic;
95     PFlashCFI01 *flash[2];
96 };
97 
98 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
99 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
100 
101 static const MemMapEntry sbsa_ref_memmap[] = {
102     /* 512M boot ROM */
103     [SBSA_FLASH] =              {          0, 0x20000000 },
104     /* 512M secure memory */
105     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
106     /* Space reserved for CPU peripheral devices */
107     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
108     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
109     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
110     [SBSA_SECURE_EC] =          { 0x50000000, 0x00001000 },
111     [SBSA_GWDT_REFRESH] =       { 0x50010000, 0x00001000 },
112     [SBSA_GWDT_CONTROL] =       { 0x50011000, 0x00001000 },
113     [SBSA_UART] =               { 0x60000000, 0x00001000 },
114     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
115     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
116     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
117     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
118     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
119     /* Space here reserved for more SMMUs */
120     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
121     [SBSA_EHCI] =               { 0x60110000, 0x00010000 },
122     /* Space here reserved for other devices */
123     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
124     /* 32-bit address PCIE MMIO space */
125     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
126     /* 256M PCIE ECAM space */
127     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
128     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
129     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
130     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
131 };
132 
133 static const int sbsa_ref_irqmap[] = {
134     [SBSA_UART] = 1,
135     [SBSA_RTC] = 2,
136     [SBSA_PCIE] = 3, /* ... to 6 */
137     [SBSA_GPIO] = 7,
138     [SBSA_SECURE_UART] = 8,
139     [SBSA_SECURE_UART_MM] = 9,
140     [SBSA_AHCI] = 10,
141     [SBSA_EHCI] = 11,
142     [SBSA_SMMU] = 12, /* ... to 15 */
143     [SBSA_GWDT_WS0] = 16,
144 };
145 
146 static const char * const valid_cpus[] = {
147     ARM_CPU_TYPE_NAME("cortex-a57"),
148     ARM_CPU_TYPE_NAME("cortex-a72"),
149     ARM_CPU_TYPE_NAME("cortex-a76"),
150     ARM_CPU_TYPE_NAME("neoverse-n1"),
151     ARM_CPU_TYPE_NAME("max"),
152 };
153 
154 static bool cpu_type_valid(const char *cpu)
155 {
156     int i;
157 
158     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
159         if (strcmp(cpu, valid_cpus[i]) == 0) {
160             return true;
161         }
162     }
163     return false;
164 }
165 
166 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
167 {
168     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
169     return arm_cpu_mp_affinity(idx, clustersz);
170 }
171 
172 /*
173  * Firmware on this machine only uses ACPI table to load OS, these limited
174  * device tree nodes are just to let firmware know the info which varies from
175  * command line parameters, so it is not necessary to be fully compatible
176  * with the kernel CPU and NUMA binding rules.
177  */
178 static void create_fdt(SBSAMachineState *sms)
179 {
180     void *fdt = create_device_tree(&sms->fdt_size);
181     const MachineState *ms = MACHINE(sms);
182     int nb_numa_nodes = ms->numa_state->num_nodes;
183     int cpu;
184 
185     if (!fdt) {
186         error_report("create_device_tree() failed");
187         exit(1);
188     }
189 
190     sms->fdt = fdt;
191 
192     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
193     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
194     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
195 
196     /*
197      * This versioning scheme is for informing platform fw only. It is neither:
198      * - A QEMU versioned machine type; a given version of QEMU will emulate
199      *   a given version of the platform.
200      * - A reflection of level of SBSA (now SystemReady SR) support provided.
201      *
202      * machine-version-major: updated when changes breaking fw compatibility
203      *                        are introduced.
204      * machine-version-minor: updated when features are added that don't break
205      *                        fw compatibility.
206      */
207     qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
208     qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 0);
209 
210     if (ms->numa_state->have_numa_distance) {
211         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
212         uint32_t *matrix = g_malloc0(size);
213         int idx, i, j;
214 
215         for (i = 0; i < nb_numa_nodes; i++) {
216             for (j = 0; j < nb_numa_nodes; j++) {
217                 idx = (i * nb_numa_nodes + j) * 3;
218                 matrix[idx + 0] = cpu_to_be32(i);
219                 matrix[idx + 1] = cpu_to_be32(j);
220                 matrix[idx + 2] =
221                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
222             }
223         }
224 
225         qemu_fdt_add_subnode(fdt, "/distance-map");
226         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
227                          matrix, size);
228         g_free(matrix);
229     }
230 
231     /*
232      * From Documentation/devicetree/bindings/arm/cpus.yaml
233      *  On ARM v8 64-bit systems this property is required
234      *    and matches the MPIDR_EL1 register affinity bits.
235      *
236      *    * If cpus node's #address-cells property is set to 2
237      *
238      *      The first reg cell bits [7:0] must be set to
239      *      bits [39:32] of MPIDR_EL1.
240      *
241      *      The second reg cell bits [23:0] must be set to
242      *      bits [23:0] of MPIDR_EL1.
243      */
244     qemu_fdt_add_subnode(sms->fdt, "/cpus");
245     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
246     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
247 
248     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
249         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
250         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
251         CPUState *cs = CPU(armcpu);
252         uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
253 
254         qemu_fdt_add_subnode(sms->fdt, nodename);
255         qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
256 
257         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
258             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
259                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
260         }
261 
262         g_free(nodename);
263     }
264 }
265 
266 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
267 
268 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
269                                         const char *name,
270                                         const char *alias_prop_name)
271 {
272     /*
273      * Create a single flash device.  We use the same parameters as
274      * the flash devices on the Versatile Express board.
275      */
276     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
277 
278     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
279     qdev_prop_set_uint8(dev, "width", 4);
280     qdev_prop_set_uint8(dev, "device-width", 2);
281     qdev_prop_set_bit(dev, "big-endian", false);
282     qdev_prop_set_uint16(dev, "id0", 0x89);
283     qdev_prop_set_uint16(dev, "id1", 0x18);
284     qdev_prop_set_uint16(dev, "id2", 0x00);
285     qdev_prop_set_uint16(dev, "id3", 0x00);
286     qdev_prop_set_string(dev, "name", name);
287     object_property_add_child(OBJECT(sms), name, OBJECT(dev));
288     object_property_add_alias(OBJECT(sms), alias_prop_name,
289                               OBJECT(dev), "drive");
290     return PFLASH_CFI01(dev);
291 }
292 
293 static void sbsa_flash_create(SBSAMachineState *sms)
294 {
295     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
296     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
297 }
298 
299 static void sbsa_flash_map1(PFlashCFI01 *flash,
300                             hwaddr base, hwaddr size,
301                             MemoryRegion *sysmem)
302 {
303     DeviceState *dev = DEVICE(flash);
304 
305     assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
306     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
307     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
308     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
309 
310     memory_region_add_subregion(sysmem, base,
311                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
312                                                        0));
313 }
314 
315 static void sbsa_flash_map(SBSAMachineState *sms,
316                            MemoryRegion *sysmem,
317                            MemoryRegion *secure_sysmem)
318 {
319     /*
320      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
321      * sysmem is the system memory space. secure_sysmem is the secure view
322      * of the system, and the first flash device should be made visible only
323      * there. The second flash device is visible to both secure and nonsecure.
324      */
325     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
326     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
327 
328     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
329                     secure_sysmem);
330     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
331                     sysmem);
332 }
333 
334 static bool sbsa_firmware_init(SBSAMachineState *sms,
335                                MemoryRegion *sysmem,
336                                MemoryRegion *secure_sysmem)
337 {
338     const char *bios_name;
339     int i;
340     BlockBackend *pflash_blk0;
341 
342     /* Map legacy -drive if=pflash to machine properties */
343     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
344         pflash_cfi01_legacy_drive(sms->flash[i],
345                                   drive_get(IF_PFLASH, 0, i));
346     }
347 
348     sbsa_flash_map(sms, sysmem, secure_sysmem);
349 
350     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
351 
352     bios_name = MACHINE(sms)->firmware;
353     if (bios_name) {
354         char *fname;
355         MemoryRegion *mr;
356         int image_size;
357 
358         if (pflash_blk0) {
359             error_report("The contents of the first flash device may be "
360                          "specified with -bios or with -drive if=pflash... "
361                          "but you cannot use both options at once");
362             exit(1);
363         }
364 
365         /* Fall back to -bios */
366 
367         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
368         if (!fname) {
369             error_report("Could not find ROM image '%s'", bios_name);
370             exit(1);
371         }
372         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
373         image_size = load_image_mr(fname, mr);
374         g_free(fname);
375         if (image_size < 0) {
376             error_report("Could not load ROM image '%s'", bios_name);
377             exit(1);
378         }
379     }
380 
381     return pflash_blk0 || bios_name;
382 }
383 
384 static void create_secure_ram(SBSAMachineState *sms,
385                               MemoryRegion *secure_sysmem)
386 {
387     MemoryRegion *secram = g_new(MemoryRegion, 1);
388     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
389     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
390 
391     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
392                            &error_fatal);
393     memory_region_add_subregion(secure_sysmem, base, secram);
394 }
395 
396 static void create_gic(SBSAMachineState *sms)
397 {
398     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
399     SysBusDevice *gicbusdev;
400     const char *gictype;
401     uint32_t redist0_capacity, redist0_count;
402     int i;
403 
404     gictype = gicv3_class_name();
405 
406     sms->gic = qdev_new(gictype);
407     qdev_prop_set_uint32(sms->gic, "revision", 3);
408     qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
409     /*
410      * Note that the num-irq property counts both internal and external
411      * interrupts; there are always 32 of the former (mandated by GIC spec).
412      */
413     qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
414     qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
415 
416     redist0_capacity =
417                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
418     redist0_count = MIN(smp_cpus, redist0_capacity);
419 
420     qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
421     qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
422 
423     gicbusdev = SYS_BUS_DEVICE(sms->gic);
424     sysbus_realize_and_unref(gicbusdev, &error_fatal);
425     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
426     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
427 
428     /*
429      * Wire the outputs from each CPU's generic timer and the GICv3
430      * maintenance interrupt signal to the appropriate GIC PPI inputs,
431      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
432      */
433     for (i = 0; i < smp_cpus; i++) {
434         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
435         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
436         int irq;
437         /*
438          * Mapping from the output timer irq lines from the CPU to the
439          * GIC PPI inputs used for this board.
440          */
441         const int timer_irq[] = {
442             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
443             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
444             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
445             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
446         };
447 
448         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
449             qdev_connect_gpio_out(cpudev, irq,
450                                   qdev_get_gpio_in(sms->gic,
451                                                    ppibase + timer_irq[irq]));
452         }
453 
454         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
455                                     qdev_get_gpio_in(sms->gic, ppibase
456                                                      + ARCH_GIC_MAINT_IRQ));
457         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
458                                     qdev_get_gpio_in(sms->gic, ppibase
459                                                      + VIRTUAL_PMU_IRQ));
460 
461         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
462         sysbus_connect_irq(gicbusdev, i + smp_cpus,
463                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
464         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
465                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
466         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
467                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
468     }
469 }
470 
471 static void create_uart(const SBSAMachineState *sms, int uart,
472                         MemoryRegion *mem, Chardev *chr)
473 {
474     hwaddr base = sbsa_ref_memmap[uart].base;
475     int irq = sbsa_ref_irqmap[uart];
476     DeviceState *dev = qdev_new(TYPE_PL011);
477     SysBusDevice *s = SYS_BUS_DEVICE(dev);
478 
479     qdev_prop_set_chr(dev, "chardev", chr);
480     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
481     memory_region_add_subregion(mem, base,
482                                 sysbus_mmio_get_region(s, 0));
483     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
484 }
485 
486 static void create_rtc(const SBSAMachineState *sms)
487 {
488     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
489     int irq = sbsa_ref_irqmap[SBSA_RTC];
490 
491     sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
492 }
493 
494 static void create_wdt(const SBSAMachineState *sms)
495 {
496     hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
497     hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
498     DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
499     SysBusDevice *s = SYS_BUS_DEVICE(dev);
500     int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
501 
502     sysbus_realize_and_unref(s, &error_fatal);
503     sysbus_mmio_map(s, 0, rbase);
504     sysbus_mmio_map(s, 1, cbase);
505     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
506 }
507 
508 static DeviceState *gpio_key_dev;
509 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
510 {
511     /* use gpio Pin 3 for power button event */
512     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
513 }
514 
515 static Notifier sbsa_ref_powerdown_notifier = {
516     .notify = sbsa_ref_powerdown_req
517 };
518 
519 static void create_gpio(const SBSAMachineState *sms)
520 {
521     DeviceState *pl061_dev;
522     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
523     int irq = sbsa_ref_irqmap[SBSA_GPIO];
524 
525     pl061_dev = sysbus_create_simple("pl061", base,
526                                      qdev_get_gpio_in(sms->gic, irq));
527 
528     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
529                                         qdev_get_gpio_in(pl061_dev, 3));
530 
531     /* connect powerdown request */
532     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
533 }
534 
535 static void create_ahci(const SBSAMachineState *sms)
536 {
537     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
538     int irq = sbsa_ref_irqmap[SBSA_AHCI];
539     DeviceState *dev;
540     DriveInfo *hd[NUM_SATA_PORTS];
541     SysbusAHCIState *sysahci;
542     AHCIState *ahci;
543     int i;
544 
545     dev = qdev_new("sysbus-ahci");
546     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
547     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
548     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
549     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
550 
551     sysahci = SYSBUS_AHCI(dev);
552     ahci = &sysahci->ahci;
553     ide_drive_get(hd, ARRAY_SIZE(hd));
554     for (i = 0; i < ahci->ports; i++) {
555         if (hd[i] == NULL) {
556             continue;
557         }
558         ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
559     }
560 }
561 
562 static void create_ehci(const SBSAMachineState *sms)
563 {
564     hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
565     int irq = sbsa_ref_irqmap[SBSA_EHCI];
566 
567     sysbus_create_simple("platform-ehci-usb", base,
568                          qdev_get_gpio_in(sms->gic, irq));
569 }
570 
571 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
572 {
573     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
574     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
575     DeviceState *dev;
576     int i;
577 
578     dev = qdev_new(TYPE_ARM_SMMUV3);
579 
580     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
581                              &error_abort);
582     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
583     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
584     for (i = 0; i < NUM_SMMU_IRQS; i++) {
585         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
586                            qdev_get_gpio_in(sms->gic, irq + i));
587     }
588 }
589 
590 static void create_pcie(SBSAMachineState *sms)
591 {
592     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
593     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
594     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
595     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
596     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
597     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
598     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
599     int irq = sbsa_ref_irqmap[SBSA_PCIE];
600     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
601     MemoryRegion *ecam_alias, *ecam_reg;
602     DeviceState *dev;
603     PCIHostState *pci;
604     int i;
605 
606     dev = qdev_new(TYPE_GPEX_HOST);
607     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
608 
609     /* Map ECAM space */
610     ecam_alias = g_new0(MemoryRegion, 1);
611     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
612     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
613                              ecam_reg, 0, size_ecam);
614     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
615 
616     /* Map the MMIO space */
617     mmio_alias = g_new0(MemoryRegion, 1);
618     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
619     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
620                              mmio_reg, base_mmio, size_mmio);
621     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
622 
623     /* Map the MMIO_HIGH space */
624     mmio_alias_high = g_new0(MemoryRegion, 1);
625     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
626                              mmio_reg, base_mmio_high, size_mmio_high);
627     memory_region_add_subregion(get_system_memory(), base_mmio_high,
628                                 mmio_alias_high);
629 
630     /* Map IO port space */
631     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
632 
633     for (i = 0; i < GPEX_NUM_IRQS; i++) {
634         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
635                            qdev_get_gpio_in(sms->gic, irq + i));
636         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
637     }
638 
639     pci = PCI_HOST_BRIDGE(dev);
640     if (pci->bus) {
641         for (i = 0; i < nb_nics; i++) {
642             NICInfo *nd = &nd_table[i];
643 
644             if (!nd->model) {
645                 nd->model = g_strdup("e1000e");
646             }
647 
648             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
649         }
650     }
651 
652     pci_create_simple(pci->bus, -1, "VGA");
653 
654     create_smmu(sms, pci->bus);
655 }
656 
657 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
658 {
659     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
660                                                  bootinfo);
661 
662     *fdt_size = board->fdt_size;
663     return board->fdt;
664 }
665 
666 static void create_secure_ec(MemoryRegion *mem)
667 {
668     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
669     DeviceState *dev = qdev_new("sbsa-ec");
670     SysBusDevice *s = SYS_BUS_DEVICE(dev);
671 
672     memory_region_add_subregion(mem, base,
673                                 sysbus_mmio_get_region(s, 0));
674 }
675 
676 static void sbsa_ref_init(MachineState *machine)
677 {
678     unsigned int smp_cpus = machine->smp.cpus;
679     unsigned int max_cpus = machine->smp.max_cpus;
680     SBSAMachineState *sms = SBSA_MACHINE(machine);
681     MachineClass *mc = MACHINE_GET_CLASS(machine);
682     MemoryRegion *sysmem = get_system_memory();
683     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
684     bool firmware_loaded;
685     const CPUArchIdList *possible_cpus;
686     int n, sbsa_max_cpus;
687 
688     if (!cpu_type_valid(machine->cpu_type)) {
689         error_report("sbsa-ref: CPU type %s not supported", machine->cpu_type);
690         exit(1);
691     }
692 
693     if (kvm_enabled()) {
694         error_report("sbsa-ref: KVM is not supported for this machine");
695         exit(1);
696     }
697 
698     /*
699      * The Secure view of the world is the same as the NonSecure,
700      * but with a few extra devices. Create it as a container region
701      * containing the system memory at low priority; any secure-only
702      * devices go in at higher priority and take precedence.
703      */
704     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
705                        UINT64_MAX);
706     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
707 
708     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
709 
710     /*
711      * This machine has EL3 enabled, external firmware should supply PSCI
712      * implementation, so the QEMU's internal PSCI is disabled.
713      */
714     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
715 
716     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
717 
718     if (max_cpus > sbsa_max_cpus) {
719         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
720                      "supported by machine 'sbsa-ref' (%d)",
721                      max_cpus, sbsa_max_cpus);
722         exit(1);
723     }
724 
725     sms->smp_cpus = smp_cpus;
726 
727     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
728         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
729         exit(1);
730     }
731 
732     possible_cpus = mc->possible_cpu_arch_ids(machine);
733     for (n = 0; n < possible_cpus->len; n++) {
734         Object *cpuobj;
735         CPUState *cs;
736 
737         if (n >= smp_cpus) {
738             break;
739         }
740 
741         cpuobj = object_new(possible_cpus->cpus[n].type);
742         object_property_set_int(cpuobj, "mp-affinity",
743                                 possible_cpus->cpus[n].arch_id, NULL);
744 
745         cs = CPU(cpuobj);
746         cs->cpu_index = n;
747 
748         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
749                           &error_fatal);
750 
751         if (object_property_find(cpuobj, "reset-cbar")) {
752             object_property_set_int(cpuobj, "reset-cbar",
753                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
754                                     &error_abort);
755         }
756 
757         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
758                                  &error_abort);
759 
760         object_property_set_link(cpuobj, "secure-memory",
761                                  OBJECT(secure_sysmem), &error_abort);
762 
763         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
764         object_unref(cpuobj);
765     }
766 
767     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
768                                 machine->ram);
769 
770     create_fdt(sms);
771 
772     create_secure_ram(sms, secure_sysmem);
773 
774     create_gic(sms);
775 
776     create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
777     create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
778     /* Second secure UART for RAS and MM from EL0 */
779     create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
780 
781     create_rtc(sms);
782 
783     create_wdt(sms);
784 
785     create_gpio(sms);
786 
787     create_ahci(sms);
788 
789     create_ehci(sms);
790 
791     create_pcie(sms);
792 
793     create_secure_ec(secure_sysmem);
794 
795     sms->bootinfo.ram_size = machine->ram_size;
796     sms->bootinfo.board_id = -1;
797     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
798     sms->bootinfo.get_dtb = sbsa_ref_dtb;
799     sms->bootinfo.firmware_loaded = firmware_loaded;
800     arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
801 }
802 
803 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
804 {
805     unsigned int max_cpus = ms->smp.max_cpus;
806     SBSAMachineState *sms = SBSA_MACHINE(ms);
807     int n;
808 
809     if (ms->possible_cpus) {
810         assert(ms->possible_cpus->len == max_cpus);
811         return ms->possible_cpus;
812     }
813 
814     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
815                                   sizeof(CPUArchId) * max_cpus);
816     ms->possible_cpus->len = max_cpus;
817     for (n = 0; n < ms->possible_cpus->len; n++) {
818         ms->possible_cpus->cpus[n].type = ms->cpu_type;
819         ms->possible_cpus->cpus[n].arch_id =
820             sbsa_ref_cpu_mp_affinity(sms, n);
821         ms->possible_cpus->cpus[n].props.has_thread_id = true;
822         ms->possible_cpus->cpus[n].props.thread_id = n;
823     }
824     return ms->possible_cpus;
825 }
826 
827 static CpuInstanceProperties
828 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
829 {
830     MachineClass *mc = MACHINE_GET_CLASS(ms);
831     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
832 
833     assert(cpu_index < possible_cpus->len);
834     return possible_cpus->cpus[cpu_index].props;
835 }
836 
837 static int64_t
838 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
839 {
840     return idx % ms->numa_state->num_nodes;
841 }
842 
843 static void sbsa_ref_instance_init(Object *obj)
844 {
845     SBSAMachineState *sms = SBSA_MACHINE(obj);
846 
847     sbsa_flash_create(sms);
848 }
849 
850 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
851 {
852     MachineClass *mc = MACHINE_CLASS(oc);
853 
854     mc->init = sbsa_ref_init;
855     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
856     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
857     mc->max_cpus = 512;
858     mc->pci_allow_0_address = true;
859     mc->minimum_page_bits = 12;
860     mc->block_default_type = IF_IDE;
861     mc->no_cdrom = 1;
862     mc->default_ram_size = 1 * GiB;
863     mc->default_ram_id = "sbsa-ref.ram";
864     mc->default_cpus = 4;
865     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
866     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
867     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
868 }
869 
870 static const TypeInfo sbsa_ref_info = {
871     .name          = TYPE_SBSA_MACHINE,
872     .parent        = TYPE_MACHINE,
873     .instance_init = sbsa_ref_instance_init,
874     .class_init    = sbsa_ref_class_init,
875     .instance_size = sizeof(SBSAMachineState),
876 };
877 
878 static void sbsa_ref_machine_init(void)
879 {
880     type_register_static(&sbsa_ref_info);
881 }
882 
883 type_init(sbsa_ref_machine_init);
884