1 /* 2 * ARM SBSA Reference Platform emulation 3 * 4 * Copyright (c) 2018 Linaro Limited 5 * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved. 6 * Written by Hongbo Zhang <hongbo.zhang@linaro.org> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms and conditions of the GNU General Public License, 10 * version 2 or later, as published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 15 * more details. 16 * 17 * You should have received a copy of the GNU General Public License along with 18 * this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/datadir.h" 23 #include "qapi/error.h" 24 #include "qemu/error-report.h" 25 #include "qemu/units.h" 26 #include "sysemu/device_tree.h" 27 #include "sysemu/kvm.h" 28 #include "sysemu/numa.h" 29 #include "sysemu/runstate.h" 30 #include "sysemu/sysemu.h" 31 #include "exec/hwaddr.h" 32 #include "kvm_arm.h" 33 #include "hw/arm/boot.h" 34 #include "hw/arm/bsa.h" 35 #include "hw/arm/fdt.h" 36 #include "hw/arm/smmuv3.h" 37 #include "hw/block/flash.h" 38 #include "hw/boards.h" 39 #include "hw/ide/ide-bus.h" 40 #include "hw/ide/ahci-sysbus.h" 41 #include "hw/intc/arm_gicv3_common.h" 42 #include "hw/intc/arm_gicv3_its_common.h" 43 #include "hw/loader.h" 44 #include "hw/pci-host/gpex.h" 45 #include "hw/qdev-properties.h" 46 #include "hw/usb.h" 47 #include "hw/usb/xhci.h" 48 #include "hw/char/pl011.h" 49 #include "hw/watchdog/sbsa_gwdt.h" 50 #include "net/net.h" 51 #include "qapi/qmp/qlist.h" 52 #include "qom/object.h" 53 #include "target/arm/cpu-qom.h" 54 #include "target/arm/gtimer.h" 55 56 #define RAMLIMIT_GB 8192 57 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB) 58 59 #define NUM_IRQS 256 60 #define NUM_SMMU_IRQS 4 61 #define NUM_SATA_PORTS 6 62 63 /* 64 * Generic timer frequency in Hz (which drives both the CPU generic timers 65 * and the SBSA watchdog-timer). Older versions of the TF-A firmware 66 * typically used with sbsa-ref (including the binaries in our Avocado test 67 * Aarch64SbsarefMachine.test_sbsaref_alpine_linux_max_pauth_impdef 68 * assume it is this value. 69 * 70 * TODO: this value is not architecturally correct for an Armv8.6 or 71 * better CPU, so we should move to 1GHz once the TF-A fix above has 72 * made it into a release and into our Avocado test. 73 */ 74 #define SBSA_GTIMER_HZ 62500000 75 76 enum { 77 SBSA_FLASH, 78 SBSA_MEM, 79 SBSA_CPUPERIPHS, 80 SBSA_GIC_DIST, 81 SBSA_GIC_REDIST, 82 SBSA_GIC_ITS, 83 SBSA_SECURE_EC, 84 SBSA_GWDT_WS0, 85 SBSA_GWDT_REFRESH, 86 SBSA_GWDT_CONTROL, 87 SBSA_SMMU, 88 SBSA_UART, 89 SBSA_RTC, 90 SBSA_PCIE, 91 SBSA_PCIE_MMIO, 92 SBSA_PCIE_MMIO_HIGH, 93 SBSA_PCIE_PIO, 94 SBSA_PCIE_ECAM, 95 SBSA_GPIO, 96 SBSA_SECURE_UART, 97 SBSA_SECURE_UART_MM, 98 SBSA_SECURE_MEM, 99 SBSA_AHCI, 100 SBSA_XHCI, 101 }; 102 103 struct SBSAMachineState { 104 MachineState parent; 105 struct arm_boot_info bootinfo; 106 int smp_cpus; 107 void *fdt; 108 int fdt_size; 109 int psci_conduit; 110 DeviceState *gic; 111 PFlashCFI01 *flash[2]; 112 }; 113 114 #define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref") 115 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE) 116 117 static const MemMapEntry sbsa_ref_memmap[] = { 118 /* 512M boot ROM */ 119 [SBSA_FLASH] = { 0, 0x20000000 }, 120 /* 512M secure memory */ 121 [SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 }, 122 /* Space reserved for CPU peripheral devices */ 123 [SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 }, 124 [SBSA_GIC_DIST] = { 0x40060000, 0x00010000 }, 125 [SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 }, 126 [SBSA_GIC_ITS] = { 0x44081000, 0x00020000 }, 127 [SBSA_SECURE_EC] = { 0x50000000, 0x00001000 }, 128 [SBSA_GWDT_REFRESH] = { 0x50010000, 0x00001000 }, 129 [SBSA_GWDT_CONTROL] = { 0x50011000, 0x00001000 }, 130 [SBSA_UART] = { 0x60000000, 0x00001000 }, 131 [SBSA_RTC] = { 0x60010000, 0x00001000 }, 132 [SBSA_GPIO] = { 0x60020000, 0x00001000 }, 133 [SBSA_SECURE_UART] = { 0x60030000, 0x00001000 }, 134 [SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 }, 135 [SBSA_SMMU] = { 0x60050000, 0x00020000 }, 136 /* Space here reserved for more SMMUs */ 137 [SBSA_AHCI] = { 0x60100000, 0x00010000 }, 138 [SBSA_XHCI] = { 0x60110000, 0x00010000 }, 139 /* Space here reserved for other devices */ 140 [SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 }, 141 /* 32-bit address PCIE MMIO space */ 142 [SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 }, 143 /* 256M PCIE ECAM space */ 144 [SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 }, 145 /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */ 146 [SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL }, 147 [SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES }, 148 }; 149 150 static const int sbsa_ref_irqmap[] = { 151 [SBSA_UART] = 1, 152 [SBSA_RTC] = 2, 153 [SBSA_PCIE] = 3, /* ... to 6 */ 154 [SBSA_GPIO] = 7, 155 [SBSA_SECURE_UART] = 8, 156 [SBSA_SECURE_UART_MM] = 9, 157 [SBSA_AHCI] = 10, 158 [SBSA_XHCI] = 11, 159 [SBSA_SMMU] = 12, /* ... to 15 */ 160 [SBSA_GWDT_WS0] = 16, 161 }; 162 163 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx) 164 { 165 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 166 return arm_build_mp_affinity(idx, clustersz); 167 } 168 169 static void sbsa_fdt_add_gic_node(SBSAMachineState *sms) 170 { 171 char *nodename; 172 173 nodename = g_strdup_printf("/intc"); 174 qemu_fdt_add_subnode(sms->fdt, nodename); 175 qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg", 176 2, sbsa_ref_memmap[SBSA_GIC_DIST].base, 177 2, sbsa_ref_memmap[SBSA_GIC_DIST].size, 178 2, sbsa_ref_memmap[SBSA_GIC_REDIST].base, 179 2, sbsa_ref_memmap[SBSA_GIC_REDIST].size); 180 181 nodename = g_strdup_printf("/intc/its"); 182 qemu_fdt_add_subnode(sms->fdt, nodename); 183 qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg", 184 2, sbsa_ref_memmap[SBSA_GIC_ITS].base, 185 2, sbsa_ref_memmap[SBSA_GIC_ITS].size); 186 187 g_free(nodename); 188 } 189 190 /* 191 * Firmware on this machine only uses ACPI table to load OS, these limited 192 * device tree nodes are just to let firmware know the info which varies from 193 * command line parameters, so it is not necessary to be fully compatible 194 * with the kernel CPU and NUMA binding rules. 195 */ 196 static void create_fdt(SBSAMachineState *sms) 197 { 198 void *fdt = create_device_tree(&sms->fdt_size); 199 const MachineState *ms = MACHINE(sms); 200 int nb_numa_nodes = ms->numa_state->num_nodes; 201 int cpu; 202 203 if (!fdt) { 204 error_report("create_device_tree() failed"); 205 exit(1); 206 } 207 208 sms->fdt = fdt; 209 210 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref"); 211 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 212 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 213 214 /* 215 * This versioning scheme is for informing platform fw only. It is neither: 216 * - A QEMU versioned machine type; a given version of QEMU will emulate 217 * a given version of the platform. 218 * - A reflection of level of SBSA (now SystemReady SR) support provided. 219 * 220 * machine-version-major: updated when changes breaking fw compatibility 221 * are introduced. 222 * machine-version-minor: updated when features are added that don't break 223 * fw compatibility. 224 */ 225 qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0); 226 qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 3); 227 228 if (ms->numa_state->have_numa_distance) { 229 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 230 uint32_t *matrix = g_malloc0(size); 231 int idx, i, j; 232 233 for (i = 0; i < nb_numa_nodes; i++) { 234 for (j = 0; j < nb_numa_nodes; j++) { 235 idx = (i * nb_numa_nodes + j) * 3; 236 matrix[idx + 0] = cpu_to_be32(i); 237 matrix[idx + 1] = cpu_to_be32(j); 238 matrix[idx + 2] = 239 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 240 } 241 } 242 243 qemu_fdt_add_subnode(fdt, "/distance-map"); 244 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 245 matrix, size); 246 g_free(matrix); 247 } 248 249 /* 250 * From Documentation/devicetree/bindings/arm/cpus.yaml 251 * On ARM v8 64-bit systems this property is required 252 * and matches the MPIDR_EL1 register affinity bits. 253 * 254 * * If cpus node's #address-cells property is set to 2 255 * 256 * The first reg cell bits [7:0] must be set to 257 * bits [39:32] of MPIDR_EL1. 258 * 259 * The second reg cell bits [23:0] must be set to 260 * bits [23:0] of MPIDR_EL1. 261 */ 262 qemu_fdt_add_subnode(sms->fdt, "/cpus"); 263 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2); 264 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0); 265 266 for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) { 267 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 268 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 269 CPUState *cs = CPU(armcpu); 270 uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu); 271 272 qemu_fdt_add_subnode(sms->fdt, nodename); 273 qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr); 274 275 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 276 qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id", 277 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 278 } 279 280 g_free(nodename); 281 } 282 283 sbsa_fdt_add_gic_node(sms); 284 } 285 286 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB) 287 288 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms, 289 const char *name, 290 const char *alias_prop_name) 291 { 292 /* 293 * Create a single flash device. We use the same parameters as 294 * the flash devices on the Versatile Express board. 295 */ 296 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 297 298 qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE); 299 qdev_prop_set_uint8(dev, "width", 4); 300 qdev_prop_set_uint8(dev, "device-width", 2); 301 qdev_prop_set_bit(dev, "big-endian", false); 302 qdev_prop_set_uint16(dev, "id0", 0x89); 303 qdev_prop_set_uint16(dev, "id1", 0x18); 304 qdev_prop_set_uint16(dev, "id2", 0x00); 305 qdev_prop_set_uint16(dev, "id3", 0x00); 306 qdev_prop_set_string(dev, "name", name); 307 object_property_add_child(OBJECT(sms), name, OBJECT(dev)); 308 object_property_add_alias(OBJECT(sms), alias_prop_name, 309 OBJECT(dev), "drive"); 310 return PFLASH_CFI01(dev); 311 } 312 313 static void sbsa_flash_create(SBSAMachineState *sms) 314 { 315 sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0"); 316 sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1"); 317 } 318 319 static void sbsa_flash_map1(PFlashCFI01 *flash, 320 hwaddr base, hwaddr size, 321 MemoryRegion *sysmem) 322 { 323 DeviceState *dev = DEVICE(flash); 324 325 assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE)); 326 assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX); 327 qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE); 328 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 329 330 memory_region_add_subregion(sysmem, base, 331 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 332 0)); 333 } 334 335 static void sbsa_flash_map(SBSAMachineState *sms, 336 MemoryRegion *sysmem, 337 MemoryRegion *secure_sysmem) 338 { 339 /* 340 * Map two flash devices to fill the SBSA_FLASH space in the memmap. 341 * sysmem is the system memory space. secure_sysmem is the secure view 342 * of the system, and the first flash device should be made visible only 343 * there. The second flash device is visible to both secure and nonsecure. 344 */ 345 hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2; 346 hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base; 347 348 sbsa_flash_map1(sms->flash[0], flashbase, flashsize, 349 secure_sysmem); 350 sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize, 351 sysmem); 352 } 353 354 static bool sbsa_firmware_init(SBSAMachineState *sms, 355 MemoryRegion *sysmem, 356 MemoryRegion *secure_sysmem) 357 { 358 const char *bios_name; 359 int i; 360 BlockBackend *pflash_blk0; 361 362 /* Map legacy -drive if=pflash to machine properties */ 363 for (i = 0; i < ARRAY_SIZE(sms->flash); i++) { 364 pflash_cfi01_legacy_drive(sms->flash[i], 365 drive_get(IF_PFLASH, 0, i)); 366 } 367 368 sbsa_flash_map(sms, sysmem, secure_sysmem); 369 370 pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]); 371 372 bios_name = MACHINE(sms)->firmware; 373 if (bios_name) { 374 char *fname; 375 MemoryRegion *mr; 376 int image_size; 377 378 if (pflash_blk0) { 379 error_report("The contents of the first flash device may be " 380 "specified with -bios or with -drive if=pflash... " 381 "but you cannot use both options at once"); 382 exit(1); 383 } 384 385 /* Fall back to -bios */ 386 387 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 388 if (!fname) { 389 error_report("Could not find ROM image '%s'", bios_name); 390 exit(1); 391 } 392 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0); 393 image_size = load_image_mr(fname, mr); 394 g_free(fname); 395 if (image_size < 0) { 396 error_report("Could not load ROM image '%s'", bios_name); 397 exit(1); 398 } 399 } 400 401 return pflash_blk0 || bios_name; 402 } 403 404 static void create_secure_ram(SBSAMachineState *sms, 405 MemoryRegion *secure_sysmem) 406 { 407 MemoryRegion *secram = g_new(MemoryRegion, 1); 408 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base; 409 hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size; 410 411 memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size, 412 &error_fatal); 413 memory_region_add_subregion(secure_sysmem, base, secram); 414 } 415 416 static void create_its(SBSAMachineState *sms) 417 { 418 const char *itsclass = its_class_name(); 419 DeviceState *dev; 420 421 dev = qdev_new(itsclass); 422 423 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic), 424 &error_abort); 425 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 426 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base); 427 } 428 429 static void create_gic(SBSAMachineState *sms, MemoryRegion *mem) 430 { 431 unsigned int smp_cpus = MACHINE(sms)->smp.cpus; 432 SysBusDevice *gicbusdev; 433 const char *gictype; 434 uint32_t redist0_capacity, redist0_count; 435 QList *redist_region_count; 436 int i; 437 438 gictype = gicv3_class_name(); 439 440 sms->gic = qdev_new(gictype); 441 qdev_prop_set_uint32(sms->gic, "revision", 3); 442 qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus); 443 /* 444 * Note that the num-irq property counts both internal and external 445 * interrupts; there are always 32 of the former (mandated by GIC spec). 446 */ 447 qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32); 448 qdev_prop_set_bit(sms->gic, "has-security-extensions", true); 449 450 redist0_capacity = 451 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE; 452 redist0_count = MIN(smp_cpus, redist0_capacity); 453 454 redist_region_count = qlist_new(); 455 qlist_append_int(redist_region_count, redist0_count); 456 qdev_prop_set_array(sms->gic, "redist-region-count", redist_region_count); 457 458 object_property_set_link(OBJECT(sms->gic), "sysmem", 459 OBJECT(mem), &error_fatal); 460 qdev_prop_set_bit(sms->gic, "has-lpi", true); 461 462 gicbusdev = SYS_BUS_DEVICE(sms->gic); 463 sysbus_realize_and_unref(gicbusdev, &error_fatal); 464 sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base); 465 sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base); 466 467 /* 468 * Wire the outputs from each CPU's generic timer and the GICv3 469 * maintenance interrupt signal to the appropriate GIC PPI inputs, 470 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. 471 */ 472 for (i = 0; i < smp_cpus; i++) { 473 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 474 int intidbase = NUM_IRQS + i * GIC_INTERNAL; 475 int irq; 476 /* 477 * Mapping from the output timer irq lines from the CPU to the 478 * GIC PPI inputs used for this board. 479 */ 480 const int timer_irq[] = { 481 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 482 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 483 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 484 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 485 [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ, 486 }; 487 488 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 489 qdev_connect_gpio_out(cpudev, irq, 490 qdev_get_gpio_in(sms->gic, 491 intidbase + timer_irq[irq])); 492 } 493 494 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0, 495 qdev_get_gpio_in(sms->gic, 496 intidbase 497 + ARCH_GIC_MAINT_IRQ)); 498 499 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 500 qdev_get_gpio_in(sms->gic, 501 intidbase 502 + VIRTUAL_PMU_IRQ)); 503 504 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 505 sysbus_connect_irq(gicbusdev, i + smp_cpus, 506 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 507 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 508 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 509 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 510 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 511 } 512 create_its(sms); 513 } 514 515 static void create_uart(const SBSAMachineState *sms, int uart, 516 MemoryRegion *mem, Chardev *chr) 517 { 518 hwaddr base = sbsa_ref_memmap[uart].base; 519 int irq = sbsa_ref_irqmap[uart]; 520 DeviceState *dev = qdev_new(TYPE_PL011); 521 SysBusDevice *s = SYS_BUS_DEVICE(dev); 522 523 qdev_prop_set_chr(dev, "chardev", chr); 524 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 525 memory_region_add_subregion(mem, base, 526 sysbus_mmio_get_region(s, 0)); 527 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq)); 528 } 529 530 static void create_rtc(const SBSAMachineState *sms) 531 { 532 hwaddr base = sbsa_ref_memmap[SBSA_RTC].base; 533 int irq = sbsa_ref_irqmap[SBSA_RTC]; 534 535 sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq)); 536 } 537 538 static void create_wdt(const SBSAMachineState *sms) 539 { 540 hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base; 541 hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base; 542 DeviceState *dev = qdev_new(TYPE_WDT_SBSA); 543 SysBusDevice *s = SYS_BUS_DEVICE(dev); 544 int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0]; 545 546 qdev_prop_set_uint64(dev, "clock-frequency", SBSA_GTIMER_HZ); 547 sysbus_realize_and_unref(s, &error_fatal); 548 sysbus_mmio_map(s, 0, rbase); 549 sysbus_mmio_map(s, 1, cbase); 550 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq)); 551 } 552 553 static DeviceState *gpio_key_dev; 554 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque) 555 { 556 /* use gpio Pin 3 for power button event */ 557 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 558 } 559 560 static Notifier sbsa_ref_powerdown_notifier = { 561 .notify = sbsa_ref_powerdown_req 562 }; 563 564 static void create_gpio(const SBSAMachineState *sms) 565 { 566 DeviceState *pl061_dev; 567 hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base; 568 int irq = sbsa_ref_irqmap[SBSA_GPIO]; 569 570 pl061_dev = sysbus_create_simple("pl061", base, 571 qdev_get_gpio_in(sms->gic, irq)); 572 573 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 574 qdev_get_gpio_in(pl061_dev, 3)); 575 576 /* connect powerdown request */ 577 qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier); 578 } 579 580 static void create_ahci(const SBSAMachineState *sms) 581 { 582 hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base; 583 int irq = sbsa_ref_irqmap[SBSA_AHCI]; 584 DeviceState *dev; 585 DriveInfo *hd[NUM_SATA_PORTS]; 586 SysbusAHCIState *sysahci; 587 588 dev = qdev_new("sysbus-ahci"); 589 qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS); 590 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 591 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 592 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq)); 593 594 sysahci = SYSBUS_AHCI(dev); 595 ide_drive_get(hd, ARRAY_SIZE(hd)); 596 ahci_ide_create_devs(&sysahci->ahci, hd); 597 } 598 599 static void create_xhci(const SBSAMachineState *sms) 600 { 601 hwaddr base = sbsa_ref_memmap[SBSA_XHCI].base; 602 int irq = sbsa_ref_irqmap[SBSA_XHCI]; 603 DeviceState *dev = qdev_new(TYPE_XHCI_SYSBUS); 604 qdev_prop_set_uint32(dev, "slots", XHCI_MAXSLOTS); 605 606 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 607 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 608 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq)); 609 } 610 611 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus) 612 { 613 hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base; 614 int irq = sbsa_ref_irqmap[SBSA_SMMU]; 615 DeviceState *dev; 616 int i; 617 618 dev = qdev_new(TYPE_ARM_SMMUV3); 619 620 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 621 &error_abort); 622 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 623 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 624 for (i = 0; i < NUM_SMMU_IRQS; i++) { 625 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 626 qdev_get_gpio_in(sms->gic, irq + i)); 627 } 628 } 629 630 static void create_pcie(SBSAMachineState *sms) 631 { 632 hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base; 633 hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size; 634 hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base; 635 hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size; 636 hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base; 637 hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size; 638 hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base; 639 int irq = sbsa_ref_irqmap[SBSA_PCIE]; 640 MachineClass *mc = MACHINE_GET_CLASS(sms); 641 MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg; 642 MemoryRegion *ecam_alias, *ecam_reg; 643 DeviceState *dev; 644 PCIHostState *pci; 645 int i; 646 647 dev = qdev_new(TYPE_GPEX_HOST); 648 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 649 650 /* Map ECAM space */ 651 ecam_alias = g_new0(MemoryRegion, 1); 652 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 653 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 654 ecam_reg, 0, size_ecam); 655 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 656 657 /* Map the MMIO space */ 658 mmio_alias = g_new0(MemoryRegion, 1); 659 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 660 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 661 mmio_reg, base_mmio, size_mmio); 662 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 663 664 /* Map the MMIO_HIGH space */ 665 mmio_alias_high = g_new0(MemoryRegion, 1); 666 memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high", 667 mmio_reg, base_mmio_high, size_mmio_high); 668 memory_region_add_subregion(get_system_memory(), base_mmio_high, 669 mmio_alias_high); 670 671 /* Map IO port space */ 672 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 673 674 for (i = 0; i < GPEX_NUM_IRQS; i++) { 675 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 676 qdev_get_gpio_in(sms->gic, irq + i)); 677 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 678 } 679 680 pci = PCI_HOST_BRIDGE(dev); 681 682 pci_init_nic_devices(pci->bus, mc->default_nic); 683 684 pci_create_simple(pci->bus, -1, "bochs-display"); 685 686 create_smmu(sms, pci->bus); 687 } 688 689 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size) 690 { 691 const SBSAMachineState *board = container_of(binfo, SBSAMachineState, 692 bootinfo); 693 694 *fdt_size = board->fdt_size; 695 return board->fdt; 696 } 697 698 static void create_secure_ec(MemoryRegion *mem) 699 { 700 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base; 701 DeviceState *dev = qdev_new("sbsa-ec"); 702 SysBusDevice *s = SYS_BUS_DEVICE(dev); 703 704 memory_region_add_subregion(mem, base, 705 sysbus_mmio_get_region(s, 0)); 706 } 707 708 static void sbsa_ref_init(MachineState *machine) 709 { 710 unsigned int smp_cpus = machine->smp.cpus; 711 unsigned int max_cpus = machine->smp.max_cpus; 712 SBSAMachineState *sms = SBSA_MACHINE(machine); 713 MachineClass *mc = MACHINE_GET_CLASS(machine); 714 MemoryRegion *sysmem = get_system_memory(); 715 MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1); 716 bool firmware_loaded; 717 const CPUArchIdList *possible_cpus; 718 int n, sbsa_max_cpus; 719 720 if (kvm_enabled()) { 721 error_report("sbsa-ref: KVM is not supported for this machine"); 722 exit(1); 723 } 724 725 /* 726 * The Secure view of the world is the same as the NonSecure, 727 * but with a few extra devices. Create it as a container region 728 * containing the system memory at low priority; any secure-only 729 * devices go in at higher priority and take precedence. 730 */ 731 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 732 UINT64_MAX); 733 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 734 735 firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem); 736 737 /* 738 * This machine has EL3 enabled, external firmware should supply PSCI 739 * implementation, so the QEMU's internal PSCI is disabled. 740 */ 741 sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 742 743 sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE; 744 745 if (max_cpus > sbsa_max_cpus) { 746 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 747 "supported by machine 'sbsa-ref' (%d)", 748 max_cpus, sbsa_max_cpus); 749 exit(1); 750 } 751 752 sms->smp_cpus = smp_cpus; 753 754 if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) { 755 error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB); 756 exit(1); 757 } 758 759 possible_cpus = mc->possible_cpu_arch_ids(machine); 760 for (n = 0; n < possible_cpus->len; n++) { 761 Object *cpuobj; 762 CPUState *cs; 763 764 if (n >= smp_cpus) { 765 break; 766 } 767 768 cpuobj = object_new(possible_cpus->cpus[n].type); 769 object_property_set_int(cpuobj, "mp-affinity", 770 possible_cpus->cpus[n].arch_id, NULL); 771 772 cs = CPU(cpuobj); 773 cs->cpu_index = n; 774 775 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 776 &error_fatal); 777 778 if (object_property_find(cpuobj, "reset-cbar")) { 779 object_property_set_int(cpuobj, "reset-cbar", 780 sbsa_ref_memmap[SBSA_CPUPERIPHS].base, 781 &error_abort); 782 } 783 784 object_property_set_int(cpuobj, "cntfrq", SBSA_GTIMER_HZ, &error_abort); 785 786 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 787 &error_abort); 788 789 object_property_set_link(cpuobj, "secure-memory", 790 OBJECT(secure_sysmem), &error_abort); 791 792 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 793 object_unref(cpuobj); 794 } 795 796 memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base, 797 machine->ram); 798 799 create_fdt(sms); 800 801 create_secure_ram(sms, secure_sysmem); 802 803 create_gic(sms, sysmem); 804 805 create_uart(sms, SBSA_UART, sysmem, serial_hd(0)); 806 create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1)); 807 /* Second secure UART for RAS and MM from EL0 */ 808 create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2)); 809 810 create_rtc(sms); 811 812 create_wdt(sms); 813 814 create_gpio(sms); 815 816 create_ahci(sms); 817 818 create_xhci(sms); 819 820 create_pcie(sms); 821 822 create_secure_ec(secure_sysmem); 823 824 sms->bootinfo.ram_size = machine->ram_size; 825 sms->bootinfo.board_id = -1; 826 sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base; 827 sms->bootinfo.get_dtb = sbsa_ref_dtb; 828 sms->bootinfo.firmware_loaded = firmware_loaded; 829 arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo); 830 } 831 832 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms) 833 { 834 unsigned int max_cpus = ms->smp.max_cpus; 835 SBSAMachineState *sms = SBSA_MACHINE(ms); 836 int n; 837 838 if (ms->possible_cpus) { 839 assert(ms->possible_cpus->len == max_cpus); 840 return ms->possible_cpus; 841 } 842 843 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 844 sizeof(CPUArchId) * max_cpus); 845 ms->possible_cpus->len = max_cpus; 846 for (n = 0; n < ms->possible_cpus->len; n++) { 847 ms->possible_cpus->cpus[n].type = ms->cpu_type; 848 ms->possible_cpus->cpus[n].arch_id = 849 sbsa_ref_cpu_mp_affinity(sms, n); 850 ms->possible_cpus->cpus[n].props.has_thread_id = true; 851 ms->possible_cpus->cpus[n].props.thread_id = n; 852 } 853 return ms->possible_cpus; 854 } 855 856 static CpuInstanceProperties 857 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 858 { 859 MachineClass *mc = MACHINE_GET_CLASS(ms); 860 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 861 862 assert(cpu_index < possible_cpus->len); 863 return possible_cpus->cpus[cpu_index].props; 864 } 865 866 static int64_t 867 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx) 868 { 869 return idx % ms->numa_state->num_nodes; 870 } 871 872 static void sbsa_ref_instance_init(Object *obj) 873 { 874 SBSAMachineState *sms = SBSA_MACHINE(obj); 875 876 sbsa_flash_create(sms); 877 } 878 879 static void sbsa_ref_class_init(ObjectClass *oc, void *data) 880 { 881 MachineClass *mc = MACHINE_CLASS(oc); 882 static const char * const valid_cpu_types[] = { 883 ARM_CPU_TYPE_NAME("cortex-a57"), 884 ARM_CPU_TYPE_NAME("cortex-a72"), 885 ARM_CPU_TYPE_NAME("neoverse-n1"), 886 ARM_CPU_TYPE_NAME("neoverse-v1"), 887 ARM_CPU_TYPE_NAME("neoverse-n2"), 888 ARM_CPU_TYPE_NAME("max"), 889 NULL, 890 }; 891 892 mc->init = sbsa_ref_init; 893 mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine"; 894 mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n1"); 895 mc->valid_cpu_types = valid_cpu_types; 896 mc->max_cpus = 512; 897 mc->pci_allow_0_address = true; 898 mc->minimum_page_bits = 12; 899 mc->block_default_type = IF_IDE; 900 mc->no_cdrom = 1; 901 mc->default_nic = "e1000e"; 902 mc->default_ram_size = 1 * GiB; 903 mc->default_ram_id = "sbsa-ref.ram"; 904 mc->default_cpus = 4; 905 mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids; 906 mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props; 907 mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id; 908 /* platform instead of architectural choice */ 909 mc->cpu_cluster_has_numa_boundary = true; 910 } 911 912 static const TypeInfo sbsa_ref_info = { 913 .name = TYPE_SBSA_MACHINE, 914 .parent = TYPE_MACHINE, 915 .instance_init = sbsa_ref_instance_init, 916 .class_init = sbsa_ref_class_init, 917 .instance_size = sizeof(SBSAMachineState), 918 }; 919 920 static void sbsa_ref_machine_init(void) 921 { 922 type_register_static(&sbsa_ref_info); 923 } 924 925 type_init(sbsa_ref_machine_init); 926